JP3786443B2 - Turbine nozzle, turbine blade and turbine stage - Google Patents

Turbine nozzle, turbine blade and turbine stage Download PDF

Info

Publication number
JP3786443B2
JP3786443B2 JP02548995A JP2548995A JP3786443B2 JP 3786443 B2 JP3786443 B2 JP 3786443B2 JP 02548995 A JP02548995 A JP 02548995A JP 2548995 A JP2548995 A JP 2548995A JP 3786443 B2 JP3786443 B2 JP 3786443B2
Authority
JP
Japan
Prior art keywords
blade
nozzle
turbine
sin
outflow angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02548995A
Other languages
Japanese (ja)
Other versions
JPH08218803A (en
Inventor
田 實 松
井 健 一 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02548995A priority Critical patent/JP3786443B2/en
Publication of JPH08218803A publication Critical patent/JPH08218803A/en
Application granted granted Critical
Publication of JP3786443B2 publication Critical patent/JP3786443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2200/00Mathematical features
    • F05B2200/20Special functions
    • F05B2200/26Special functions trigonometric
    • F05B2200/261Sine

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、軸流タービンにおけるタービンノズル、タービン動翼、及びその組合わせからなるタービン段落に関する。
【0002】
【従来の技術】
一般に、軸流タービンにおいては、性能向上を目的として内部効率の向上のための種々の技術が採用されているが、タービン内部損失のうち特に2次流れ損失はタービンの各段落に共通する損失であるため、その改善策が要望されている。
【0003】
図10は一般的な軸流タービンのノズル翼構成を示す図であって、複数枚のノズル翼1がダイヤフラム外輪2とダイヤフラム内3との間に形成される環状流路4に周方向に配列されている。
【0004】
また、このように形成されたタービンノズルの下流側には、図11に示すように、上記各ノズル翼1に対向して複数枚の動翼5が配設されている。この動翼5はロータディスク6の外周に周方向に所定間隔で列状に植設されており、動翼5の外周端には、動翼を固定するため及び作動流体の漏洩を防止するためシュラウド7が装着してある。
【0005】
一般にタービン段落の流路は、図12(a)、(b)に示すフリーボルテックス設計法が多く採用されている。図12のsin -1(S/T)はノズル翼1または動翼5の翼列内部で形成された通路部の最小長さ(スロート)とその周方向の翼枚数から決まる翼間長さ(環状部でのピッチ)の比を用いたもので幾何学的な流出角である。
【0006】
上記フリーボルテックス設計法においては、ノズル翼は根元部から先端部へsin -1(S/T)が直線的に増加し、動翼はその逆の傾向で減少する。一方、上記フリーボルテックス設計法に対して、ノズル翼の根元部スロートを大にし、先端部スロートを小にしたコントロールドボルテックス設計法もある。
【0007】
ところが、上記フリーボルテックス及びコントロールドボルテックス設計法によって流路を形成したノズル翼の内部では、以下に述べる2次流れ損失が発生し、ノズル翼の下流にある性能に悪影響を及ぼしている。
【0008】
次に、上記の段落構成において、タービンノズルをノズル出口側から観察した斜視図である図10を参照して、ノズル翼1における2次流れの発生機構について説明する。すなわち、高圧蒸気などの作動流体は、隣接するノズル翼1の間で形成される翼間流路を流れるときに流路内で円弧状に曲げられて流れる。このときノズル翼1の背面Bから腹面F方向に遠心力を生じ、この遠心力と静圧が平衡しているため、腹面はFにおける静圧が高くなり、一方背面Bにおいては作動流体の流速が大きいため静圧が低くなる。そのため、流路内では腹面Fから背面Bに向って圧力勾配を生じる。この圧力勾配はダイアフラム外輪2とダイアフラム内輪3の周壁面上に形成される流速の遅い層、すなわち境界層においても同じである。
【0009】
ところが、境界層付近においては流速が小さく、作用する遠心力も小さいため、腹面Fから背面Bへの圧力勾配に抗しきれずに腹面F側から背面B側に向かう流れ、すなわち2次流れ8が生ずる。そして、この2次流れ8はノズル翼1の背面B側に衝突して巻き上がり、ノズル翼1の内輪側及び外輪側の両接合端において、それぞれ2次流れ渦9a、9bを発生する。このようにして作動流体が保有するエネルギは、2次流れ渦9a、9bを形成するためにその一部が散逸する。しかもノズル流路内で発生する上記2次流れ渦9a、9bは作動流体の不均一な流れを生じ、ノズル性能を著しく低下させる。
【0010】
ところで、上記ノズル流路内で発生する2次流れ渦9a、9bに起因する2次流れ損失を低減するためには種々のタービンノズルが研究されている。
【0011】
例えば、ノズル翼をタービンの回転中心を通るラジアル線(図10のE)に対して湾曲させて取り付けた形状を採用したタービンノズルがある。図13は、この湾曲ノズル1bを採用したタービンノズルを示す斜視図である。このような湾曲ノズル1bでは翼間流路における速度ベクトルを根元側ではダイアフラム内輪3、先端側では逆にダイアフラム外輪2の方向に向ける効果があり、ダイアフラム内輪3及びダイアフラム外輪2の両方で境界層の成長が抑制される。その結果図14の点線P2 に示すように、実線P1 で示す従来の圧力損失に比して、ノズル根元部、および先端部での圧力損失が大幅に低減される。
【0012】
また、上記従来の湾曲ノズルでは、速度ベクトルの向きが根元側及び先端側でそれぞれダイアフラム内輪、ダイアフラム外輪の方向となるため、図15の点線f2 に示すように、流体の流量分布が根元部と先端部で流量大、中央部で流量小となる。
【0013】
【発明が解決しようとする課題】
ところが、上述の如き湾曲ノズルでは、ノズル翼から下流の動翼を通過する際、図12で示した動翼の幾何学的流出角sin -1(S/T)の分布では、ノズルで根元部と先端部へと増加させた流量を流すのに十分な通路幅が確保できない。このため、余剰流量が中央部へと流れ込み、流線も中央部へと偏向される。したがって、湾曲ノズルの使用によってノズル翼単体の損失を低減しても段落効率が悪化することになる。さらに、通常ノズル翼および動翼の翼高さが小さい時にはノズル翼の根元部と先端部で発生した2次流れが動翼の内部で発達し、翼高さ中央部で互いに干渉することで損失が増大する。
【0014】
また、従来の湾曲ノズルは、根元部と先端部の2次流れを抑制するため、この部分に流量を多く流すが、動翼での流量分布とあまりに異なる分布だと、流線が偏向されることとなり、ノズルでの損失が減るにもかかわらず、動翼において損失が増加する等の問題がある。
【0015】
したがって、湾曲型ノズルに合った動翼のフローパターン(流出角)が不可欠である。
【0016】
本発明はこのような点に鑑み、簡単な構造を有し、タービンノズル、タービン動翼の2次流れ損失を低減させるとともに翼高さ方向の流体の流量分布をもコントロールすることで段落性能を向上させることができるタービンノズル、タービン動翼及びそれらを組合わせたタービン段落を得ることを目的とする。
【0017】
【課題を解決するための手段】
第一の発明は、ダイヤフラム内輪とダイヤフラム外輪との間に形成される環状流路にその周方向に複数のノズル翼を列状に配設し、各ノズル翼をダイヤフラム内輪側及び外輪側の接合端において固定したタービンノズル翼において、ノズル翼断面を周方向に移動させ湾曲したノズル流路を形成するとともに、当該ノズル翼の後端縁とそのノスル翼に隣接するノスル翼の背面との最短距離と環状ピッチの比S/Tから求められる幾何学的流出角α=sin−1(S/T)の最小値を翼高さ30%〜65%の範囲に位置させ、かつ前記幾何学的流出角α=sin−1(S/T)が、当該幾何学的流出角α=sin−1(S/T)が最小値となる位置と翼根元部との間、及び当該幾何学的流出角α=sin−1(S/T)が最小値となる位置と翼先端部との間においてそれぞれ極大値をもつようにしたことを特徴とする。
【0018】
第二の発明は、タービンロータの植え込み部に複数の動翼を列状に配設したタービン動翼において、動翼断面を周方向に移動させ湾曲した動翼流路を形成するとともに、当該動翼の後端縁とその動翼に隣接する動翼の背面との最短距離と環状ピッチの比S/Tから求められる幾何学的流出角α=sin−1(S/T)の最小値を翼高さ30%〜65%の範囲に位置させ、かつ前記幾何学的流出角α=sin−1(S/T)が、当該幾何学的流出角α=sin−1(S/T)が最小値となる位置と翼根元部との間、及び当該幾何学的流出角α=sin−1(S/T)が最小値となる位置と翼先端部との間においてそれぞれ極大値をもつようにしたことを特徴とする。
【0019】
また、第三の発明は、上記タービンノズルとタービン動翼の組み合わせからなるタービン段落である。
【0020】
【作用】
上述のように構成されたノズル翼或はタービン動翼によって、内周壁面近傍に流入した作動流体が内周壁面側に押圧される一方、外周壁面近傍に流入した作動流体が外周壁面側に押圧され、翼列間の2次流れが抑制され、2次流れ損失が低減される。さらにノズルの下流にある動翼も同様に根元部と先端部で流量が多く流れるが、動翼内での流体の流れが拘束されることなく動翼の下流へ導かれ、さらに動翼の高さ方向中央部での損失が大きい領域の流量が少なくなり、動翼で有効にエネルギーを変換することができる。また、このノズルと動翼の組合わせによって中央部の損失の大きい部分の流量を減らし、根元部と先端部の損失の小さい部分の流量を増すことができ、段落性能を向上させることができる。
【0021】
【実施例】
以下、図1乃至図9を参照して本発明の実施例について説明する。
【0022】
図1において、ノズルダイアフラム外輪2とノズルダイアフラム内輪3との間に形成される環状流路4に複数のノズル翼1を周方向に所定間隔をおいて列状に配設し、各ノズル翼1の先端部及び根元部の接合端をノズルダイアフラム外輪2とノズルダイアフラム内輪3に接合することによってタービンノズルが構成されている。また、図2は上記タービンノズルの後方に配設されている動翼5の斜視図であり、図3にノズル翼1および動翼5の流路部における断面を示す。
【0023】
ところで、図3に示すように、ノズル翼或は動翼の後端縁とそのノズル翼或は動翼に隣接するノズル翼或は動翼の背面との最短距離すなわち流路の最小通路幅をスロート幅Sとし、環状部の円周長さをノズル数或は動翼数で割った数を環状ピッチTとした場合、その比S/Tをノズル或は動翼出口からの流出方向と流量を決めるパラメータとし、図4の(a)、(b)に、それぞれノズル翼と動翼の幾何学的な流出角sin -1(S/T)を示す。
【0024】
本発明においては、図4(a)、(b)の実線に示すように、ノズル翼と動翼ともにsin -1(S/T)を根元部と先端部で点線で示す従来のものより大きくし、中央部では逆に小さくしてある。この場合における動翼の損失分布を図5に示しているが、翼長が小さい時には、中央部で損失が大きくなる傾向がある。しかして、本発明においてはノズル及び動翼共に中央部におけるsin -1(S/T)を小さくし、流量を減らし、根元部と先端部のsin -1(S/T)を大きくし、各流量を増やすようにしてある。
【0025】
このように、各部における幾何学的な流出角sin -1(S/T)を選定することによって、動翼の根元部と先端部での絞りによる中央部への流れの偏向が消滅し、損失が増加することを防止でき、各段落で有効にエネルギ変換を行うことができる。
【0026】
ノズル及び動翼のsin -1(S/T)は本実施例に関する試験によれば、下記条件が段落効率の最高となる。すなわち、翼長は図5の動翼の損失分布になる範囲とし、高さ(図11のH)は20mm〜55mm、高さH/根元部直径D≦0.07、またこの範囲においてsin -1(S/T)の最小値を、動翼の損失が大なる領域でノズル及び動翼の高さ方向30%〜65%の位置とすることが好ましい。
【0027】
このように、ノズル翼及び動翼ともにS/T分布が翼高さ中央部で最小値をもつような構造を有するため、動翼中央部の損失が大きい部分の流量を減らしつつ、内周壁面、外周壁面での2次流れ損失を低減する効果が得られる。さらに、このようなノズルと動翼を組み合わせることで、ノズルでの効率向上分を動翼で損なうことなくタービン段落の効率を向上することができる。
【0028】
図6は本発明の他の実施例を示すノズル翼1の斜視図であって、このノズル翼からなるタービンノズルは、図7に示すようにsin -1(S/T)分布が翼高さ中央部で最小点Mをもち、根元部と中央部間及び中央部と根元部間にそれぞれ極大値N1 、N2 が存在するようにS/Tが大きなくるようにしてある。すなわち、図6に示すように翼高さ中央部における中央スロート幅S2 が最小で、その上方及び下方に極大点スロート幅S4 、S5 が形成され、根元部及び先端部ではそれより小さなスロート幅S1 、S3 となるように形成されている。
【0029】
このように、翼高さ中央部で最小点Mをもつことにより中央の損失の大きい領域の流量を減らすことができ、かつ根元部及び先端側の極大値N1 、N2 より流量を多く流すことで、速度ベクトルを内周壁面及び外周壁面に向けることとなり、壁面部での2次流れ損失を低減できる。さらに同形状を有するタービン動翼と組み合わせることにより、第一実施例と同一の作用を行なう。
【0030】
図8は、本発明のさらに他の実施例を示す湾曲形のタービンノズルの斜視図であって、この場合も翼高さ中央部の中央スロート幅S2 が最小となるようにしてある。ところで、図13で示すような湾曲ノズルの場合には、図9の(a)に示すように流出偏向角度が根元部と先端部で大きく、中央部で小さくなる。したがって、図9の(b)に示すようにsin -1(S/T)を根元部と先端部で予め小さくし、根元側と先端側で極大値N1 、N2 をもつようにすることによって、その合成角△α+sin -1(S/T)が同図(c)に示すように、根元部と先端部で大、中央部で小の湾曲型ノズルに構成されている。
【0031】
しかして、この場合も第1及び第2の実施例と同様に2次流れ損失を低減でき、しかも幾何学的流出角αが最小値となる位置と翼根元部との間、及び当該幾何学的流出角αが最小値となる位置と翼先端部との間においてそれぞれ極大値N1、N2 をもつようにし、翼根元部と先端部において前記幾何学的流出角sin−1(S/T)を予め小さくすることにより、流出偏向角度が根元部と先端部で大きく中央部で小さくなる湾曲形のタービンノズル翼においても、上記流出偏向角度と幾何学的流出角sin−1(S/T)との合成によりノズル翼の根元部と先端部における流出角が大きく偏向されることがなく、ノズル翼からの流体における流出角の設計値からのずれを抑制することができ、上記ノズル翼からの流出角をノズル翼の全域にわたって最適値とすることができる。さらに同形状を有するタービン動翼と組合わせることにより、タービン段落においてノズル翼での効率向上分を損ねることなく動翼での効率を向上させ、タービン段落の性能を向上させることができる。
【0032】
【発明の効果】
以上説明したように、ノズル翼及び動翼のS/T分布を翼高さ中央部で最小値をもつようにしたので、損失の大きい領域での流量を減少させることができ、内周壁面及び外周壁面での2次流れ損失を低減することができる。さらに、上記形状を有するノズル翼と動翼を組み合わせた段落とすることにより、流線のシフトを防ぎ、段落出力を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施例におけるノズルを流体流出側より見た斜視図。
【図2】本発明の一実施例における動翼を流体流出側より見た斜視図。
【図3】ノズル翼及び動翼の流路部の断面図。
【図4】(a)、(b)は本発明の上記一実施例におけるノズル及び動翼の流出角分布説明図。
【図5】上記一実施例の動翼の損失分布説明図。
【図6】本発明の他の実施例におけるノズル翼を流体流出側から見た斜視図。
【図7】図6に示す実施例のsin -1(S/T)分布図。
【図8】本発明のさらに他の実施例のノズル翼を流体流出側より見た斜視図。
【図9】(a)は図8に示す実施例のノズル翼の流出偏向角、(b)はsin -1(S/T)分布、(c)は△α+sin -1(S/T)の分布を示す図。
【図10】従来のノズルを流体流出側より見た斜視図。
【図11】タービン段落の半径方向縦断側面図。
【図12】(a)、(b)は従来のノズル翼及び動翼のsin -1(S/T)分布図。
【図13】湾曲ノズルを流体流出側より見た斜視図。
【図14】従来のノズル翼の圧力損失分布図。
【図15】従来のノズル翼の単位面積流量分布図。
【符号の説明】
1 ノズル翼
2 ダイアフラム外輪
3 ダイアフラム内輪
5 動翼
6 ロータディスク
7 シュラウド
[0001]
[Industrial application fields]
The present invention relates to a turbine stage including a turbine nozzle, a turbine rotor blade, and a combination thereof in an axial flow turbine.
[0002]
[Prior art]
In general, axial turbines employ various techniques for improving internal efficiency for the purpose of improving performance. Among turbine internal losses, the secondary flow loss is a loss common to each stage of the turbine. Therefore, there is a need for improvement.
[0003]
Figure 10 is a diagram showing a nozzle blade structure of a general axial-flow turbine, circumferentially annular channel 4 formed between the plurality of the nozzle blade 1 is diaphragm outer ring 2 and the diaphragm within the wheel 3 It is arranged.
[0004]
Further, on the downstream side of the turbine nozzle formed in this way, as shown in FIG. 11, a plurality of moving blades 5 are arranged so as to face the nozzle blades 1. The rotor blades 5 are planted in a row at predetermined intervals in the circumferential direction on the outer periphery of the rotor disk 6. In order to fix the rotor blades at the outer peripheral end of the rotor blades 5 and prevent leakage of working fluid. A shroud 7 is attached.
[0005]
Generally, a free vortex design method shown in FIGS. 12A and 12B is often used for the flow path of the turbine stage. The sin -1 (S / T) in FIG. 12 is the blade length (throat) determined by the minimum length (throat) of the passage portion formed in the blade row of the nozzle blade 1 or the moving blade 5 and the number of blades in the circumferential direction ( This is a geometric outflow angle using the ratio of the pitch at the annular portion.
[0006]
In the free vortex design method, sin −1 (S / T) increases linearly from the root to the tip of the nozzle blade, and the moving blade decreases in the opposite direction. On the other hand, there is also a controlled vortex design method in which the root throat of the nozzle blade is made larger and the tip throat is made smaller than the free vortex design method.
[0007]
However, the secondary flow loss described below occurs inside the nozzle blades in which the flow path is formed by the above-described free vortex and controlled vortex design method, and adversely affects the performance downstream of the nozzle blades.
[0008]
Next, with reference to FIG. 10, which is a perspective view of the turbine nozzle observed from the nozzle outlet side in the above paragraph configuration, a secondary flow generation mechanism in the nozzle blade 1 will be described. That is, the working fluid such as high-pressure steam flows while being bent in an arc shape in the flow path when flowing through the inter-blade flow path formed between the adjacent nozzle blades 1. At this time, centrifugal force is generated in the direction of the abdominal surface F from the back surface B of the nozzle blade 1, and since this centrifugal force and static pressure are balanced, the static pressure at F is high on the abdominal surface. Is large, the static pressure is low. Therefore, a pressure gradient is generated from the abdominal surface F toward the back surface B in the flow path. This pressure gradient is also the same in the low-velocity layer formed on the peripheral wall surfaces of the diaphragm outer ring 2 and the diaphragm inner ring 3, that is, the boundary layer.
[0009]
However, in the vicinity of the boundary layer, the flow velocity is small, and the acting centrifugal force is also small, so that a flow from the abdominal surface F side to the back surface B side, that is, the secondary flow 8 occurs without resisting the pressure gradient from the abdominal surface F to the back surface B. . The secondary flow 8 collides with the back surface B side of the nozzle blade 1 and rolls up to generate secondary flow vortices 9a and 9b at both the inner ring side and the outer ring side joint ends of the nozzle blade 1, respectively. In this way, a part of the energy held by the working fluid is dissipated to form the secondary flow vortices 9a and 9b. Moreover, the secondary flow vortices 9a and 9b generated in the nozzle flow path cause a non-uniform flow of the working fluid, which significantly reduces the nozzle performance.
[0010]
By the way, various turbine nozzles have been studied in order to reduce the secondary flow loss caused by the secondary flow vortices 9a and 9b generated in the nozzle flow path.
[0011]
For example, there is a turbine nozzle that adopts a shape in which nozzle blades are curved and attached to a radial line (E in FIG. 10) passing through the rotation center of the turbine. FIG. 13 is a perspective view showing a turbine nozzle that employs the curved nozzle 1b. Such a curved nozzle 1b has the effect of directing the velocity vector in the flow path between the blades toward the diaphragm inner ring 3 on the root side, and conversely toward the diaphragm outer ring 2 on the tip side, and the boundary layer on both the diaphragm inner ring 3 and the diaphragm outer ring 2 Growth is suppressed. As a result, as shown by the dotted line P 2 in FIG. 14, the pressure loss at the nozzle root and at the tip is greatly reduced as compared with the conventional pressure loss indicated by the solid line P 1 .
[0012]
Further, in the conventional curved nozzle, orientation root side and each diaphragm inner ring at the distal end side of the velocity vector, since the direction of the diaphragm outer ring, as shown in dotted line f 2 in FIG. 15, the flow rate distribution of the fluid is the root portion The flow rate is large at the tip and small at the center.
[0013]
[Problems to be solved by the invention]
However, in the curved nozzle as described above, when passing through the moving blade downstream from the nozzle blade, the distribution of the geometric outflow angle sin −1 (S / T) of the moving blade shown in FIG. And a sufficient passage width to flow the increased flow rate to the tip cannot be secured. For this reason, the surplus flow rate flows into the central portion, and the streamline is also deflected to the central portion. Therefore, even if the loss of the nozzle blade is reduced by using the curved nozzle, the paragraph efficiency is deteriorated. Furthermore, when the blade height of the normal nozzle blade and the moving blade is small, the secondary flow generated at the root and tip of the nozzle blade develops inside the moving blade and causes loss due to interference with each other at the blade height center. Will increase.
[0014]
Further, the conventional curved nozzle suppresses the secondary flow at the root portion and the tip portion, so that a large amount of flow flows through this portion, but if the distribution is too different from the flow distribution at the moving blade, the streamline is deflected. In other words, there is a problem that the loss increases in the moving blades even though the loss in the nozzle decreases.
[0015]
Therefore, the flow pattern (outflow angle) of the moving blade that matches the curved nozzle is indispensable.
[0016]
In view of these points, the present invention has a simple structure, reduces the secondary flow loss of the turbine nozzle and turbine blade, and controls the flow distribution of the fluid in the blade height direction to improve the paragraph performance. It is an object of the present invention to obtain a turbine nozzle, a turbine rotor blade, and a turbine stage combining them that can be improved.
[0017]
[Means for Solving the Problems]
According to a first aspect of the present invention, a plurality of nozzle blades are arranged in a circumferential direction in an annular flow path formed between a diaphragm inner ring and a diaphragm outer ring, and each nozzle blade is joined to the diaphragm inner ring side and the outer ring side. In the turbine nozzle blade fixed at the end, the nozzle blade cross section is moved in the circumferential direction to form a curved nozzle flow path, and the shortest distance between the rear edge of the nozzle blade and the back surface of the nozzle blade adjacent to the nozzle blade And the geometrical outflow angle α = sin −1 (S / T) determined from the ratio S / T of the ring pitch and the annular pitch is located within a blade height of 30% to 65%, and the geometric outflow The angle α = sin −1 (S / T) is between the position where the geometric outflow angle α = sin −1 (S / T) is the minimum value and the blade root, and the geometric outflow angle. α = sin −1 (S / T) and minimum position and blade It is characterized in that each has a maximum value between the tip part.
[0018]
According to a second aspect of the present invention, in a turbine rotor blade in which a plurality of rotor blades are arranged in a row in the implanted portion of the turbine rotor, a section of the rotor blade is moved in the circumferential direction to form a curved rotor blade flow path. The minimum value of the geometric outflow angle α = sin −1 (S / T) obtained from the ratio S / T of the shortest distance between the trailing edge of the blade and the rear surface of the blade adjacent to the blade and the annular pitch. The blade height is in the range of 30% to 65%, and the geometric outflow angle α = sin −1 (S / T) is the geometric outflow angle α = sin −1 (S / T). It seems to have a maximum value between the position where the minimum value and the blade root part and between the position where the geometric outflow angle α = sin −1 (S / T) becomes the minimum value and the blade tip part. It is characterized by that.
[0019]
Moreover, 3rd invention is a turbine stage which consists of a combination of the said turbine nozzle and a turbine rotor blade.
[0020]
[Action]
The nozzle blade or turbine blade configured as described above presses the working fluid that flows in the vicinity of the inner peripheral wall surface toward the inner peripheral wall surface, while the working fluid that flows in the vicinity of the outer peripheral wall surface presses the outer peripheral wall surface. Thus, the secondary flow between the cascades is suppressed, and the secondary flow loss is reduced. In addition, the blades downstream of the nozzles also have a large flow rate at the root and tip, but the fluid flow in the blades is guided to the downstream of the blades without being constrained. The flow rate in the region where the loss at the central portion in the vertical direction is large is reduced, and energy can be effectively converted by the moving blade. Further, the combination of the nozzle and the moving blade can reduce the flow rate of the portion with a large loss at the central portion, increase the flow rate of the portion with a small loss at the root portion and the tip portion, and improve the paragraph performance.
[0021]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0022]
In FIG. 1, a plurality of nozzle blades 1 are arranged in a row at predetermined intervals in the circumferential direction in an annular flow path 4 formed between a nozzle diaphragm outer ring 2 and a nozzle diaphragm inner ring 3. The turbine nozzle is configured by joining the joint ends of the tip and root portions of the nozzle to the nozzle diaphragm outer ring 2 and the nozzle diaphragm inner ring 3. FIG. 2 is a perspective view of the moving blade 5 disposed behind the turbine nozzle, and FIG. 3 shows a cross section of the nozzle blade 1 and the flow passage portion of the moving blade 5.
[0023]
By the way, as shown in FIG. 3, the shortest distance between the rear edge of the nozzle blade or moving blade and the nozzle blade or moving blade adjacent to the nozzle blade or moving blade, that is, the minimum passage width of the flow path is set. When the throat width S is set, and the circumferential length of the annular portion divided by the number of nozzles or the number of moving blades is the annular pitch T, the ratio S / T is the outflow direction from the nozzle or moving blade outlet and the flow rate. 4 (a) and 4 (b) show the geometric outflow angles sin −1 (S / T) of the nozzle blades and the moving blades, respectively.
[0024]
In the present invention, as shown by the solid lines in FIGS. 4 (a) and 4 (b), both nozzle blades and rotor blades have sin −1 (S / T) larger than the conventional one shown by dotted lines at the root and tip portions. On the other hand, it is reduced in the center. FIG. 5 shows the loss distribution of the moving blade in this case. When the blade length is small, the loss tends to increase at the center. Therefore, in the present invention, both the nozzle and the moving blade have a smaller sin −1 (S / T) in the central portion, a flow rate is reduced, and a sin −1 (S / T) at the root portion and the tip end portion is increased. The flow rate is increased.
[0025]
Thus, by selecting the geometric outflow angle sin -1 (S / T) at each part, the deflection of the flow to the center part due to the restriction at the root part and tip part of the rotor blade disappears, and the loss Can be prevented, and energy conversion can be effectively performed in each paragraph.
[0026]
According to the test relating to the present embodiment, the nozzle and rotor blade sin -1 (S / T) have the highest paragraph efficiency under the following conditions. That is, the blade length is within the range of the loss distribution of the moving blade in FIG. 5, the height (H in FIG. 11) is 20 mm to 55 mm, the height H / root diameter D ≦ 0.07, and in this range sin It is preferable to set the minimum value of 1 (S / T) to a position of 30% to 65% in the height direction of the nozzle and blade in a region where the loss of the blade is large.
[0027]
As described above, since the nozzle blade and the moving blade have a structure in which the S / T distribution has a minimum value at the blade height central portion, the inner peripheral wall surface is reduced while reducing the flow rate of the portion where the loss at the moving blade central portion is large. The effect of reducing the secondary flow loss on the outer peripheral wall surface is obtained. Further, by combining such a nozzle and a moving blade, the efficiency of the turbine stage can be improved without impairing the efficiency improvement by the moving blade.
[0028]
FIG. 6 is a perspective view of a nozzle blade 1 according to another embodiment of the present invention. A turbine nozzle comprising this nozzle blade has a sin −1 (S / T) distribution as shown in FIG. The S / T is large so that there is a minimum point M at the center and there are local maximum values N1 and N2 between the root and the center and between the center and the root. That is, as shown in FIG. 6, the central throat width S2 at the center of the blade height is the minimum, and the maximum throat widths S4 and S5 are formed above and below the throat width S1. , S3.
[0029]
Thus, by having the minimum point M at the center of the blade height, it is possible to reduce the flow rate in the region with a large loss at the center and to flow more than the maximum values N1 and N2 at the root and the tip side. Then, the velocity vector is directed to the inner peripheral wall surface and the outer peripheral wall surface, and the secondary flow loss at the wall surface portion can be reduced. Further, by combining with the turbine rotor blade having the same shape, the same action as the first embodiment is performed.
[0030]
FIG. 8 is a perspective view of a curved turbine nozzle showing still another embodiment of the present invention. In this case as well, the central throat width S2 at the center of the blade height is minimized. By the way, in the case of the curved nozzle as shown in FIG. 13, as shown in FIG. 9A, the outflow deflection angle is large at the root portion and the tip portion and is small at the center portion. Accordingly, as shown in FIG. 9 (b), sin −1 (S / T) is previously reduced at the root portion and the tip portion, and has maximum values N1 and N2 at the root side and the tip side. The composite angle Δα + sin −1 (S / T) is configured as a curved nozzle having a large root portion and a tip portion and a small central portion as shown in FIG.
[0031]
Therefore, in this case as well, the secondary flow loss can be reduced as in the first and second embodiments, and the position between the position where the geometric outflow angle α is the minimum value and the blade root portion, and the geometry concerned. Between the position where the static outflow angle α is the minimum value and the blade tip, respectively, and the geometric outflow angle sin −1 (S / T) at the blade root and the tip. Is reduced in advance, the curved outflow deflection angle and the geometric outflow angle sin −1 (S / T) can be obtained even in a curved turbine nozzle blade whose outflow deflection angle is large at the root and tip and small at the center. The outflow angle at the base and tip of the nozzle blade is not greatly deflected by combining with the above, and the deviation from the design value of the outflow angle in the fluid from the nozzle blade can be suppressed. The outflow angle is spread across the entire nozzle blade. It is possible to optimize value me. Furthermore, by combining with the turbine blade having the same shape, the efficiency of the blade can be improved without impairing the efficiency improvement of the nozzle blade in the turbine stage, and the performance of the turbine stage can be improved.
[0032]
【The invention's effect】
As described above, since the S / T distribution of the nozzle blade and the moving blade has a minimum value at the center of the blade height, the flow rate in the region with a large loss can be reduced, and the inner peripheral wall surface and The secondary flow loss on the outer peripheral wall surface can be reduced. Furthermore, by using a paragraph in which the nozzle blade and the moving blade having the above shape are combined, streamline shift can be prevented and the paragraph output can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view of a nozzle according to an embodiment of the present invention as viewed from a fluid outflow side.
FIG. 2 is a perspective view of a moving blade viewed from the fluid outflow side in one embodiment of the present invention.
FIG. 3 is a cross-sectional view of a flow path portion of a nozzle blade and a moving blade.
FIGS. 4A and 4B are explanatory views of nozzle and blade outflow angle distributions in the embodiment of the present invention. FIG.
FIG. 5 is an explanatory diagram of loss distribution of the moving blade of the embodiment.
FIG. 6 is a perspective view of a nozzle blade in another embodiment of the present invention as seen from the fluid outflow side.
7 is a sin −1 (S / T) distribution chart of the embodiment shown in FIG. 6;
FIG. 8 is a perspective view of a nozzle blade according to still another embodiment of the present invention as viewed from the fluid outflow side.
9A is an outflow deflection angle of the nozzle blade of the embodiment shown in FIG. 8, FIG. 9B is a sin −1 (S / T) distribution, and FIG. 9C is Δα + sin −1 (S / T). The figure which shows distribution.
FIG. 10 is a perspective view of a conventional nozzle as viewed from the fluid outflow side.
FIG. 11 is a radial longitudinal side view of a turbine stage.
FIGS. 12A and 12B are sin −1 (S / T) distribution diagrams of a conventional nozzle blade and moving blade.
FIG. 13 is a perspective view of the curved nozzle as viewed from the fluid outflow side.
FIG. 14 is a pressure loss distribution diagram of a conventional nozzle blade.
FIG. 15 is a unit area flow distribution diagram of a conventional nozzle blade.
[Explanation of symbols]
1 Nozzle blade 2 Diaphragm outer ring 3 Diaphragm inner ring 5 Rotor blade 6 Rotor disk 7 Shroud

Claims (3)

ダイヤフラム内輪とダイヤフラム外輪との間に形成される環状流路にその周方向に複数のノズル翼を列状に配設し、各ノズル翼をダイヤフラム内輪側及び外輪側の接合端において固定したタービンノズル翼において、ノズル翼断面を周方向に移動させ湾曲したノズル流路を形成するとともに、当該ノズル翼の後端縁とそのノスル翼に隣接するノスル翼の背面との最短距離と環状ピッチの比S/Tから求められる幾何学的流出角α=sin−1(S/T)の最小値を翼高さ30%〜65%の範囲に位置させ、かつ前記幾何学的流出角α=sin −1 (S/T)が、当該幾何学的流出角α=sin −1 (S/T)が最小値となる位置と翼根元部との間、及び当該幾何学的流出角α=sin −1 (S/T)が最小値となる位置と翼先端部との間においてそれぞれ極大値をもつようにしたことを特徴とするタービンノズル翼。A turbine nozzle in which a plurality of nozzle blades are arranged in a row in an annular flow path formed between a diaphragm inner ring and a diaphragm outer ring, and each nozzle blade is fixed at a joint end on the diaphragm inner ring side and outer ring side In the blade, the nozzle blade section is moved in the circumferential direction to form a curved nozzle flow path, and the ratio S between the shortest distance between the rear edge of the nozzle blade and the back surface of the nostle blade adjacent to the nozzle blade and the annular pitch S The minimum value of the geometric outflow angle α = sin −1 (S / T) obtained from / T is located within the blade height of 30% to 65% , and the geometric outflow angle α = sin −1. (S / T) is between the position where the geometric outflow angle α = sin −1 (S / T) is the minimum and the blade root, and the geometric outflow angle α = sin −1 ( (S / T) between the position where the minimum value and the blade tip Turbine nozzle blades characterized in that each has a maximum value . タービンロータの植え込み部に複数の動翼を列状に配設したタービン動翼において、動翼断面を周方向に移動させ湾曲した動翼流路を形成するとともに、当該動翼の後端縁とその動翼に隣接する動翼の背面との最短距離と環状ピッチの比S/Tから求められる幾何学的流出角α=sin−1(S/T)の最小値を翼高さ30%〜65%の範囲に位置させ、かつ前記幾何学的流出角α=sin −1 (S/T)が、当該幾何学的流出角α=sin −1 (S/T)が最小値となる位置と翼根元部との間、及び当該幾何学的流出角α=sin −1 (S/T)が最小値となる位置と翼先端部との間においてそれぞれ極大値をもつようにしたことを特徴とするタービン動翼。In a turbine rotor blade in which a plurality of rotor blades are arranged in a row in an implanted portion of the turbine rotor, a section of the rotor blade is moved in the circumferential direction to form a curved rotor blade flow path, and a trailing edge of the rotor blade The minimum value of the geometric outflow angle α = sin −1 (S / T) obtained from the ratio S / T of the shortest distance to the back surface of the moving blade adjacent to the moving blade and the annular pitch is 30% to the blade height The geometric outflow angle α = sin −1 (S / T) is positioned within a range of 65% , and the geometric outflow angle α = sin −1 (S / T) is a minimum value. It is characterized by having a maximum value between the blade root portion and between the position where the geometric outflow angle α = sin −1 (S / T) is minimum and the blade tip portion. Turbine blades. 請求項1記載のタービンノズル翼と請求項記載のタービン動翼との組み合わせからなるタービン段落。A turbine stage comprising a combination of the turbine nozzle blade according to claim 1 and the turbine rotor blade according to claim 2 .
JP02548995A 1995-02-14 1995-02-14 Turbine nozzle, turbine blade and turbine stage Expired - Lifetime JP3786443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02548995A JP3786443B2 (en) 1995-02-14 1995-02-14 Turbine nozzle, turbine blade and turbine stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02548995A JP3786443B2 (en) 1995-02-14 1995-02-14 Turbine nozzle, turbine blade and turbine stage

Publications (2)

Publication Number Publication Date
JPH08218803A JPH08218803A (en) 1996-08-27
JP3786443B2 true JP3786443B2 (en) 2006-06-14

Family

ID=12167480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02548995A Expired - Lifetime JP3786443B2 (en) 1995-02-14 1995-02-14 Turbine nozzle, turbine blade and turbine stage

Country Status (1)

Country Link
JP (1) JP3786443B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10184304A (en) * 1996-12-27 1998-07-14 Toshiba Corp Turbine nozzle and turbine moving blade of axial flow turbine
JP4086415B2 (en) 1999-06-03 2008-05-14 株式会社荏原製作所 Turbine equipment
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
JP5868605B2 (en) 2011-03-30 2016-02-24 三菱重工業株式会社 gas turbine
US9157326B2 (en) * 2012-07-02 2015-10-13 United Technologies Corporation Airfoil for improved flow distribution with high radial offset
JP6396093B2 (en) * 2014-06-26 2018-09-26 三菱重工業株式会社 Turbine rotor cascade, turbine stage and axial turbine
CN116940747A (en) * 2021-03-24 2023-10-24 三菱重工业株式会社 Turbine and gas turbine

Also Published As

Publication number Publication date
JPH08218803A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
KR100254284B1 (en) Turbine spray nozzle and turbine rotary blade for axial-flow type turbo machine
JP4373629B2 (en) Axial flow turbine
JP3621216B2 (en) Turbine nozzle
EP2492440B1 (en) Turbine nozzle blade and steam turbine equipment using same
JP3910648B2 (en) Turbine nozzle, turbine blade and turbine stage
US20080121301A1 (en) Externally Mounted Vortex Generators for Flow Duct Passage
US6109869A (en) Steam turbine nozzle trailing edge modification for improved stage performance
JP3786443B2 (en) Turbine nozzle, turbine blade and turbine stage
JP3773565B2 (en) Turbine nozzle
JPS6133968B2 (en)
JP2002256810A (en) Axial flow turbines
JP3883245B2 (en) Axial flow turbine
JP3697296B2 (en) Turbine blade
WO2000061918A2 (en) Airfoil leading edge vortex elimination device
JPH0893404A (en) Turbine nozzle and turbine rotor blade
JP3070167B2 (en) Turbine nozzle
JP2004263679A (en) Axial flow turbine
JP2000073702A (en) Axial flow turbine
JPH0478803B2 (en)
JPS5951104A (en) Internal structure of turbine stage
JP4090613B2 (en) Axial flow turbine
JP2005030266A (en) Axial-flow turbine
JPH06212902A (en) Turbine moving blade
JPH1061405A (en) Stationary blade of axial flow turbo machine
JPH03189303A (en) Turbine nozzle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

EXPY Cancellation because of completion of term