JP2000230403A - Turbine stator blade - Google Patents

Turbine stator blade

Info

Publication number
JP2000230403A
JP2000230403A JP11029956A JP2995699A JP2000230403A JP 2000230403 A JP2000230403 A JP 2000230403A JP 11029956 A JP11029956 A JP 11029956A JP 2995699 A JP2995699 A JP 2995699A JP 2000230403 A JP2000230403 A JP 2000230403A
Authority
JP
Japan
Prior art keywords
blade
turbine
flow
secondary flow
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11029956A
Other languages
Japanese (ja)
Inventor
Kunihiro Shimizu
邦弘 清水
Seiji Mita
政二 見田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11029956A priority Critical patent/JP2000230403A/en
Publication of JP2000230403A publication Critical patent/JP2000230403A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce secondary flow loss, in a turbine stator blade with a higher expansion rate per turbine stage by means of a larger flare angle, by forming a step portion at the back side thereof which swells from the tip and hub sides toward the blade height direction. SOLUTION: A turbine blade 11 of a gas turbine or the like is provided with step portions 13, 13 at a position corresponding to 10 to 15% of the height of the turbine blade 11, from both ends of the tip and hub sides in the height direction. Each step portion 13 swells from each end in the height direction of the turbine blade 11. Each step portion 13 is formed such that it starts at a position inward of the turbine 11 in the direction along which main stream flows and extends to the trailing edge. Patterns of secondary flows 12 that are generated at the both ends of the tip and hub sides are predicted by experiments or the like at the backside of the turbine blade 11. The step portions 13 is set to start from those positions where the secondary flows 12 are generated. As above, the turbine blade 11 is formed to have a projecting shape at the center thereof toward the backside of the turbine blade 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスタービン等の軸
流回転機械において作動流体を案内するタービン静翼に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine vane for guiding a working fluid in an axial rotating machine such as a gas turbine.

【0002】[0002]

【従来の技術】従来のタービン静翼の概要について、図
2に基づいて説明する。タービンの静翼は、その半径方
向外側で図示省略の車室に設けた翼環に支持され、半径
方向内側をシュラウド等で支持された複数の翼を周方向
に配列して構成されるが、代表例して一つのタービン翼
01を図2(a)に示す様に、隣接する他のタービン翼
の腹側より圧力の低いタービン翼01の背側の表面で、
同タービン翼01のハブ(Hub)側とチップ(Ti
p)側の端部に2次流れ02が発生し、この2次流れ0
2が主流中に混入してタービンの作動効率の低下を招く
一つの原因となっている。
2. Description of the Related Art An outline of a conventional turbine vane will be described with reference to FIG. The turbine vane is supported by a blade ring provided in a vehicle compartment (not shown) on the outer side in the radial direction, and a plurality of blades supported on the inner side in the radial direction by a shroud or the like are arranged in a circumferential direction. As a representative example, as shown in FIG. 2A, one turbine blade 01 is located on the back surface of the turbine blade 01 having a pressure lower than the ventral side of another adjacent turbine blade.
The hub (Hub) side of the turbine blade 01 and a tip (Ti
A secondary flow 02 is generated at the end on the p) side, and the secondary flow 0
2 mixes into the mainstream and is one of the causes of lowering the operating efficiency of the turbine.

【0003】この2次流れ02の発生を抑制し、2次流
れ損失の低減を図る一つの方法として、昨今では翼01
の背面でハブ側及びチップ側端部における表面を、例え
ば部分的に膨らませた形状に形成するカーブドスタッキ
ング翼が採用され、翼端側の負荷を低減し、翼中央の負
荷を増加することにより前記2次流れ損失の低減を達成
しようとしている。
As one method of suppressing the generation of the secondary flow 02 and reducing the secondary flow loss, recently, the blade 01
Curved stacking wings that form the surface at the hub side and the tip side end at the back side, for example, in a partially expanded shape are adopted, reduce the load at the wing tip side, and increase the load at the center of the wing. Attempts are being made to reduce secondary flow losses.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、タービ
ンの高負荷化に伴って、段落当たりの膨脹比が増加し、
段落の入り口と出口の半径方向の距離の差が大きくな
り、図2(b)に模式的に示す様に、フレア角04が大
きくなると、図2(c)のグラフに曲線A1として示す
様に、2次流れ損失が翼01の中央部まで影響を及ぼす
様になり、フレア角04が大きい翼で発生する2次流れ
損失の主流05への影響を抑えきれなくなって来る。
However, as the load on the turbine increases, the expansion ratio per stage increases,
When the difference in the radial distance between the entrance and the exit of the paragraph increases, and the flare angle 04 increases, as schematically shown in FIG. 2B, the curve A1 in the graph of FIG. Second, the secondary flow loss affects the central portion of the wing 01, and the influence of the secondary flow loss generated on the wing having a large flare angle 04 on the main flow 05 cannot be completely suppressed.

【0005】本発明は、このような従来のカーブドスタ
ッキング翼における不具合点を解消し、フレア角を大き
くし、段落当たりの膨脹比を大きくしたものにおいて、
2次流れ損失の低減を図る様にしたタービン静翼を提供
することを課題とするものである。
SUMMARY OF THE INVENTION The present invention solves such a problem in the conventional curved stacking blade, increases the flare angle, and increases the expansion ratio per paragraph.
It is an object of the present invention to provide a turbine vane in which a secondary flow loss is reduced.

【0006】[0006]

【課題を解決するための手段】本発明は前記した課題を
解決すべくなされたもので、翼の背面に、チップ側及び
ハブ側から翼高さ方向に向かって盛り上がった段差部を
形成したタービンの静翼を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a turbine having a stepped portion formed on a back surface of a blade from a tip side and a hub side toward a blade height direction. To provide a stationary wing.

【0007】すなわち本発明によれば、翼の背面に、チ
ップ側及びハブ側から翼高さ方向に向かって盛り上がっ
た段差部を形成したことにより、翼の背面端部に発生す
る2次流れは段差部で区画された端部内に止まり、翼中
央部に流れ込まないようにして翼中央部の主流ガスの流
れに影響を与えず、主流の効率低下を防止する様にした
ものである。
In other words, according to the present invention, since a stepped portion is formed on the back surface of the blade in the height direction from the tip side and the hub side in the blade height direction, the secondary flow generated at the rear end portion of the blade is It stops at the end defined by the step, does not flow into the center of the blade, does not affect the flow of the mainstream gas in the center of the blade, and prevents a reduction in the efficiency of the main flow.

【0008】また、本発明は、前記段差部は、チップ側
及びハブ側の端部から翼高さ方向に向かって翼高さの1
0〜15%の位置に形成したタービンの静翼を提供する
ものである。
Further, according to the present invention, the stepped portion has a blade height of 1 from the tip side and the hub side ends in the blade height direction.
The present invention provides a turbine vane formed at a position of 0 to 15%.

【0009】すなわち本発明によれば、チップ側及びハ
ブ側の端部から翼高さ方向に向かって翼高さの10〜1
5%の位置に段差部を形成することにより、通常2次流
れの発生する領域に当たるこの10〜15%の範囲に、
段差部で区画して2次流れを閉じ込め、同2次流れを翼
中央部の主流領域に流し込まず、主流に影響を与えて効
率低下の生じるのを防止する様にしたものである。
That is, according to the present invention, the blade height is 10 to 1 from the tip side and the hub side ends toward the blade height direction.
By forming a step portion at a position of 5%, the range of 10 to 15%, which corresponds to a region where the secondary flow occurs, is usually set.
The secondary flow is confined by being divided by a step, and the secondary flow is not flown into the main flow region in the center of the blade, so that the main flow is prevented from being reduced and efficiency is reduced.

【0010】また、本発明は、前記段差部は、主流の流
れ方向の起点を翼の背面で2次流れが発生し始める位置
に形成したタービンの静翼を提供するものである。
The present invention also provides a turbine vane in which the step portion has a starting point in the flow direction of the main flow formed at a position on the back surface of the blade where secondary flow starts to occur.

【0011】すなわち本発明によれば、翼の背面で2次
流れが発生し始める位置に主流の流れ方向における段差
部の起点を形成しているので、2次流れが発生し始める
位置に至るまでは翼の全面で主流の流れを案内し、2次
流れが生じる位置から翼端部と中央部を段差部で区画す
ることにより、翼背面を効果的に使用して主流の流れを
案内し、効率低下の発生防止を図る様にしたものであ
る。
That is, according to the present invention, since the starting point of the step in the main flow direction is formed at the position where the secondary flow starts to be generated on the back surface of the blade, it is possible to reach the position where the secondary flow starts to be generated. Guides the flow of the main flow over the entire surface of the wing and guides the flow of the main flow by effectively using the back of the wing by dividing the wing tip and the center by a step from the position where the secondary flow occurs, This is to prevent the efficiency from being reduced.

【0012】また、本発明は、前記段差部は、翼後縁側
から見て翼の中央側が背側に凸となる形状に形成したタ
ービンの静翼を提供するものである。
Further, the present invention provides a turbine vane in which the step portion is formed such that the center side of the blade is convex to the rear side when viewed from the blade trailing edge side.

【0013】すなわち本発明によれば、段差部により翼
の形状は翼の中央側が背側に凸となる様に形成されてい
るので、翼の背側でこの中央部を挟むチップ側、ハブ側
の両端部は一段と低くなることとなり、2次流れはこの
低部に閉じ込められ、主流に影響を与えず、主流の効率
低下を来すことのない様にしたものである。
In other words, according to the present invention, the wing is formed so that the center side of the wing is convex to the back side by the stepped portion. Therefore, the tip side and the hub side sandwiching the center part on the back side of the wing. , Both ends are further lowered, and the secondary flow is confined in this lower part, so that the main flow is not affected and the efficiency of the main flow is not reduced.

【0014】更にまた、本発明は、前記段差部は、主流
の流れ範囲の区画に合致させて主流の流れ方向に延ばし
て形成したタービンの静翼を提供するものである。
Still further, the present invention provides a turbine vane in which the step portion is formed so as to extend in the direction of flow of the main flow so as to match the section of the flow range of the main flow.

【0015】すなわち本発明によれば、主流の流れ範囲
の区画に合致させて主流の流れ方向に延ばして段差部を
形成しているので、段落当たりの膨脹比を大きくしてフ
レア角を大きくした場合においては、主流領域はフレア
角に準じて下流方向に広がることになるが、その広がり
を段差部で的確に区画して主流領域に2次流れの流れ込
みを防止し、主流の効率低下を招くことの無いようにし
たものである。
That is, according to the present invention, since the stepped portion is formed by extending in the mainstream flow direction in accordance with the section of the mainstream flow range, the expansion ratio per paragraph is increased to increase the flare angle. In such a case, the main flow region spreads in the downstream direction according to the flare angle. However, the spread is accurately divided by the step portion to prevent the secondary flow from flowing into the main flow region, and the main flow efficiency is reduced. It is something that has never happened.

【0016】[0016]

【発明の実施の形態】本発明の実施の一形態について図
1に基づいて説明する。図1は本実施の形態におけるタ
ービン翼の全貌を概略的に説明するものであり、(a)
は翼背面側から見た概要を示し、(b)は翼後縁側から
見た概要を示し、また、(c)は翼の高さ方向における
2次流れ損失を説明している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. FIG. 1 schematically illustrates the entire appearance of a turbine blade according to the present embodiment, and FIG.
Fig. 4 shows the outline viewed from the blade rear side, (b) illustrates the outline viewed from the blade trailing edge side, and (c) illustrates the secondary flow loss in the blade height direction.

【0017】すなわち、本実施の形態においては、ター
ビン翼11はその高さ方向において、チップ側及びハブ
側の両端部から、タービン翼11の高さの10%から1
5%に相当する位置に、同両端部からタービン翼11の
高さ方向に向かって盛り上がる段差部13、13を設け
ている。
That is, in the present embodiment, the turbine blade 11 is located at 10% to 1% of the height of the turbine blade 11 from both ends on the tip side and the hub side in the height direction.
At the position corresponding to 5%, step portions 13, 13 rising from both ends toward the height direction of the turbine blade 11 are provided.

【0018】この各段差部13、13はタービン翼11
のリーディングエッヂから始まるのではなく、主流の流
れ方向で内方に入った位置で始まり、トレーリングエッ
ヂにまで亘って延びている。
Each of the steps 13, 13 is provided with a turbine blade 11
Rather than starting at the leading edge, it starts at an inward position in the mainstream flow direction and extends to the trailing edge.

【0019】そしてこの段差部13が始まる位置、換言
すれば段差部13の主流の流れ方向における起点は、タ
ービン翼11の背側において、チップ側及びハブ側の両
端部に発生する2次流れ12のパターンを実験または数
値解析により予測し、同2次流れ12の発生する位置に
定めている。
The position where the step 13 starts, in other words, the starting point of the step 13 in the main flow direction is the secondary flow 12 generated at both ends on the tip side and the hub side on the back side of the turbine blade 11. Is predicted by experiment or numerical analysis, and is determined at the position where the secondary flow 12 occurs.

【0020】従ってこの段差部13を形成したタービン
翼11をその後縁側から見てみると、図1(b)に示す
様に、タービン翼11の中央側が同タービン翼11の背
側に凸となる形状に形成されている。
Accordingly, when the turbine blade 11 having the stepped portion 13 is viewed from the trailing edge side, as shown in FIG. 1B, the center side of the turbine blade 11 is convex on the back side of the turbine blade 11. It is formed in a shape.

【0021】そしてこの段差部13により凸形状に区画
された範囲は、一つのタービン翼11に相当する範囲で
軸方向に区画される1段落での膨脹比を高めようとし
て、リーディングエッヂに対するトレーリングエッヂの
半径方向の長さを大きくし、その結果いわゆるフレア角
が大きくなると、それに準じて凸形状の区画もトレーリ
ングエッヂ側に進むに従って端部側に向かって広くな
り、主流の流れ範囲の区画に合致してトレーリングエッ
ヂ側まで延びるように形成されている。
The area defined in the convex shape by the stepped portion 13 is a region corresponding to one turbine blade 11 in an attempt to increase the expansion ratio in one stage axially defined by the trailing edge to the leading edge. When the edge length in the radial direction is increased, and as a result, the so-called flare angle is increased, the section of the convex shape also becomes larger toward the end side as it goes to the trailing edge side, and the section of the flow range of the main flow is accordingly increased. And is formed to extend to the trailing edge side.

【0022】前記の様に本実施の形態においては、段差
部13の位置はタービン翼11の背側で、チップ側及び
ハブ側から高さ方向にそれぞれ10〜15%の位置と
し、全体形状とてトレーリングエッヂ側から見て中央部
が凸となるようにしたので、主流の圧力が高い腹側では
なく、圧力の低い背側において、しかも、図示省略の翼
環やシュラウド等の存在により2次流れ12が発生する
チップ側及びハブ側の端部区域を的確にとらえて2次流
れ12を閉じ込め、同2次流れ12を主流側に送らない
様にして、主流の流れを乱すことを防止しているので、
主流の効率低下を来すことのないものである。
As described above, in the present embodiment, the position of the stepped portion 13 is on the back side of the turbine blade 11 and at a position of 10 to 15% in the height direction from the tip side and the hub side, respectively. The central part is convex when viewed from the trailing edge side, so it is not on the ventral side where the mainstream pressure is high, but on the back side where the pressure is low, and because of the presence of wing rings and shrouds (not shown). The secondary flow 12 is confined by accurately capturing the end area on the chip side and the hub side where the next flow 12 occurs, preventing the secondary flow 12 from being sent to the main flow side, and preventing the main flow from being disturbed. So
It does not reduce the mainstream efficiency.

【0023】すなわち、図1(c)において、タービン
翼11の高さ方向を縦軸にとり、各高さ位置に於ける2
次流れ損失を横軸にとって示すと、曲線A2で描かれる
様にチップ側及びハブ側の端部では2次流れ損失は大き
くなるが、段差部13に相当する位置を境として中央部
側では前記2次流れ損失が小さくなっており、同2次流
れ損失が主流の流れに影響を与えないものとなっている
ことがわかる。
That is, in FIG. 1 (c), the vertical direction is the vertical direction of the turbine blades 11, and 2 at each height position.
When the secondary flow loss is plotted on the horizontal axis, the secondary flow loss increases at the tip side and the hub side ends as depicted by the curve A2, but at the center side with respect to the position corresponding to the step portion 13 as described above. It can be seen that the secondary flow loss is small and the secondary flow loss does not affect the main flow.

【0024】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。
Although the present invention has been described with reference to the illustrated embodiments, the present invention is not limited to such embodiments.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention.

【0025】例えば、前記図1(b)からも読み取れる
様に、タービン翼11の背側が凸になることは、翼の重
量等の設計条件からして同凸部分と裏腹となる腹面側は
凹型に形成されるのが普通であるが、2次流れの影響防
止という観点からみるときは、翼の腹面側は通常の球面
に形成することもできる。
For example, as can be seen from FIG. 1 (b), the fact that the back side of the turbine blade 11 is convex means that the ventral side, which is opposite to the convex part, is concave due to design conditions such as the weight of the blade. However, from the viewpoint of preventing the influence of the secondary flow, the abdominal surface of the wing may be formed as a normal spherical surface.

【0026】[0026]

【発明の効果】以上、本発明によれば、翼の背面に、チ
ップ側及びハブ側から翼高さ方向に向かって盛り上がっ
た段差部を形成してタービンの静翼を構成しているの
で、この様に翼の背面に、チップ側及びハブ側から翼高
さ方向に向かって盛り上がった段差部を形成したことに
より、翼の背面端部に発生する2次流れは段差部で区画
された端部内に止まり、翼中央部に流れ込まないように
して翼中央部の主流ガスの流れに影響を与えず、主流の
効率低下を防止する好適なタービンの静翼を得ることが
出来たものである。
As described above, according to the present invention, a stepped portion is formed on the back surface of the blade from the tip side and the hub side toward the blade height direction to form a turbine stationary blade. By forming a stepped portion rising from the tip side and the hub side in the blade height direction on the backside of the blade in this way, the secondary flow generated at the back end of the blade is separated by the stepped end. Thus, it is possible to obtain a suitable turbine vane of a turbine which stops in the central portion of the blade and does not flow into the central portion of the blade without affecting the flow of the mainstream gas in the central portion of the blade, thereby preventing a reduction in the efficiency of the main flow.

【0027】また、請求項2に記載の発明によれば、前
記段差部は、チップ側及びハブ側の端部から翼高さ方向
に向かって翼高さの10〜15%の位置に形成してター
ビンの静翼を構成しているので、この様にチップ側及び
ハブ側の端部から翼高さ方向に向かって翼高さの10〜
15%の位置に段差部を形成したことにより、通常2次
流れの発生する領域に当たるこの10〜15%の範囲
に、段差部で区画して2次流れを閉じ込め、同2次流れ
を翼中央部の主流領域に流し込まず、2次流れが主流に
影響を与えて効率低下の生じることのない様にした好適
なタービンの静翼を得ることが出来たものである。
According to the second aspect of the present invention, the step portion is formed at a position of 10 to 15% of the blade height in the blade height direction from the tip side and the hub side ends. Thus, the blades of the turbine are configured so that the blade height is 10 to 10 from the tip side and the hub side end in the blade height direction.
By forming the step portion at the position of 15%, the secondary flow is confined by dividing by the step portion in the range of 10 to 15%, which is usually the region where the secondary flow occurs, and the secondary flow is centered on the blade. Thus, it is possible to obtain a suitable turbine vane of the turbine in which the secondary flow does not flow into the main flow region of the section and the secondary flow does not affect the main flow and the efficiency does not decrease.

【0028】また、請求項3に記載の発明によれば、前
記段差部は、主流の流れ方向の起点を翼の背面で2次流
れが発生し始める位置に形成してタービンの静翼を構成
しているので、この様に翼の背面で2次流れが発生し始
める位置に主流の流れ方向における段差部の起点を形成
したことにより、2次流れが発生し始める位置に至るま
では翼の全面で主流の流れを案内し、2次流れが生じる
位置から翼端部と中央部を段差部で区画することによ
り、翼背面を効果的に使用して主流の流れを案内し、2
次流れによる効率低下の発生を防止する様にした好適な
タービンの静翼を得ることが出来たものである。
According to the third aspect of the present invention, the step portion forms the starting point of the main flow in the flow direction at a position where the secondary flow starts to be generated on the back surface of the blade to constitute a turbine stationary blade. In this way, the starting point of the step in the main flow direction is formed at the position where the secondary flow starts to be generated on the back surface of the blade in this manner, so that the position of the wing until the position where the secondary flow starts to be generated is reached. By guiding the mainstream flow over the entire surface and dividing the wing tip and center with a step from the position where the secondary flow occurs, the backside of the wing is used effectively to guide the mainstream flow,
It is possible to obtain a suitable turbine vane in which the efficiency is prevented from being reduced by the next flow.

【0029】また、請求項4に記載の発明によれば、前
記段差部は、翼後縁側から見て翼の中央側が背側に凸と
なる形状に形成してタービンの静翼を構成しているの
で、この様に段差部により翼の形状は翼の中央側が背側
に凸となる様に形成したことにより、翼の背側でこの中
央部を挟むチップ側、ハブ側の両端部は一段と低くなる
こととなり、2次流れはこの低部に閉じ込められ、中央
部の主流に影響を与えず、主流が2次流れの影響で効率
低下を来すことのない様にした好適なタービンの静翼を
得ることが出来たものである。
According to the fourth aspect of the present invention, the step portion is formed to have a shape in which the center side of the blade is convex to the rear side when viewed from the blade trailing edge side, thereby forming a turbine stationary blade. Therefore, the shape of the wing is formed such that the center side of the wing is convex to the back side due to the step, so both ends on the tip side and hub side sandwiching this center part on the back side of the wing are one step The secondary flow is confined in this lower part and does not affect the main flow in the central part, so that the static flow of the preferred turbine is such that the main flow does not decrease in efficiency due to the influence of the secondary flow. Wings were obtained.

【0030】更にまた、請求項5に記載の発明によれ
ば、前記段差部は、主流の流れ範囲の区画に合致させて
主流の流れ方向に延ばして形成してタービンの静翼を構
成しているので、この様に主流の流れ範囲の区画に合致
させて主流の流れ方向に延ばして段差部を形成したこと
により、段落当たりの膨脹比を大きくしてフレア角が大
きくなった場合においては、主流領域はフレア角に準じ
て下流方向に広がることになるが、その広がりを段差部
で的確に区画して主流領域に2次流れの流れ込みを防止
し、2次流れの影響により主流の効率低下を招くことの
無いようにした好適なタービンの静翼を得ることが出来
たものである。
Further, according to the fifth aspect of the present invention, the step portion is formed to extend in the main flow direction in conformity with the section of the main flow range to form a turbine vane of the turbine. In this case, when the flare angle is increased by increasing the expansion ratio per paragraph by forming a step by extending in the main flow direction in accordance with the section of the main flow area in this way, The main flow region spreads downstream in accordance with the flare angle, but the spread is accurately divided by the steps to prevent the flow of the secondary flow into the main flow region, and the efficiency of the main flow decreases due to the influence of the secondary flow. Thus, it is possible to obtain a suitable stator vane of the turbine so as not to cause the above problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係るタービン翼の概要
を示し、(a)は翼背面側から見た概略図、(b)は翼
後縁側から見た概略図、また、(c)は翼の高さ方向に
おける2次流れ損失を示す説明図である。
1A and 1B schematically show a turbine blade according to an embodiment of the present invention, wherein FIG. 1A is a schematic diagram viewed from the blade rear side, FIG. 1B is a schematic diagram viewed from the blade trailing edge side, and FIG. () Is an explanatory diagram showing the secondary flow loss in the blade height direction.

【図2】従来のタービン翼の概要を示し、(a)は翼背
面側から見た概略図、(b)は翼の形状及び主流の状況
を示す模式図、また、(c)は翼の高さ方向における2
次流れ損失を示す説明図である。
2A and 2B schematically show a conventional turbine blade, FIG. 2A is a schematic diagram viewed from the back side of the blade, FIG. 2B is a schematic diagram showing the shape of the blade and the state of main flow, and FIG. 2 in the height direction
It is explanatory drawing which shows a next flow loss.

【符号の説明】[Explanation of symbols]

01 タービン翼 02 2次流れ 04 フレア角 05 主流 11 タービン翼 12 2次流れ 13 段差部 01 Turbine blade 02 Secondary flow 04 Flare angle 05 Main flow 11 Turbine blade 12 Secondary flow 13 Step

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 翼の背面に、チップ側及びハブ側から翼
高さ方向に向かって盛り上がった段差部を形成したこと
を特徴とするタービンの静翼。
1. A turbine vane according to claim 1, wherein a stepped portion is formed on a back surface of the blade from a tip side and a hub side toward a blade height direction.
【請求項2】 前記段差部は、チップ側及びハブ側の端
部から翼高さ方向に向かって翼高さの10〜15%の位
置に形成したことを特徴とする請求項1に記載のタービ
ンの静翼。
2. The step according to claim 1, wherein the step portion is formed at a position of 10 to 15% of the blade height in the blade height direction from the tip side and the hub side ends. Turbine vane.
【請求項3】 前記段差部は、主流の流れ方向の起点を
翼の背面で2次流れが発生し始める位置に形成したこと
を特徴とする請求項1または2に記載のタービンの静
翼。
3. The turbine vane according to claim 1, wherein the step portion has a starting point in the flow direction of the main flow formed at a position on the back surface of the blade where a secondary flow starts to occur.
【請求項4】 前記段差部は、翼後縁側から見て翼の中
央側が背側に凸となる形状に形成したことを特徴とする
請求項1、2または3に記載のタービンの静翼。
4. The turbine vane according to claim 1, wherein the stepped portion is formed to have a shape in which a center side of the blade is convex to a back side when viewed from a blade trailing edge side.
【請求項5】 前記段差部は、主流の流れ範囲の区画に
合致させて主流の流れ方向に延ばして形成したことを特
徴とする請求項1、2、3または4に記載のタービンの
静翼。
5. The turbine vane according to claim 1, wherein the stepped portion is formed so as to match a section of a flow range of the main flow and to extend in a flow direction of the main flow. .
JP11029956A 1999-02-08 1999-02-08 Turbine stator blade Withdrawn JP2000230403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11029956A JP2000230403A (en) 1999-02-08 1999-02-08 Turbine stator blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11029956A JP2000230403A (en) 1999-02-08 1999-02-08 Turbine stator blade

Publications (1)

Publication Number Publication Date
JP2000230403A true JP2000230403A (en) 2000-08-22

Family

ID=12290444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11029956A Withdrawn JP2000230403A (en) 1999-02-08 1999-02-08 Turbine stator blade

Country Status (1)

Country Link
JP (1) JP2000230403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084563A1 (en) * 2007-01-12 2008-07-17 Mitsubishi Heavy Industries, Ltd. Blade structure for gas turbine
US7625181B2 (en) 2003-10-31 2009-12-01 Kabushiki Kaisha Toshiba Turbine cascade structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625181B2 (en) 2003-10-31 2009-12-01 Kabushiki Kaisha Toshiba Turbine cascade structure
WO2008084563A1 (en) * 2007-01-12 2008-07-17 Mitsubishi Heavy Industries, Ltd. Blade structure for gas turbine
US8317466B2 (en) 2007-01-12 2012-11-27 Mitsubishi Heavy Industries, Ltd. Blade structure of gas turbine

Similar Documents

Publication Publication Date Title
KR100254284B1 (en) Turbine spray nozzle and turbine rotary blade for axial-flow type turbo machine
EP2159398B1 (en) Separation-resistant inlet duct for mid-turbine frames
EP1422382B1 (en) Axial flow turbine
US20100158684A1 (en) Vane assembly configured for turning a flow in a gas turbine engine, a stator component comprising the vane assembly, a gas turbine and an aircraft jet engine
JP5816683B2 (en) Vortex generator for generating vortices upstream of compressor blade cascade
US20020054817A1 (en) High efficiency blade configuration for steam turbine
US8475125B2 (en) Shroud vortex remover
JP2002213206A (en) Blade structure of gas turbine
EP2518269B1 (en) Stator vane assembly for a gas turbine
JP2002371802A (en) Shroud integrated type moving blade in gas turbine and split ring
US6543998B1 (en) Nozzle ring for an aircraft engine gas turbine
JP5172424B2 (en) Axial flow turbine
JP2006207556A (en) Turbine blade train
US11560797B2 (en) Endwall contouring for a conical endwall
JP3883245B2 (en) Axial flow turbine
JP5135296B2 (en) Turbine cascade, turbine stage using the same, axial turbine
JP2004150357A (en) Steam turbine
JP2000230403A (en) Turbine stator blade
JP3786443B2 (en) Turbine nozzle, turbine blade and turbine stage
JP3943738B2 (en) Axial turbine nozzle and axial turbine
JP2004263679A (en) Axial flow turbine
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JP7362512B2 (en) Turbine exhaust chamber and turbine
JP3874489B2 (en) Axial flow turbine
JP2010216312A (en) Cascade structure and axial flow turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509