JP2000219572A - Low thermal expansion ceramic and its production - Google Patents

Low thermal expansion ceramic and its production

Info

Publication number
JP2000219572A
JP2000219572A JP11022111A JP2211199A JP2000219572A JP 2000219572 A JP2000219572 A JP 2000219572A JP 11022111 A JP11022111 A JP 11022111A JP 2211199 A JP2211199 A JP 2211199A JP 2000219572 A JP2000219572 A JP 2000219572A
Authority
JP
Japan
Prior art keywords
thermal expansion
ceramics
weight
raw material
eucryptite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11022111A
Other languages
Japanese (ja)
Other versions
JP3805119B2 (en
Inventor
Toshiyuki Ihara
俊之 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP02211199A priority Critical patent/JP3805119B2/en
Publication of JP2000219572A publication Critical patent/JP2000219572A/en
Application granted granted Critical
Publication of JP3805119B2 publication Critical patent/JP3805119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a lightweight, highly rigid ceramics having low coefficient of thermal expansion, which is suitable as a material for various devices, parts and tools, by mixing magnesia and β-eucryptite which is a main component and expressed by the general formula of LiAlSiO4. SOLUTION: The dense and low thermal expansion ceramics having a volume percent of voids of <0.1% and an average void diameter of 0.2 μm is obtained by first adding 1-5 wt.% magnesia powdered raw material to 95-99 wt.% β- eucryptite powdered raw material, which is expressed by the general formula of LiAlSiO4 and prepared by mixing Li2O, Al2O3 and SiO2 in the weight ratio of 12.5:40.5:47, then mixing and pulverizing the composition thus obtained, forming the resulting powder, sintering the powder under the atmosphere at 900-1,000 deg.C so that the relative density of the sintered body becomes >=90% and thereafter pressure sintering the sintered body at a pressure of >=100 atm and at 1,100-1,200 deg.C. Thus obtained ceramics has the characteristics that the specific density is in the range of 2.2-2.4, the coefficient of thermal expansion is in the range from -0.4 to 0.1×10-6/ deg.C and Young's modulus is in the range of 110-120 GP.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造工程等
で使用される、露光装置用のX−Yステージ、静電チャ
ック及びその構造部品、ミラー等の部材に適した軽量低
熱膨張性及び高剛性のセラミックスとその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-weight, low-thermal-expansion and high-temperature material suitable for members such as an XY stage for an exposure apparatus, an electrostatic chuck and its structural parts, and a mirror used in a semiconductor manufacturing process or the like. The present invention relates to a rigid ceramic and a method for producing the same.

【0002】[0002]

【従来の技術】近年、LSI等の半導体電子回路部品の
高集積化に伴い、回路線幅及び回路デザインルールの微
細化が急速に進められ、回路線幅は0.35μmから
0.10μmまで微細化しつつある。そして、Siウェ
ハに微細な回路線幅の電子回路を形成するための露光装
置に対して、構造的に高精度及び高い位置精度が要求さ
れるようになってきており、例えば露光装置のX−Yス
テージにおいては10nm未満の位置決め精度が要求さ
れ、製品の品質向上や歩留まり向上、高スループットを
実現する上で、露光装置の位置合わせ誤差の低減が大き
な要素技術として捉えられている。
2. Description of the Related Art In recent years, with the increasing integration of semiconductor electronic circuit components such as LSIs, circuit line widths and circuit design rules have been rapidly miniaturized, and circuit line widths have been reduced from 0.35 μm to 0.10 μm. It is becoming. Then, an exposure apparatus for forming an electronic circuit having a fine circuit line width on a Si wafer is required to have a structurally high accuracy and a high positional accuracy. In the Y stage, positioning accuracy of less than 10 nm is required, and reduction of the alignment error of the exposure apparatus is regarded as a major elemental technology in improving the quality of the product, improving the yield, and achieving high throughput.

【0003】従来、上記したようなLSI等の半導体電
子回路部品の製造工程において、シリコンウェハに配線
を形成する工程でシリコンウェハを支持又は保持するた
めのサセプタ、真空チャック、静電チャック、絶縁リン
グ及びその他治具等用のセラミックス材料として、比較
的安価で化学的に安定であることからアルミナセラミッ
クスや窒化珪素セラミックスが広く用いられてきた。ま
た、露光装置のX−Yステージ等の材料としても、従来
よりアルミナセラミックスや窒化珪素セラミックス等が
同様に用いられてきた。
Conventionally, in a process of manufacturing a semiconductor electronic circuit component such as an LSI described above, a susceptor, a vacuum chuck, an electrostatic chuck, and an insulating ring for supporting or holding a silicon wafer in a process of forming wiring on the silicon wafer. As ceramic materials for jigs and the like, alumina ceramics and silicon nitride ceramics have been widely used because they are relatively inexpensive and chemically stable. Further, as a material for an XY stage of an exposure apparatus, alumina ceramics, silicon nitride ceramics, and the like have been conventionally used.

【0004】また、近年、コージェライトセラミックス
の低熱膨張性を利用して、半導体製造用の各種部品及び
治具としてコージェライトセラミックスを使用すること
が提案されている(特開平1−191422号公報、特
公平6−97675号公報参照)。前記特開平1−19
1422号によれば、X線露光用のマスク基板に接着す
る補強リングを、SiO2 ,インバー等とコージェライ
トセラミックスによって作製することによって、メンブ
レンの応力を制御することが記載されている。また、特
公平6−97675号には、シリコンウェハを載置する
静電チャック用基板としてアルミナセラミックスやコー
ジェライトセラミックスを使用することが開示されてい
る。
Further, in recent years, it has been proposed to use cordierite ceramics as various components and jigs for manufacturing semiconductors by utilizing the low thermal expansion properties of cordierite ceramics (Japanese Patent Laid-Open No. 1-1191422, See Japanese Patent Publication No. Hei 6-97675). JP-A-1-19
According to No. 1422, it is described that the stress of the membrane is controlled by fabricating a reinforcing ring bonded to a mask substrate for X-ray exposure using SiO 2 , Invar or the like and cordierite ceramics. Japanese Patent Publication No. 6-97675 discloses the use of alumina ceramics or cordierite ceramics as a substrate for an electrostatic chuck on which a silicon wafer is mounted.

【0005】また従来、低熱膨張性セラミックスとし
て、コージェライトセラミックスやリチウムアルミノシ
リケートセラミックス(LiAlSiO4 であり、以
下、LASとする)が知られている。コージェライトセ
ラミックスについては、コージェライト粉末或いはコー
ジェライトセラミックスを形成するMgO粉末,Al2
3 粉末,SiO2 粉末を配合した原料粉末に、焼結助
剤として希土類酸化物やCaO,SiO2 ,MgO等を
添加し、所定形状に成形後、1000〜1400℃の温
度で焼成することによって製造することが公知である
(特公昭57−3629号公報、特開平2−22976
0号公報参照)。
Conventionally, cordierite ceramics and lithium aluminosilicate ceramics (LiAlSiO 4 , hereinafter, referred to as LAS) have been known as low thermal expansion ceramics. Cordierite ceramics include cordierite powder or MgO powder that forms cordierite ceramics, Al 2 powder.
O 3 powder, the raw material powder blended with SiO 2 powder, rare earth oxides or CaO as a sintering aid was added SiO 2, MgO, etc., after molding into a predetermined shape, and baked at a temperature of 1000 to 1400 ° C. (Japanese Patent Publication No. 57-3629, JP-A-2-22976).
No. 0).

【0006】LAS系セラミックスのうち特にβ−スポ
ジュメンについては、天然原料を使用して所定形状に成
形後、1100〜1400℃の温度で焼成することによ
って作製されることが知られている(特公昭53−96
05号公報、特公昭56−164070号公報参照)。
また、Al2 3 が25〜70重量%、SiO2 が25
〜70重量%、Li2 Oが1〜5重量%及び不純物が5
重量%以下であるAl2 3 ・SiO2 ・Li2 O系低
膨張性溶射材料であって、コークス炉の補修材料として
使用され、機械的強度に優れ緻密な溶射膜を形成できる
溶射材料が提案されている(特開昭63−25280号
公報参照)。
[0006] Among the LAS-based ceramics, β-spodumene, in particular, is known to be produced by molding a natural material into a predetermined shape and then firing it at a temperature of 1100 to 1400 ° C. 53-96
No. 05, JP-B-56-164070).
Al 2 O 3 is 25 to 70% by weight, SiO 2 is 25% by weight.
70 wt%, Li 2 O is 1 to 5 wt% and impurities 5
An Al 2 O 3 .SiO 2 .Li 2 O-based low-expansion thermal spray material which is used as a repair material for a coke oven and has a high mechanical strength and can form a dense thermal spray film. It has been proposed (see JP-A-63-25280).

【0007】[0007]

【発明が解決しようとする課題】半導体製造工程で使用
される各種装置、部品及び治具用として、一般的に用い
られてきたアルミナセラミックス、窒化珪素セラミック
ス等のセラミックスは、金属に較べて軽量で熱膨張率が
小さく、剛性も大きい。それぞれの比重はアルミナセラ
ミックスが3.8、窒化珪素セラミックスが3.2と軽
量である。しかしながら、露光装置の軽量化、またX−
Yステージ等の駆動系部材の軽量化によるモーター負荷
低減、振動抑制のために、より軽量化が必要とされてき
ている。一方、露光装置の使用温度帯である10〜40
℃での熱膨張率は、アルミナセラミックスが約5.0×
10-6/℃、窒化珪素セラミックスが約1.5×10-6
/℃であり、回路デザインルールの微細化と共に露光時
の熱変形を軽減するために、より低熱膨張率のものが必
要とされてきている。
Ceramics such as alumina ceramics, silicon nitride ceramics and the like, which are generally used for various devices, parts and jigs used in a semiconductor manufacturing process, are lighter in weight than metals. Low coefficient of thermal expansion and high rigidity. The specific gravities are 3.8 for alumina ceramics and 3.2 for silicon nitride ceramics. However, the lightening of the exposure apparatus and the X-
In order to reduce the motor load and reduce the vibration by reducing the weight of the drive system members such as the Y stage, a further reduction in weight is required. On the other hand, the operating temperature range of the exposure apparatus is 10 to 40.
The coefficient of thermal expansion at ℃ is about 5.0 × for alumina ceramics.
10 −6 / ° C., about 1.5 × 10 −6 silicon nitride ceramics
/ ° C., and a circuit having a lower coefficient of thermal expansion is required in order to reduce thermal deformation at the time of exposure together with miniaturization of circuit design rules.

【0008】これに対して、コージェライト系セラミッ
クスは熱膨張率が0.2×10-6/℃以下であり、アル
ミナセラミックスや窒化珪素セラミックスに比較して熱
膨張率が低い。しかしながら、剛性の点では、アルミナ
セラミックスが約350GPa(ギガパスカル)、窒化
珪素セラミックスが約300GPaであるのに対し、多
孔質のコージェライトセラミックスが70〜90GPa
と低い。コージェライトセラミックスを露光装置等に用
いる場合、変形や固有振動数低下に伴う共振発生による
Siウェハ位置決め時間の増加が懸念される。最近の報
告では、緻密質コージェライトセラミックスとして、比
重2.7、ヤング率130〜140GPaを有するもの
があり、変形対策や固有振動数の向上について期待され
ている。ただし、比重はアルミナセラミックスや窒化珪
素セラミックスと比較すると小さいものの、露光装置の
重量軽減、部材重量軽減のために、更なる比重低下が望
まれる。
On the other hand, cordierite ceramics have a coefficient of thermal expansion of 0.2 × 10 −6 / ° C. or less, and have a lower coefficient of thermal expansion than alumina ceramics and silicon nitride ceramics. However, in terms of rigidity, alumina ceramics are about 350 GPa (gigapascal) and silicon nitride ceramics are about 300 GPa, whereas porous cordierite ceramics are about 70 to 90 GPa.
And low. When cordierite ceramics are used for an exposure apparatus or the like, there is a concern that the Si wafer positioning time may increase due to the occurrence of resonance due to deformation or lowering of the natural frequency. In recent reports, there are dense cordierite ceramics having a specific gravity of 2.7 and a Young's modulus of 130 to 140 GPa, and are expected to prevent deformation and improve the natural frequency. However, although the specific gravity is smaller than that of alumina ceramics or silicon nitride ceramics, further reduction in specific gravity is desired in order to reduce the weight of the exposure apparatus and the weight of members.

【0009】LAS系セラミックスのβ−スポジュメン
については、比重2.0〜2.4、熱膨張率が0.3×
10-6〜2.7×10-6/℃、磁器が気孔を有するもの
で−0.3×10-6〜−1.0×10-6/℃と低い値を
示すが、ヤング率は60〜80GPaと低い。LAS系
セラミックスの熱膨張率の低さは、結晶軸方向の異方性
によるものとそれに伴うマイクロクラックの存在がその
要因とされる。マイクロクラックは、結晶軸方向の異方
性の大きさが大きいほどよく見られる。マイクロクラッ
クを抑制する方法は、マイクロクラック発生の臨界粒径
を見極め、臨界粒径内で磁器結晶を制御することとされ
る。
Regarding β-spodumene of LAS ceramics, specific gravity is 2.0 to 2.4, and thermal expansion coefficient is 0.3 ×
10 -6 ~2.7 × 10 -6 / ℃ , show -0.3 × 10 -6 ~-1.0 × 10 -6 / ℃ a low value at which porcelain has a porosity, Young's modulus It is as low as 60 to 80 GPa. The low coefficient of thermal expansion of the LAS-based ceramics is due to the anisotropy in the crystal axis direction and the existence of microcracks accompanying the anisotropy. Microcracks are more often seen as the magnitude of the anisotropy in the crystal axis direction increases. The method for suppressing microcracks is to determine the critical grain size at which microcracks occur, and to control the porcelain crystal within the critical grain size.

【0010】このように、露光装置等用の材料として、
軽量、低熱膨張率、高剛性等の特性が要求されており、
特に金属と比較して軽量及び低熱膨張性を有するセラミ
ックスが望ましく、剛性については組成設計等で対応す
ることが考えられるが、これらの諸特性を共に満足する
セラミックスは従来存在しなかった。
As described above, as a material for an exposure apparatus or the like,
Characteristics such as light weight, low coefficient of thermal expansion, and high rigidity are required.
In particular, a ceramic having light weight and low thermal expansion compared to metal is desirable, and it is conceivable that the rigidity can be controlled by a composition design or the like. However, there has been no ceramic that satisfies all of these characteristics.

【0011】従って、本発明は上記事情を鑑みて完成さ
れたものであり、その目的は、半導体製造工程で使用さ
れる露光装置等の各種装置、部品及び治具の材料として
最適なものであって、軽量で低熱膨張率を有すると共に
高剛性のセラミックスと、その製造方法を提供すること
である。
Accordingly, the present invention has been completed in view of the above circumstances, and its object is to provide an optimum material for various apparatuses such as an exposure apparatus used in a semiconductor manufacturing process, parts and jigs. Another object of the present invention is to provide a lightweight ceramic having a low coefficient of thermal expansion and high rigidity, and a method for producing the ceramic.

【0012】[0012]

【課題を解決するための手段】本発明の低熱膨張性セラ
ミックスは、一般式LiAlSiO4 で表されるβ−ユ
ークリプタイトを95〜99重量%、マグネシアを1〜
5重量%を含むことを特徴とする。
The low thermal expansion ceramic of the present invention comprises 95-99% by weight of β-eucryptite represented by the general formula LiAlSiO 4 and 1-48% of magnesia.
It is characterized by containing 5% by weight.

【0013】本発明において、好ましくは、ボイド率が
0.1体積%未満かつ平均ボイド径が2μm未満であ
る。
In the present invention, the void fraction is preferably less than 0.1% by volume and the average void diameter is less than 2 μm.

【0014】また、本発明の低熱膨張性セラミックスの
製造方法は、95〜99重量%のβ−ユークリプタイト
原料粉末と1〜5重量%のマグネシア原料粉末とを含む
セラミックス原料を酸化雰囲気下で焼結し、その後11
00〜1200℃及び100気圧以上で加圧加焼処理す
ることを特徴とする。
Further, the method for producing a low thermal expansion ceramic of the present invention is characterized in that a ceramic raw material containing 95 to 99% by weight of β-eucryptite raw material powder and 1 to 5% by weight of magnesia raw material powder is oxidized in an oxidizing atmosphere. Sintered and then 11
It is characterized by performing pressure baking at 100 to 1200 ° C. and at least 100 atm.

【0015】本発明の製造方法において、セラミックス
原料を酸化雰囲気下で焼結する際に、相対密度90%以
上となるように焼結するのが緻密なものを得る上で好ま
しい。
In the production method of the present invention, when sintering a ceramic raw material in an oxidizing atmosphere, sintering to a relative density of 90% or more is preferable from the viewpoint of obtaining a dense one.

【0016】本発明は、低熱膨張性セラミックスの中で
も特に比重の小さいLAS系セラミックスであって、更
に熱膨張率が低いβ−ユークリプタイトを焼結法、好ま
しくは更に焼結後のホットプレス(加圧加焼)法により
緻密化することでマイクロクラック発生を抑え、低熱膨
率を有しかつ高剛性の材料を得ることができる。
The present invention is directed to a method of sintering β-eucryptite, which is a LAS-based ceramic having a low specific gravity and a low coefficient of thermal expansion, among the low thermal expansion ceramics, preferably a hot press after sintering. Densification by the pressure baking method can suppress the occurrence of microcracks and provide a material having a low coefficient of thermal expansion and high rigidity.

【0017】また、β−ユークリプタイトにマグネシア
を所定量含有させることで、低熱膨張率を維持してβ−
ユークリプタイトを緻密化させることができる。
Further, by containing a predetermined amount of magnesia in β-eucryptite, it is possible to maintain a low coefficient of thermal expansion and
The eucryptite can be densified.

【0018】[0018]

【発明の実施の形態】本発明の低熱膨張性セラミックス
は、軽量低熱膨張特性を有するLAS系セラミックスで
あって、特にβ−ユークリプタイトとして知られる一般
式LiAlSiO4 で表される複合酸化物から構成され
る。また、この低熱膨張性セラミックス中には、焼結助
剤としてMgOを1〜5重量%含有させる。MgO自身
の熱膨張率は、評価温度領域20〜1000℃で13×
10-6〜14×10-6/℃であり、その添加量が5重量
%を越えると液相分の増加により熱膨張率が増大する。
また、添加量が1重量%未満ではβ−ユークリプタイト
が緻密化しない。MgO以外の焼結助剤の場合、焼結温
度が上昇し粒成長を伴い、マイクロクラック発生を生じ
る傾向が強い。尚、本発明の低熱膨張性セラミックス
は、β−ユークリプタイト及びMgO以外に微量の不純
物を含んでいても良い。
BEST MODE FOR CARRYING OUT THE INVENTION The low thermal expansion ceramic of the present invention is a LAS-based ceramic having light weight and low thermal expansion characteristics, and in particular, a composite oxide represented by the general formula LiAlSiO 4 known as β-eucryptite. Be composed. The low thermal expansion ceramic contains 1 to 5% by weight of MgO as a sintering aid. The thermal expansion coefficient of MgO itself is 13 × in the evaluation temperature range of 20 to 1000 ° C.
It is 10 -6 to 14 × 10 -6 / ° C., and when the addition amount exceeds 5% by weight, the coefficient of thermal expansion increases due to an increase in the liquid phase.
If the amount is less than 1% by weight, β-eucryptite will not be densified. In the case of a sintering agent other than MgO, the sintering temperature rises, accompanied by grain growth, and there is a strong tendency to generate microcracks. In addition, the low thermal expansion ceramics of the present invention may contain a trace amount of impurities in addition to β-eucryptite and MgO.

【0019】本発明の低熱膨張性セラミックスにおい
て、ボイド率(気孔率)が0.1体積%未満かつ平均ボ
イド径が2μm未満であるのが好ましく、ボイド率が
0.1体積%以上では、鏡面加工後の製品面の光反射率
が低くなる。平均ボイド径が2μm以上では、半導体製
造装置に用いたとき光によってSiウェハ等の位置決め
を行う際に、位置決め用として十分な光反射特性が得ら
れない。より好ましくは、最大ボイド径が3μm未満で
ある。
In the low thermal expansion ceramics of the present invention, the void ratio (porosity) is preferably less than 0.1% by volume and the average void diameter is less than 2 μm. The light reflectance of the product surface after processing decreases. If the average void diameter is 2 μm or more, sufficient light reflection characteristics for positioning cannot be obtained when positioning a Si wafer or the like by light when used in a semiconductor manufacturing apparatus. More preferably, the maximum void diameter is less than 3 μm.

【0020】本発明の軽量低熱膨張性セラミックスは以
下の工程〔1〕〜〔3〕のようにして製造する。
The lightweight, low-thermal-expansion ceramic of the present invention is manufactured by the following steps [1] to [3].

【0021】〔1〕重量%比でLi2 O:Al2 3
SiO2 =12.5:40.5:47に調製した原料粉
末を用いる。各成分の増減により結晶中にムライト生成
やクリストバライト生成が見られるようになる。その場
合、熱膨張率が増加するため、重量%比のバラツキは1
重量%以内に抑えることが好ましい。そして、アルコキ
シド法で製造した上記組成比で平均粒径5〜7μmのL
AS原料粉末95〜99重量%に対して、比表面積12
〜14m2 /g、平均粒径0.5〜0.7μmのMgO
粉末を1〜5重量%添加する。
[1] Li 2 O: Al 2 O 3 :
The raw material powder prepared at SiO 2 = 12.5: 40.5: 47 is used. Due to the increase or decrease of each component, mullite generation and cristobalite generation can be seen in the crystal. In this case, since the coefficient of thermal expansion increases, the variation in the weight% ratio is 1
It is preferable to keep it within the range of weight%. Then, L having an average particle size of 5 to 7 μm at the above composition ratio manufactured by the alkoxide method.
The specific surface area is 12 based on 95 to 99% by weight of the AS raw material powder.
~14m 2 / g, MgO having an average particle diameter of 0.5~0.7μm
Add 1-5% by weight of powder.

【0022】〔2〕LAS原料粉末とMgO粉末を配合
の後、振動ミル等を使用して平均粒径1μm未満となる
ように粉砕混合し、所定形状に成形する。
[2] After blending the LAS raw material powder and the MgO powder, they are pulverized and mixed using a vibration mill or the like so as to have an average particle size of less than 1 μm, and formed into a predetermined shape.

【0023】〔3〕大気雰囲気下で1000〜1200
℃、好ましくは1040〜1130℃で焼結させること
で、比重2.2〜2.4、熱膨張率−0.4×10-6
0.1×10-6/℃、ヤング率110〜120GPaと
なる軽量且つ高剛性の低熱膨張性セラミックスを製造で
きる。また、LAS原料粉末及びMgO粉末からなる原
料粉末を所定形状に成形した後、大気雰囲気下で900
〜1000℃で相対密度90%以上に焼結した後、11
00〜1200℃、100気圧以上で加圧焼成すること
により、気孔率0.1%未満かつ平均ボイド径2μm未
満に緻密化することができる。加圧焼成時の温度が11
00℃未満では磁器の緻密化が不十分であり、1200
℃を超えると磁器の溶融がはじまり良好な磁器が得られ
なくなる。また、圧力100気圧未満では、ボイド低減
効果が得られない。
[3] 1000-1200 under air atmosphere
C., preferably by sintering at 1040 to 1130 ° C., to obtain a specific gravity of 2.2 to 2.4 and a coefficient of thermal expansion of −0.4 × 10 −6 to
A lightweight, high-rigidity, low-thermal-expansion ceramic having 0.1 × 10 −6 / ° C. and a Young's modulus of 110 to 120 GPa can be manufactured. After the raw material powder composed of the LAS raw material powder and the MgO powder has been formed into a predetermined shape,
After sintering at a relative density of 90% or more at ~ 1000 ° C, 11
By baking under pressure at 100 to 1200 ° C. and 100 atm or more, the porosity can be reduced to less than 0.1% and the average void diameter to less than 2 μm. Pressure firing temperature is 11
If the temperature is lower than 00 ° C., the densification of the porcelain is insufficient, and 1200
When the temperature exceeds ℃, melting of the porcelain starts, and good porcelain cannot be obtained. If the pressure is less than 100 atm, the effect of reducing voids cannot be obtained.

【0024】このようにして得られた低熱膨張性セラミ
ックスは、窒化珪素セラミックスやコージェライトセラ
ミックス、KZP(リン酸ジルコニウムカリウム)と比
較して、比重が2.2〜2.4と小さく、アルミナセラ
ミックス及び窒化珪素セラミックスと比較して、熱膨張
率が−0.4×10-6〜0.1×10-6/℃と熱膨張率
が実質的に0、又は0近傍の値を示す。また、コージェ
ライトセラミックス等の低熱膨張材料の中ではヤング率
が110〜120GPaと高くなる。更に、半導体製造
用の露光装置等用として、表面平滑性や表面コーティン
グ性に優れる、ボイド率0.1体積%未満かつ平均ボイ
ド径2μm未満の軽量低熱膨張性及び高剛性特性を有す
る。
The low thermal expansion ceramic thus obtained has a specific gravity of 2.2 to 2.4 smaller than that of silicon nitride ceramics, cordierite ceramics, or KZP (potassium zirconium phosphate). And a coefficient of thermal expansion of −0.4 × 10 −6 to 0.1 × 10 −6 / ° C. as compared with silicon nitride ceramics, and a coefficient of thermal expansion substantially equal to or near zero. Further, among low thermal expansion materials such as cordierite ceramics, the Young's modulus is as high as 110 to 120 GPa. Furthermore, it has a light weight, low thermal expansion property and a high rigidity characteristic of being excellent in surface smoothness and surface coating property and having a void ratio of less than 0.1% by volume and an average void diameter of less than 2 μm for use in an exposure apparatus for manufacturing a semiconductor.

【0025】かくして、本発明は、半導体製造工程で使
用される露光装置等の各種装置、部品及び治具の材料と
して最適なものであって、軽量で低熱膨張率を有すると
共に高剛性のセラミックスを得ることができる。
Thus, the present invention is suitable as a material for various apparatuses, parts, and jigs such as an exposure apparatus used in a semiconductor manufacturing process. Obtainable.

【0026】尚、本発明は上記実施形態に限定されるも
のではなく、本発明の要旨を逸脱しない範囲内で種々の
変更を行っても何ら差し支えない。
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention.

【0027】[0027]

【実施例】(実施例1)平均粒径5.5μmのβ−ユー
クリプタイト粉末に対して、比表面積12.6m2
g、平均粒径0.6μmのMgO粉末を、0重量%,1
重量%,2重量%,3重量%,4重量%,5重量%,6
重量%の割合で各々配合して原料粉末を調製し、これら
を振動ミルにより72時間混合した後、造粒、乾燥後、
乾式プレス成形により試験片形状にした。原料粉末の平
均粒径及びMgO添加量が種々に異なる8種類の試験片
について、更に各々焼成温度を変えて大気雰囲気下で焼
成し、セラミックス磁器を製作し評価を行った。このう
ち、気孔率が0.1%未満となる緻密体が得られたN
o.3,4,5の1040℃焼成品について、特性評価
を行った。評価結果は表2に示す。尚、表1においてw
t%は重量%、vol%は体積%を意味し、原料粉末の
平均粒径はマイクロトラック法によって測定した。
EXAMPLES Example 1 Specific surface area of 12.6 m 2 / β-eucryptite powder having an average particle size of 5.5 μm.
g, MgO powder having an average particle size of 0.6 μm was
Wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt%, 6
The raw material powders were prepared by blending each in a ratio of weight%, and these were mixed by a vibration mill for 72 hours, and then granulated and dried.
The test piece was formed by dry press molding. Eight kinds of test pieces having various average particle diameters and different amounts of MgO added to the raw material powder were fired in the air atmosphere at different firing temperatures, and ceramic porcelain was manufactured and evaluated. Among them, a dense body having a porosity of less than 0.1% was obtained.
o. Characteristics of 3, 4, and 5 fired products at 1040 ° C. were evaluated. Table 2 shows the evaluation results. In Table 1, w
t% means% by weight, vol% means% by volume, and the average particle size of the raw material powder was measured by a microtrack method.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1に示すように、NO.1のLAS原料
粉末の平均粒径1.8μm、MgO2wt%のもので
は、いずれの焼成温度においてもボイド率が2.1体積
%以上となり、緻密体は得られなかった。NO.2の平
均粒径0.7μm、MgO0wt%のものでは、いずれ
の焼成温度においてもボイド率が2.6体積%以上とな
り、緻密体は得られなかった。NO.3の平均粒径0.
7μm、MgO1wt%のものでは、焼成温度1040
℃,1130℃でボイド率が0.1体積%未満となり、
緻密体が得られた。NO.4の平均粒径0.7μm、M
gO2wt%のものでは、1040℃,1130℃でボ
イド率が0.1体積%未満となり、緻密体が得られた。
As shown in Table 1, NO. With the LAS raw material powder of No. 1 having an average particle size of 1.8 μm and MgO of 2 wt%, the void ratio was 2.1% by volume or more at any firing temperature, and a dense body was not obtained. NO. In the case of No. 2 having an average particle diameter of 0.7 μm and MgO of 0 wt%, the void ratio was 2.6% by volume or more at any firing temperature, and a dense body was not obtained. NO. Average particle size of 0.3
In the case of 7 μm and 1 wt% of MgO, the firing temperature is 1040
At 1130 ° C, the void fraction becomes less than 0.1% by volume,
A dense body was obtained. NO. Average particle size of 0.7 μm, M
In the case of gO2 wt%, the void ratio was less than 0.1% by volume at 1040 ° C. and 1130 ° C., and a dense body was obtained.

【0031】また、NO.5の平均粒径0.7μm、M
gO3wt%のものでは、1040℃,1130℃でボ
イド率が0.1体積%未満となり、緻密体が得られた。
NO.6の平均粒径0.7μm、MgO4wt%のもの
では、1040℃でボイド率が0.1体積%未満とな
り、緻密体が得られた。NO.7の平均粒径0.7μ
m、MgO5wt%のものでは、1040℃でボイド率
が0.1体積%未満となり、緻密体が得られた。NO.
8の平均粒径0.7μm、MgO6wt%のものでは、
いずれの焼成温度においてもボイド率が0.8体積%以
上となり緻密体は得られなかった。
In the case of NO. 5, average particle size 0.7 μm, M
With gO3 wt%, the void fraction was less than 0.1% by volume at 1040 ° C and 1130 ° C, and a dense body was obtained.
NO. In the case of No. 6 having an average particle diameter of 0.7 μm and MgO of 4 wt%, the void ratio was less than 0.1% by volume at 1040 ° C., and a dense body was obtained. NO. 0.7 average particle size of 7
With m and MgO of 5 wt%, the void ratio was less than 0.1% by volume at 1040 ° C., and a dense body was obtained. NO.
8 having an average particle diameter of 0.7 μm and MgO of 6 wt%:
At any of the firing temperatures, the void ratio was 0.8% by volume or more, and no dense body was obtained.

【0032】表2に示すように、本発明に基づき、β−
ユークリプタイト粉末に、比表面積12.6m2 /g、
平均粒径0.6μmのMgO粉末を1〜3重量%加え、
平均粒径0.7μmに粉砕した原料粉末を使用して、大
気雰囲気下で1040℃で焼成することにより、比重
2.3、熱膨張率−0.4×10-6〜0.1×10-6
℃、ヤング率110〜120GPa、気孔率0.1体積
%未満の緻密なセラミックスを得ることができた。ま
た、原料粉末を中空体とすることで更に軽量化すること
も可能である。
As shown in Table 2, based on the present invention, β-
Specific surface area of 12.6 m 2 / g to eucryptite powder,
1 to 3% by weight of MgO powder having an average particle size of 0.6 μm is added,
The raw material powder pulverized to an average particle diameter of 0.7 μm is calcined at 1040 ° C. in the air atmosphere to obtain a specific gravity of 2.3 and a coefficient of thermal expansion of −0.4 × 10 −6 to 0.1 × 10. -6 /
C., a dense ceramic having a Young's modulus of 110 to 120 GPa and a porosity of less than 0.1% by volume could be obtained. Further, it is possible to further reduce the weight by making the raw material powder a hollow body.

【0033】(実施例2)平均粒径5.5μmのβ−ユ
ークリプタイト粉末に対して、比表面積12.6m2
g、平均粒径0.6μmのMgO粉末を、2重量%,5
重量%の割合で各々配合して原料粉末を調製し、これら
を振動ミルにより72時間混合した後、造粒、乾燥後、
乾式プレス成形により試験片形状にした。その後、焼成
温度1000℃で焼成した後、HP(加圧焼成)処理を
行った。HP条件は、加圧力を100気圧,300気圧
の2種とし、それぞれに対し1000℃,1100℃,
1200℃,1300℃で焼成し、合計8種類のHP処
理を行った。これらにつき平均ボイド率(気孔率)、平
均ボイド径の評価を行い、その結果を表3に示す。尚、
平均ボイド率及び平均ボイド径の測定は、試験片表面又
は断面の光学顕微鏡による倍率100倍又は1000倍
の写真を10視野とり、ボイドを球状であると仮定し画
像処理してボイドの占有面積から平均ボイド率を近似的
に導出し、また平均ボイド径は各ボイド径を観測し平均
値をとることで行った。
Example 2 Specific surface area of 12.6 m 2 / β-eucryptite powder having an average particle size of 5.5 μm
g, MgO powder having an average particle size of 0.6 μm was
The raw material powders were prepared by blending each in a ratio of weight%, and these were mixed by a vibration mill for 72 hours, and then granulated and dried.
The test piece was formed by dry press molding. Then, after baking at a baking temperature of 1000 ° C., an HP (pressure baking) treatment was performed. The HP conditions were two kinds of pressures of 100 atm and 300 atm, 1000 ° C, 1100 ° C,
Baking was performed at 1200 ° C. and 1300 ° C., and a total of eight types of HP treatments were performed. The average void ratio (porosity) and average void diameter were evaluated for these, and the results are shown in Table 3. still,
The measurement of the average void fraction and the average void diameter is performed by taking 10 fields of view of the test specimen surface or cross section at a magnification of 100 or 1000 by an optical microscope, assuming that the void is spherical, and performing image processing to determine the void occupied area. The average void fraction was approximately derived, and the average void diameter was obtained by observing each void diameter and taking an average value.

【0034】[0034]

【表3】 [Table 3]

【0035】加圧力が100気圧では処理温度1100
〜1200℃で、平均ボイド率が0.1体積%未満、平
均ボイド径が1.2〜1.8μmとなった。1300℃
でβ−ユークリプタイトは溶融した。300気圧では処
理温度1100〜1200℃で、平均ボイド率が0.1
体積%未満、平均ボイド径が1.0〜1.9μmとなっ
た。1300℃でβ−ユークリプタイトは溶融した。従
って、1100℃〜1200℃の範囲で平均ボイド率
0.1体積%未満、平均ボイド径2μm未満のセラミッ
クス磁器が得られることが判明した。
When the pressure is 100 atm, the processing temperature is 1100
At 1200 ° C., the average void ratio was less than 0.1% by volume, and the average void diameter was 1.2 to 1.8 μm. 1300 ° C
As a result, β-eucryptite melted. At 300 atm, the processing temperature is 1100 to 1200 ° C and the average void fraction is 0.1
%, And the average void diameter was 1.0 to 1.9 μm. At 1300 ° C., β-eucryptite melted. Therefore, it was found that ceramic porcelain having an average void fraction of less than 0.1% by volume and an average void diameter of less than 2 μm was obtained in the range of 1100 ° C. to 1200 ° C.

【0036】[0036]

【発明の効果】本発明は、化学式LiAlSiO4 で表
されるβ−ユークリプタイトを95〜99重量%、マグ
ネシアを1〜5重量%を含むことにより、熱膨張率−
0.4×10-6〜0.1×10-6/℃、ヤング率110
〜120GPa、比重が2.2〜2.4と軽量で低熱膨
張率を有すると共に高剛性のセラミックスが得られる。
そして、本発明の低熱膨張性セラミックスは、超微細な
電子回路を形成するために半導体ウェハに露光処理等を
行う半導体製造用の各種装置及び部品、例えばX−Yス
テージ及びその部品、真空チャック、静電チャック、ミ
ラー等に用いることにより、温度変化に対する寸法安定
性に優れ、変形や振動の影響が実質的に解消される。
According to the present invention, a thermal expansion coefficient is obtained by containing 95 to 99% by weight of β-eucryptite represented by the chemical formula LiAlSiO 4 and 1 to 5% by weight of magnesia.
0.4 × 10 -6 to 0.1 × 10 -6 / ° C, Young's modulus 110
A lightweight, low coefficient of thermal expansion coefficient of up to 120 GPa and a specific gravity of 2.2 to 2.4, and a highly rigid ceramic can be obtained.
And the low thermal expansion ceramics of the present invention, various devices and parts for semiconductor manufacturing, such as an XY stage and parts thereof, for performing exposure processing and the like on a semiconductor wafer to form an ultra-fine electronic circuit, a vacuum chuck, By using it for an electrostatic chuck, a mirror, or the like, it has excellent dimensional stability against temperature changes, and the effects of deformation and vibration are substantially eliminated.

【0037】また、本発明は、95〜99重量%のβ−
ユークリプタイト原料粉末と1〜5重量%のマグネシア
原料粉末とを含むセラミックス原料を酸化雰囲気下で焼
結し、その後1100〜1200℃及び100気圧以上
で加圧加焼処理することにより、ボイド率0.1体積%
未満かつ平均ボイド径2μm未満の低熱膨張性セラミッ
クスが得られる。また、前記構成により、前記各種装置
及び部品表面の平滑性を向上させることができ、その結
果優れた構造的精度及び位置精度が得られ、LSI等の
半導体電子回路部品の品質と量産性を高めることができ
る。
Further, the present invention relates to a method for preparing 95-99% by weight of β-
A ceramic raw material containing eucryptite raw material powder and 1 to 5% by weight magnesia raw material powder is sintered in an oxidizing atmosphere, and then subjected to pressure sintering at 1100 to 1200 ° C. and 100 atm or more to obtain a void fraction. 0.1% by volume
And a low thermal expansion ceramic having an average void diameter of less than 2 μm is obtained. Further, with the above-described configuration, the smoothness of the surfaces of the various devices and components can be improved. As a result, excellent structural accuracy and positional accuracy can be obtained, and the quality and mass productivity of semiconductor electronic circuit components such as LSIs can be improved. be able to.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式LiAlSiO4 で表されるβ−ユ
ークリプタイトを95〜99重量%、マグネシアを1〜
5重量%を含むことを特徴とする低熱膨張性セラミック
ス。
(1) 95-99% by weight of β-eucryptite represented by the general formula LiAlSiO 4 and magnesia of 1-99% by weight;
Low thermal expansion ceramics containing 5% by weight.
【請求項2】ボイド率が0.1体積%未満かつ平均ボイ
ド径が2μm未満である請求項1記載の低熱膨張性セラ
ミックス。
2. The low thermal expansion ceramic according to claim 1, wherein the void fraction is less than 0.1% by volume and the average void diameter is less than 2 μm.
【請求項3】95〜99重量%のβ−ユークリプタイト
原料粉末と1〜5重量%のマグネシア原料粉末とを含む
セラミックス原料を酸化雰囲気下で焼結し、その後11
00〜1200℃及び100気圧以上で加圧加焼処理す
ることを特徴とする低熱膨張性セラミックスの製造方
法。
3. A ceramic raw material containing 95 to 99% by weight of β-eucryptite raw material powder and 1 to 5% by weight of magnesia raw material powder is sintered in an oxidizing atmosphere.
A method for producing a low-thermal-expansion ceramic, comprising subjecting to pressure baking at 100 to 1200 ° C. and at least 100 atm.
JP02211199A 1999-01-29 1999-01-29 Method for producing low thermal expansion ceramics Expired - Fee Related JP3805119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02211199A JP3805119B2 (en) 1999-01-29 1999-01-29 Method for producing low thermal expansion ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02211199A JP3805119B2 (en) 1999-01-29 1999-01-29 Method for producing low thermal expansion ceramics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006102218A Division JP4429288B2 (en) 2006-04-03 2006-04-03 Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same

Publications (2)

Publication Number Publication Date
JP2000219572A true JP2000219572A (en) 2000-08-08
JP3805119B2 JP3805119B2 (en) 2006-08-02

Family

ID=12073786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02211199A Expired - Fee Related JP3805119B2 (en) 1999-01-29 1999-01-29 Method for producing low thermal expansion ceramics

Country Status (1)

Country Link
JP (1) JP3805119B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024600A1 (en) * 2000-09-20 2002-03-28 Sumitomo Metal Industries, Ltd. Low thermal expansion ceramic and member for exposure system
JP2002173363A (en) * 2000-12-06 2002-06-21 Kyocera Corp Lithium alumino-silicate-base ceramic
JP2002173364A (en) * 2000-12-06 2002-06-21 Kyocera Corp Lithium alumino-silicate-base ceramic
JP2007261842A (en) * 2006-03-28 2007-10-11 Shiga Pref Gov Ni CERAMIC COMPOSITE AND METHOD OF MANUFACTURING THE SAME
CN108302942A (en) * 2018-01-08 2018-07-20 朱性宇 Electrode material of lithium battery prepares the preparation method with saggar, the protective layer of the saggar and saggar
CN114887613A (en) * 2022-06-21 2022-08-12 重庆大学 Magnesium-based photo-thermal catalytic material for carbon dioxide hydrogenation reduction reaction, preparation method and application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024600A1 (en) * 2000-09-20 2002-03-28 Sumitomo Metal Industries, Ltd. Low thermal expansion ceramic and member for exposure system
US7112549B2 (en) * 2000-09-20 2006-09-26 Sumitomo Metal Industries, Ltd. Low thermal expansion ceramic and member for exposure system
JP2002173363A (en) * 2000-12-06 2002-06-21 Kyocera Corp Lithium alumino-silicate-base ceramic
JP2002173364A (en) * 2000-12-06 2002-06-21 Kyocera Corp Lithium alumino-silicate-base ceramic
JP4658311B2 (en) * 2000-12-06 2011-03-23 京セラ株式会社 Lithium aluminosilicate ceramics
JP4658312B2 (en) * 2000-12-06 2011-03-23 京セラ株式会社 Lithium aluminosilicate ceramics
JP2007261842A (en) * 2006-03-28 2007-10-11 Shiga Pref Gov Ni CERAMIC COMPOSITE AND METHOD OF MANUFACTURING THE SAME
CN108302942A (en) * 2018-01-08 2018-07-20 朱性宇 Electrode material of lithium battery prepares the preparation method with saggar, the protective layer of the saggar and saggar
CN114887613A (en) * 2022-06-21 2022-08-12 重庆大学 Magnesium-based photo-thermal catalytic material for carbon dioxide hydrogenation reduction reaction, preparation method and application

Also Published As

Publication number Publication date
JP3805119B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP3133302B2 (en) Black low thermal expansion ceramics sintered body and method for producing the same
JP5671058B2 (en) COMPOSITE MATERIAL WITH CONTROLLED CTE, INCLUDING OXIDE CERAMIC, AND PROCESS FOR OBTAINING THE SAME
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
US20120107585A1 (en) Ceramic Composite Based on Beta-Eucryptite and an Oxide, and Process of Manufacturing Said Composite
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP4025455B2 (en) Composite oxide ceramics
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
JP3469513B2 (en) Exposure apparatus and support member used therein
US6602623B1 (en) Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
WO2001094272A1 (en) Electrically conductive ceramic sintered compact exhibiting low thermal expansion
JP4854354B2 (en) Silicon nitride bonded body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JPH0974298A (en) Electromagnetic shielding material
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
JP3260340B2 (en) Composite ceramic and method for producing the same
JPH11100275A (en) Low thermal expansion ceramic and its preparation
CN115594405B (en) Low-dielectric high-temperature stability LTCC material and preparation method thereof
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP2001058867A (en) Structure part
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees