JP2000216432A - Gallium nitride compound semiconductor element - Google Patents

Gallium nitride compound semiconductor element

Info

Publication number
JP2000216432A
JP2000216432A JP1142199A JP1142199A JP2000216432A JP 2000216432 A JP2000216432 A JP 2000216432A JP 1142199 A JP1142199 A JP 1142199A JP 1142199 A JP1142199 A JP 1142199A JP 2000216432 A JP2000216432 A JP 2000216432A
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
type
undoped
type contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1142199A
Other languages
Japanese (ja)
Other versions
JP3868136B2 (en
Inventor
Koji Tanizawa
公二 谷沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP1142199A priority Critical patent/JP3868136B2/en
Publication of JP2000216432A publication Critical patent/JP2000216432A/en
Application granted granted Critical
Publication of JP3868136B2 publication Critical patent/JP3868136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nitride semiconductor element which can deliver high output by forming undoped first and second nitride semiconductor layers between an n-type contact layer and an active layer and between a p-type clad layer and the active layer, respectively. SOLUTION: On a substrate 1, a buffer layer 2, an undoped GaN layer 3, an n-type contact layer 4 containing an n-type impurity, an undoped nitride semiconductor layer 5, an active layer 6 of a single quantum well structure, an undoped nitride semiconductor layer 7, a p-type clad layer 8 containing a p-type impurity, and a p-type contact layer containing a p-type impurity are deposited. Furthermore, an N electrode 11 is formed on the n-type clad layer 4, and a P electrode 10 is formed on the p-type contact layer 9. The undoped first nitride semiconductor layer 5 is formed in the thickness of 5,000 Åor below and the undoped second nitride semiconductor layer 7 is formed in the thickness of 1,000 Å or below to reduce Vf and a threshold value and to obtain an element which can deliver high emission output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒化物半導体InxAly
Ga1-x-yN(0≦x、0≦y、x+y≦1)よりな
り、発光ダイオード素子、レーザダイオード素子等の発
光素子に用いられる窒化物半導体発光素子に関する。
The present invention relates to a nitride semiconductor In x Al y
The present invention relates to a nitride semiconductor light emitting device made of Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) and used for a light emitting device such as a light emitting diode device and a laser diode device.

【0002】[0002]

【従来の技術】窒化物半導体は高輝度純緑色発光LE
D、青色LEDとして、既にフルカラーLEDディスプ
レイ、交通信号灯、イメージスキャナ光源等の各種光源
で実用化されている。これらのLED素子は基本的に、
サファイア基板上にGaNよりなるn型コンタクト層
と、単一量子井戸構造、若しくは多重量子井戸構造のI
nGaN層を包含する活性層と、MgドープAlGaN
よりなるp型クラッド層と、MgドープGaNよりなる
p型コンタクト層とが順に積層された構造を有してお
り、20mA、発光波長450nmの青色LEDで、活
性層が単一量子井戸構造の場合、2.5mW、外部量子
効率5パーセント、活性層が多重量子井戸構造の場合、
5mW、外部量子効率9.1パーセント、また発光波長
520nmの緑色LEDで、単一量子井戸構造の場合、
2.2mW、外部量子効率4.3パーセント、多重量子
井戸構造の場合、3mW、外部量子効率6.3パーセン
トと非常に優れた特性を示す。
2. Description of the Related Art A nitride semiconductor is a high-brightness pure green light emitting LE
D and blue LEDs have already been put to practical use in various light sources such as full-color LED displays, traffic signal lights, and image scanner light sources. These LED elements are basically
An n-type contact layer made of GaN on a sapphire substrate and a single quantum well structure or a multiple quantum well structure
an active layer including an nGaN layer, and Mg-doped AlGaN
A p-type cladding layer made of Mg and a p-type contact layer made of Mg-doped GaN are sequentially stacked, a blue LED of 20 mA and an emission wavelength of 450 nm, and an active layer of a single quantum well structure. , 2.5 mW, external quantum efficiency of 5%, when the active layer has a multiple quantum well structure,
A green LED with 5 mW, an external quantum efficiency of 9.1% and an emission wavelength of 520 nm has a single quantum well structure.
Very excellent characteristics of 2.2 mW, external quantum efficiency of 4.3%, and multiple quantum well structure of 3 mW and external quantum efficiency of 6.3%.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の窒化物半導体素子は、近年では屋外用の大型ディス
プレイ等にも使用されるようになり、今後種々の応用製
品への適用を考えると、さらなる発光出力の向上が求め
られる。発光出力を高くする方法として、n型コンタク
ト層をn型不純物をドープしたGaNとすると、低抵抗
構造の素子が得られる。しかし、このn型不純物のドー
プ量を多くしていくと、n型コンタクト層の結晶性が悪
くなってしまう。n型コンタクト層の結晶性が悪くなっ
てしまうと、さらにその上に積層する活性層、p型クラ
ッド層およびp型コンタクト層のすべての層の結晶性も
悪くなってしまい、発光出力を高くするという効果が打
ち消されてしまう。
However, the above-mentioned conventional nitride semiconductor devices have recently been used for large-scale outdoor displays and the like. Improvement in light emission output is required. As a method of increasing the light emission output, if the n-type contact layer is made of GaN doped with an n-type impurity, an element having a low resistance structure can be obtained. However, as the doping amount of the n-type impurity increases, the crystallinity of the n-type contact layer deteriorates. If the crystallinity of the n-type contact layer deteriorates, the crystallinity of all of the active layer, the p-type cladding layer and the p-type contact layer further laminated thereon also deteriorates, and the light emission output increases. That effect is negated.

【0004】[0004]

【課題を解決するための手段】そこで本発明では、n型
コンタクト層を高濃度の不純物がドープされた窒化物半
導体とした低抵抗構造の窒化物半導体素子において、n
型コンタクト層と活性層との間にアンドープの第1の窒
化物半導体層を設け、さらにp型クラッド層と活性層と
の間にアンドープの第2の窒化物半導体層を設けること
を特徴とする。
Accordingly, the present invention provides a nitride semiconductor device having a low resistance structure in which an n-type contact layer is a nitride semiconductor doped with a high concentration of impurities.
An undoped first nitride semiconductor layer is provided between the contact layer and the active layer, and an undoped second nitride semiconductor layer is further provided between the p-type cladding layer and the active layer. .

【0005】すなわち本発明は下記(1)から(5)の
構成により本発明の目的を達成することができる。 (1) n型GaNを含んでなるn型コンタクト層と、
In、Gaを含み量子井戸を有する活性層と、p型Al
GaNを含んでなるp型クラッド層と、p型GaNを含
んでなるp型コンタクト層とを順に有する窒化物半導体
素子において、前記n型コンタクト層と活性層との間に
アンドープの第1の窒化物半導体層が形成され、さらに
前記p型クラッド層と活性層との間にアンドープの第2
の窒化物半導体層が形成されていることを特徴とする窒
化物半導体発光素子。
That is, the present invention can achieve the object of the present invention by the following constitutions (1) to (5). (1) an n-type contact layer containing n-type GaN;
An active layer containing In and Ga and having a quantum well;
In a nitride semiconductor device having a p-type cladding layer containing GaN and a p-type contact layer containing p-type GaN in order, an undoped first nitride is provided between the n-type contact layer and the active layer. A semiconductor layer, and an undoped second layer between the p-type cladding layer and the active layer.
A nitride semiconductor light emitting device, wherein the nitride semiconductor layer is formed.

【0006】(2) 前記n型コンタクト層はn型不純
物として、Siが1×1018/cm3以上、1×1021
/cm3以下でドープされていることを特徴とする前記
(1)に記載の窒化物半導体発光素子。
(2) The n-type contact layer contains 1 × 10 18 / cm 3 or more as an n-type impurity and 1 × 10 21 / cm 3 or more.
The nitride semiconductor light emitting device according to the above (1), wherein the nitride semiconductor light emitting device is doped at a density of not more than / cm 3 .

【0007】(3) 前記n側のアンドープからなる第
1の窒化物半導体層の膜厚は、0.5μm以下であるこ
とを特徴とする前記(1)および(2)に記載の窒化物
半導体発光素子。
(3) The nitride semiconductor according to (1) or (2), wherein the thickness of the n-side undoped first nitride semiconductor layer is 0.5 μm or less. Light emitting element.

【0008】(4) 前記p側のアンドープからなる第
2の窒化物半導体層の膜厚は、0.1μm以下であるこ
とを特徴とする前記(1)から(3)のいずれかに記載
の窒化物半導体発光素子。
(4) The film according to any one of (1) to (3), wherein the thickness of the p-side undoped second nitride semiconductor layer is 0.1 μm or less. Nitride semiconductor light emitting device.

【0009】(5) 前記p型クラッド層はMgドープ
のAlbGa1-bN(0≦b<1)とMgドープのInc
Ga1-cN(0≦c<1)との超格子からなる層である
ことを特徴とする前記(1)から(4)のいずれかに記
載の窒化物半導体発光素子。
(5) The p-type cladding layer is made of Mg-doped Al b Ga 1 -bN (0 ≦ b <1) and Mg-doped In c
The nitride semiconductor light-emitting device according to any one of (1) to (4), wherein the nitride semiconductor light-emitting device is a layer including a superlattice of Ga 1-c N (0 ≦ c <1).

【0010】つまり本発明の発光素子は、n型コンタク
ト層をSi濃度が1×1018/cm 3以上の高濃度の不
純物がドープされた低抵抗構造の窒化物半導体におい
て、活性層に接してn側に、アンドープのIngAlh
1-g-hN(0≦g、0≦h、g+h≦1)を0.5μ
m以下で形成し、さらに活性層に接してp側にも、アン
ドープのIniAljGa1-i-jN(0≦i、0≦j、i
+j≦1)を0.1μmの膜厚で形成することで高い発
光出力で結晶性の良い素子を得ることができる。さらに
p型クラッド層をMgドープのAlbGa1-bN(0≦b
<1)とMgドープのIncGa1-cN(0≦c<1)と
の超格子構造とすることで、高い発光出力を維持でき
る。また、第1および第2の窒化物半導体の膜厚は、大
きくすればするほど、その上に形成する層の結晶性は良
くなるが、厚くしすぎるとキャリアの注入効率が悪くな
ってしまい、発光しなくなってしまう。そこで、n側の
第1の窒化物半導体の膜厚を0.5μm以下に、p側の
第2の窒化物半導体の膜厚を0.1μm以下にすること
によって、n型コンタクト層にn型不純物としてSiを
1×1021/cm3と高ドープにしても20mAにおい
て2.5mWを維持したLED素子ができる。
That is, the light emitting device of the present invention has an n-type contact
Layer has a Si concentration of 1 × 1018/ Cm ThreeAbove high concentration
Pure doped low resistance nitride semiconductor smell
Undoped In on the n side in contact with the active layergAlhG
a1-ghN (0 ≦ g, 0 ≦ h, g + h ≦ 1) is 0.5 μ
m or less, and in contact with the active layer, on the p-side,
Doped IniAljGa1-ijN (0 ≦ i, 0 ≦ j, i
+ J ≦ 1) with a film thickness of 0.1 μm.
An element with good crystallinity can be obtained with light output. further
The p-type cladding layer is made of Mg-doped AlbGa1-bN (0 ≦ b
<1) and Mg-doped IncGa1-cN (0 ≦ c <1) and
High emission output can be maintained
You. The thickness of the first and second nitride semiconductors is large.
The higher the size, the better the crystallinity of the layer formed thereon
However, if the thickness is too large, the carrier injection efficiency will deteriorate.
It will not emit light. Therefore, the n-side
The thickness of the first nitride semiconductor is set to 0.5 μm or less,
Making the thickness of the second nitride semiconductor 0.1 μm or less
As a result, Si as an n-type impurity is
1 × 10twenty one/ CmThree20mA even with high doping
Thus, an LED element maintaining 2.5 mW can be obtained.

【0011】[0011]

【発明の実施の形態】以下に本発明の一実施の形態であ
る窒化物半導体素子の構造を示す窒化物半導体素子の模
式的断面図である図1を用いて、本発明を詳細に説明す
る。図1は基板1上に、バッファ層2、アンドープのG
aN層3、n型不純物を含むn型コンタクト層4、アン
ドープからなる第1の窒化物半導体層5、単一量子井戸
構造の活性層6、アンドープからなる第2の窒化物半導
体層7、p型不純物を含むp型クラッド層8、p型不純
物を含むp型コンタクト層9が順に積層された構造を有
する。さらに、n型クラッド層4上にn電極10、p型
コンタクト層9上にp電極11がそれぞれ形成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIG. 1 which is a schematic sectional view of a nitride semiconductor device showing a structure of a nitride semiconductor device according to an embodiment of the present invention. . FIG. 1 shows that a buffer layer 2 and an undoped G
aN layer 3, n-type contact layer 4 containing an n-type impurity, undoped first nitride semiconductor layer 5, active layer 6 having a single quantum well structure, undoped second nitride semiconductor layer 7, p It has a structure in which a p-type clad layer 8 containing a p-type impurity and a p-type contact layer 9 containing a p-type impurity are sequentially stacked. Further, an n-electrode 10 is formed on the n-type cladding layer 4 and a p-electrode 11 is formed on the p-type contact layer 9.

【0012】本発明において、基板1としては、サファ
イアC面、R面またはA面を主面とするサファイア、そ
の他スピネル(MgAl24)のような絶縁性の基板の
他、SiC(6H、4H、3Cを含む)、Si、Zn
O、GaAs、GaN等の半導体基板を用いることがで
きる。
In the present invention, the substrate 1 is sapphire having a sapphire C-plane, R-plane or A-plane as a main surface, other insulating substrates such as spinel (MgAl 2 O 4 ), SiC (6H, 4H, 3C), Si, Zn
A semiconductor substrate such as O, GaAs, or GaN can be used.

【0013】本発明において、バッファ層2としては、
AlGaNからなる窒化物半導体であり、好ましくはA
lの割合が小さい組成ほど結晶性の改善が顕著となり、
より好ましくはGaNからなるバッファ層2が挙げられ
る。
In the present invention, as the buffer layer 2,
A nitride semiconductor made of AlGaN, preferably A
The smaller the ratio of l, the more remarkable the improvement in crystallinity,
More preferably, a buffer layer 2 made of GaN is used.

【0014】次に本発明において、アンドープGaN層
3は、成長する際にn型不純物を添加せずに成長してな
る層を示す。バッファ層2上にアンドープのGaN層3
を成長させるとアンドープGaN層の結晶性が良好とな
り、アンドープGaN層3上に成長させるn型コンタク
ト層4などの結晶性も良好となる。
Next, in the present invention, the undoped GaN layer 3 is a layer grown without adding an n-type impurity during growth. Undoped GaN layer 3 on buffer layer 2
Is grown, the crystallinity of the undoped GaN layer is improved, and the crystallinity of the n-type contact layer 4 and the like grown on the undoped GaN layer 3 is also improved.

【0015】次に本発明において、n型不純物を含むn
型コンタクト層4は、n型不純物としてSiをドープし
たGaNとし、不純物濃度は1×1018/cm3以上、
1×1021/cm3以下、好ましくは5×1018/cm3
以上、5×1020/cm3以下に調整する。このように
n型不純物を多くドープし、この層をn型コンタクト層
とすると、Vfおよび閾値を低下させることができる。
不純物濃度が上記範囲を逸脱するとVfが低下しにくく
なる傾向にある。また、n型コンタクト層4は、結晶性
の良好なアンドープのGaN3上に形成されると、高濃
度のn型不純物を有しているにもかかわらず結晶性を良
好にすることができる。
Next, in the present invention, n-type impurity
The type contact layer 4 is made of GaN doped with Si as an n-type impurity, and has an impurity concentration of 1 × 10 18 / cm 3 or more.
1 × 10 21 / cm 3 or less, preferably 5 × 10 18 / cm 3
The above is adjusted to 5 × 10 20 / cm 3 or less. As described above, when the n-type impurity is heavily doped and this layer is used as an n-type contact layer, Vf and the threshold value can be reduced.
If the impurity concentration deviates from the above range, Vf tends to be less likely to decrease. Further, when the n-type contact layer 4 is formed on the undoped GaN 3 having good crystallinity, the crystallinity can be improved despite having a high concentration of n-type impurities.

【0016】またn型コンタクト層4の組成は、Ink
AlmGa1-k-mN(0≦k、0≦m、k+m≦1)で構
成でき、その組成は特に問うものではないが、好ましく
はGaN、m値0.2以下のAlmGa1-mNとすると結
晶性の少ない窒化物半導体層が得られやすい。
The composition of the n-type contact layer 4 is In k
It can be composed of Al m Ga 1-km N (0 ≦ k, 0 ≦ m, k + m ≦ 1), and its composition is not particularly limited, but is preferably GaN, Al m Ga 1- m having an m value of 0.2 or less. When it is set to mN, a nitride semiconductor layer with low crystallinity is easily obtained.

【0017】次に本発明においてn側の第1の窒化物半
導体層5は、アンドープのIngAlhGa1-g-hN(0
≦g、0≦h、g+h≦1)とし、10オングストロー
ムから0.5μmの範囲で、好ましくは10オングスト
ロームから0.2μmの範囲で、活性層に接して形成す
る。n側にはキャリア濃度が高濃度で存在するが、第1
の窒化物半導体層の膜厚が0.5μmを越えてしまうと
キャリアの注入効率が悪くなってしまい、充分な発光出
力が得られない。また、10オングストロームより小さ
いとその上に形成する層の結晶性が悪くなってしまい、
同様に充分な発光出力が得られない。
Next, in the present invention, the n-side first nitride semiconductor layer 5 is made of undoped In g Al h Ga 1-gh N (0
≦ g, 0 ≦ h, g + h ≦ 1), and is formed in contact with the active layer in the range of 10 Å to 0.5 μm, preferably in the range of 10 Å to 0.2 μm. Although the carrier concentration is high on the n side, the first
If the film thickness of the nitride semiconductor layer exceeds 0.5 μm, the efficiency of carrier injection becomes poor, and a sufficient light emission output cannot be obtained. On the other hand, if the thickness is smaller than 10 angstroms, the crystallinity of a layer formed thereon becomes poor,
Similarly, a sufficient light emission output cannot be obtained.

【0018】また本発明において活性層6は、In、G
aを含むアンドープの窒化物半導体、好ましくはInG
aNよりなる井戸層を有する単一または多重の量子井戸
構造とすることが望ましい。また本発明における低抵抗
構造の窒化物半導体発光素子は、特に単一量子井戸構造
の時に顕著な効果がある。
In the present invention, the active layer 6 is made of In, G
Undoped nitride semiconductor containing a, preferably InG
It is desirable to have a single or multiple quantum well structure having a well layer made of aN. In addition, the nitride semiconductor light emitting device having a low resistance structure according to the present invention has a remarkable effect particularly in a single quantum well structure.

【0019】次に本発明においてp側の第2の窒化物半
導体層7は、アンドープのIniAljGa1-i-jN(0
≦i、0≦j、i+j≦1)とし、10オングストロー
ムから、0.1μmの範囲で、好ましくは10オングス
トロームから100オングストロームの範囲で、活性層
に接して形成する。
Next, in the present invention, the p-side second nitride semiconductor layer 7 is made of undoped In i Al j Ga 1-ij N (0
.Ltoreq.i, 0.ltoreq.j, i + j.ltoreq.1), and is formed in contact with the active layer in a range of 10 angstrom to 0.1 .mu.m, preferably in a range of 10 angstrom to 100 angstrom.

【0020】次に本発明においてp型クラッド層8は、
p型不純物としてMgをドープしたAlbGa1-bN(0
≦b<1)の単層からなる層でも良いが、好ましくはA
bGa1-bN(0≦b<1)とMgドープのIncGa
1-cN(0≦c<1)との超格子構造とすることが望ま
しい。p型クラッド層を超格子構造とすると抵抗率が低
下するため、Vfおよび閾値が低下できると共に発光出
力の高い素子を得ることができる。またこの層を超格子
構造とする場合、超格子を構成する窒化物半導体層の膜
厚は100オングストローム以下、さらに好ましくは7
0オングストローム以下、さらに最も好ましくは50オ
ングストローム以下に調整する。
Next, in the present invention, the p-type cladding layer 8
Al b Ga 1 -bN (0) doped with Mg as a p-type impurity
≦ b <1) may be a single layer, but preferably A
l b Ga 1-b N ( 0 ≦ b <1) and a Mg-doped an In c Ga
It is desirable to have a superlattice structure with 1-cN (0 ≦ c <1). When the p-type cladding layer has a superlattice structure, the resistivity is reduced, so that an element having a high light emission output as well as a low Vf and a threshold can be obtained. When this layer has a superlattice structure, the thickness of the nitride semiconductor layer forming the superlattice is 100 Å or less, more preferably 7 Å or less.
It is adjusted to 0 angstrom or less, and most preferably 50 angstrom or less.

【0021】次に本発明においてp型コンタクト層9
は、p型不純物としてMgをドープしたGaNとし、不
純物濃度を1×1018〜1×1021/cm3、より好ま
しくは5×1018〜5×1020/cm3、より好ましく
は5×1019〜1×1020/cm3とすることで良好な
p型膜ができ好ましい。
Next, in the present invention, the p-type contact layer 9
Is GaN doped with Mg as a p-type impurity, and has an impurity concentration of 1 × 10 18 to 1 × 10 21 / cm 3 , more preferably 5 × 10 18 to 5 × 10 20 / cm 3 , more preferably 5 × 10 18 / cm 3 . A p-type film of 10 19 to 1 × 10 20 / cm 3 is preferable because a good p-type film can be obtained.

【0022】[0022]

【実施例】以下に、本発明の一実施の形態である実施例
を示すが、本発明はこれに限定されない。 [実施例1]図1を元に実施例1について説明する。サ
ファイア(C面)よりなる基板1をMOVPEの反応容
器内にセットし、水素を流しながら、基板の温度を10
50℃まで上昇させ、基板のクリーニングを行う。
EXAMPLES The following is an example of one embodiment of the present invention, but the present invention is not limited to this. Embodiment 1 Embodiment 1 will be described with reference to FIG. The substrate 1 made of sapphire (C surface) was set in a MOVPE reaction vessel, and the temperature of the substrate was set to 10 while flowing hydrogen.
The temperature is raised to 50 ° C., and the substrate is cleaned.

【0023】(バッファ層2)続いて、温度を510℃
まで下げ、キャリアガスに水素、原料ガスにアンモニア
とTMG(トリメチルガリウム)とを用い、基板1上に
GaNよりなるバッファ層2を150オングストローム
の膜厚で成長させる。 (アンドープGaN層3)バッファ層2成長後、TMG
のみ止めて、温度を1050℃まで昇温させる。続いて
1050℃で、同じく原料ガスに、TMG、アンモニア
を用い、アンドープGaN層3を1.5μmの膜厚で成
長させる。
(Buffer Layer 2) Subsequently, the temperature is set to 510 ° C.
The buffer layer 2 made of GaN is grown on the substrate 1 to a thickness of 150 Å using hydrogen as the carrier gas and ammonia and TMG (trimethylgallium) as the source gas. (Undoped GaN layer 3) After growth of buffer layer 2, TMG
Only stop and raise the temperature to 1050 ° C. Subsequently, at 1050 ° C., an undoped GaN layer 3 is grown to a thickness of 1.5 μm using TMG and ammonia as the source gas.

【0024】(n型コンタクト層4)続いて1050℃
で、同じく原料ガスにTMG、アンモニア、不純物ガス
としてシランガスを用い、Siを4.5×1018/cm
3ドープしたGaNよりなるn型コンタクト層4を2.
25μmの膜厚で成長させる。
(N-type contact layer 4) Subsequently, at 1050 ° C.
Similarly, TMG and ammonia were used as source gases, silane gas was used as impurity gas, and Si was 4.5 × 10 18 / cm.
1. an n-type contact layer 4 made of 3- doped GaN;
It is grown to a thickness of 25 μm.

【0025】(n側窒化物半導体層5)次にシランガス
を止め、1050℃で、TMG、TMA、アンモニアを
用い、アンドープAlGaN層5を0.15μmの膜厚
で成長させる。 (活性層6)次に、温度を800℃まで下げ、TMG、
TMI(トリメチルインジウム)、アンモニアを用い、
アンドープIn0.35Ga0.65Nよりなる活性層6を30
オングストロームの膜厚で成長させる。
(N-side nitride semiconductor layer 5) Next, the silane gas is stopped and an undoped AlGaN layer 5 is grown at 1050 ° C. using TMG, TMA and ammonia to a thickness of 0.15 μm. (Active Layer 6) Next, the temperature is lowered to 800 ° C., and TMG,
Using TMI (trimethylindium) and ammonia,
The active layer 6 made of undoped In 0.35 Ga 0.65 N
It is grown to a thickness of Å.

【0026】(p側窒化物半導体層7)次に窒素、TM
Iを止め、温度を1050℃まで昇温し、TMG、TM
A、アンモニアを用い、アンドープAlGaN層7を1
0オングストロームの膜厚で成長させる。
(P-side nitride semiconductor layer 7) Next, nitrogen, TM
I was stopped, the temperature was raised to 1050 ° C., and TMG, TM
A, the undoped AlGaN layer 7 is
It is grown to a thickness of 0 Å.

【0027】(p型クラッド層8)続いて1050℃
で、TMG、TMA、アンモニア、Cp2Mgを用い、
Mgを1×1020/cm3ドープしたAlGaNよりな
る層を40オングストローム成長させ、次に温度を80
0℃にして、TMAを止めTMIを流し、同じくMgを
1×1020/cm3ドープしたInGaNよりなる層を
25オングストロームの膜厚で成長させる。そしてこれ
らの操作を交互に繰り返し、5層ずつ積層させた、超格
子からなるp型クラッド層8を成長させる。
(P-type cladding layer 8) Subsequently, at 1050 ° C.
Then, using TMG, TMA, ammonia, Cp 2 Mg,
A layer of AlGaN doped with 1 × 10 20 / cm 3 of Mg was grown at 40 Å, and then the temperature was increased to 80 Å.
At 0 ° C., TMA is stopped, TMI is flown, and a layer made of InGaN doped with Mg at 1 × 10 20 / cm 3 is grown to a thickness of 25 Å. These operations are alternately repeated to grow a p-type clad layer 8 composed of a superlattice, which is laminated in five layers.

【0028】(p型コンタクト層9)続いて1050℃
で、TMG、アンモニア、Cp2Mgを用い、Mgを1
×1020/cm3ドープしたp型GaNよりなるp型コ
ンタクト層9を0.15μmの膜厚で成長させる。
(P-type contact layer 9) Subsequently, at 1050 ° C.
And using TMG, ammonia and Cp 2 Mg,
A p-type contact layer 9 made of p-type GaN doped with × 10 20 / cm 3 is grown to a thickness of 0.15 μm.

【0029】反応終了後、温度を室温まで下げ、更に窒
素雰囲気中、ウエハーを反応容器内において、700℃
でアニーリングを行い、p型層を更に低抵抗化する。ア
ニーリング後、ウエハーを反応容器から取り出し、最上
層のp型コンタクト層9の表面に所定のマスクを形成
し、RIE(反応性イオンエッチング)装置でp型コン
タクト層側からエッチングを行い、図1に示すようにn
型コンタクト層4の表面を露出させる。
After the reaction is completed, the temperature is lowered to room temperature, and the wafer is placed in a nitrogen atmosphere at 700 ° C.
To further lower the resistance of the p-type layer. After annealing, the wafer is taken out of the reaction vessel, a predetermined mask is formed on the surface of the uppermost p-type contact layer 9, and etching is performed from the p-type contact layer side by an RIE (reactive ion etching) apparatus. N as shown
The surface of the mold contact layer 4 is exposed.

【0030】エッチング後、最上層にあるp型コンタク
ト層のほぼ全面に膜厚200オングストロームのNi、
Auを含む透光性のp電極10を0.5μmの膜厚で形
成し、一方エッチングにより露出させたn型コンタクト
層4の表面にはWとAlを含むn電極11を形成してL
ED素子とした。このLED素子は順方向電圧20mA
において、順方向電圧3.4V、468nmの青色発光
を示し、発光出力は3mWであった。
After etching, Ni, 200 angstrom thick, is formed almost all over the uppermost p-type contact layer.
A translucent p-electrode 10 containing Au is formed with a thickness of 0.5 μm, and an n-electrode 11 containing W and Al is formed on the surface of the n-type contact layer 4 exposed by etching.
An ED element was used. This LED element has a forward voltage of 20 mA
Showed blue light emission with a forward voltage of 3.4 V and 468 nm, and the light emission output was 3 mW.

【0031】[実施例2]実施例1において活性層6を
以下のようにした他は同様にしてLED素子を作製し
た。 (活性層6)1050℃でアンドープのGaNよりなる
障壁層を200オングストロームの膜厚で成長させ、続
いて温度を800℃にしてTMG、TMI(トリメチル
インジウム)、アンモニアを用い、アンドープIn0.35
Ga0.65Nよりなる井戸層を30オングストロームの膜
厚で成長させる。そして障壁+井戸+障壁+井戸+・・
・+障壁の順で障壁層を5層、井戸層を4層交互に積層
して総膜厚1120オングストロームの多重量子井戸構
造よりなる活性層6を成長させる。その結果、このLE
D素子は順方向電圧20mAにおいて、順方向電圧3.
6V、470nmの青色発光を示し、発光出力は6.0
mWであった。
Example 2 An LED element was manufactured in the same manner as in Example 1 except that the active layer 6 was changed as follows. (Active layer 6) is grown at 1050 ° C. The barrier layer of undoped GaN with a thickness of 200 Å, followed by TMG to a temperature of 800 ° C., TMI (trimethyl indium), using ammonia, an undoped In 0.35
A well layer made of Ga 0.65 N is grown to a thickness of 30 Å. And barrier + well + barrier + well +
The active layer 6 having a multiple quantum well structure with a total thickness of 1120 Å is grown by alternately stacking five barrier layers and four well layers in the order of + barrier. As a result, this LE
The D element has a forward voltage of 3 mA at a forward voltage of 20 mA.
6 V, 470 nm blue light emission, light emission output 6.0
mW.

【0032】[実施例3]実施例1において活性層6を
以下のようにした他は同様にしてLED素子を作製し
た。 (活性層6)800℃で、TMG、TMI(トリメチル
インジウム)、アンモニアを用い、アンドープIn0.45
Ga0.55Nよりなる活性層6を30オングストロームの
膜厚で成長させる。その結果、このLED素子は順方向
電圧20mAにおいて、順方向電圧3.4V、500n
mの青緑色発光を示し、発光出力は2.5mWであっ
た。
Example 3 An LED element was manufactured in the same manner as in Example 1, except that the active layer 6 was changed as follows. (Active layer 6) Undoped In 0.45 at 800 ° C. using TMG, TMI (trimethylindium) and ammonia.
An active layer 6 of Ga 0.55 N is grown to a thickness of 30 Å. As a result, this LED element has a forward voltage of 3.4 V, 500 n at a forward voltage of 20 mA.
m blue-green light emission, and the light emission output was 2.5 mW.

【0033】[実施例4]実施例1において、p側の第
2の窒化物半導体層7を除いた他は同様にしてLED素
子を作製したところ、実施例1よりは少し劣るが同等の
特性を有するLED素子が得られた。
Example 4 An LED element was fabricated in the same manner as in Example 1 except that the p-side second nitride semiconductor layer 7 was omitted. Was obtained.

【0034】[実施例5]実施例1において、p型クラ
ッド層8を以下のようにした他は同様にしてLED素子
を作製した。 (p型クラッド層8)1050℃で、TMG、TMA、
アンモニア、Cp2Mgを用い、Mgを1×1020/c
3ドープしたAlGaNよりなるp型クラッド層8を
250オングストロームの膜厚で成長させた。その他は
実施例1と同様にしてLED素子を作製したところ、実
施例1よりは少し劣るが同等の特性を有するLED素子
が得られた。
Example 5 An LED device was manufactured in the same manner as in Example 1, except that the p-type cladding layer 8 was changed as follows. (P-type cladding layer 8) At 1050 ° C., TMG, TMA,
Using ammonia and Cp 2 Mg, Mg was reduced to 1 × 10 20 / c
The p-type clad layer 8 made of m 3 doped AlGaN was grown in a thickness of 250 angstroms. Other than the above, an LED element was manufactured in the same manner as in Example 1. As a result, an LED element slightly inferior to Example 1 but having the same characteristics was obtained.

【0035】[0035]

【発明の効果】以上説明したように、本発明によると、
n型コンタクト層を高濃度の不純物がドープされた窒化
物半導体とした低抵抗構造の窒化物半導体素子におい
て、n型コンタクト層と活性層との間にアンドープの第
1の窒化物半導体層を5000オングストローム以下の
膜厚で設け、さらにp型クラッド層と活性層との間にア
ンドープの第2の窒化物半導体層を1000オングスト
ローム以下の膜厚で設ける。このような構造にしたこと
によって、Vfおよび閾値が低下し、高い発光出力の素
子が得られる。さらにn型コンタクト層にn型不純物と
してSiを1×1021/cm3と高ドープにしても20
mAにおいて2.5mWを維持したLED素子ができ
る。
As described above, according to the present invention,
In a nitride semiconductor device having a low resistance structure in which an n-type contact layer is a nitride semiconductor doped with a high concentration of impurity, an undoped first nitride semiconductor layer is provided between the n-type contact layer and the active layer at 5000. An undoped second nitride semiconductor layer is provided with a thickness of 1000 Å or less between the p-type cladding layer and the active layer. With such a structure, V f and the threshold value are reduced, and an element having a high light emission output can be obtained. Furthermore even if the Si as an n-type impurity at a high doped with 1 × 10 21 / cm 3 to n-type contact layer 20
An LED element maintaining 2.5 mW in mA can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例にかかるLED素子の構造を
示す模式断面図。
FIG. 1 is a schematic sectional view showing the structure of an LED element according to one embodiment of the present invention.

【符号の簡単な説明】[Brief description of reference numerals]

1・・・基板 2・・・バッファ層 3・・・GaN層 4・・・n型コンタクト層 5・・・n側窒化物半導体層 6・・・活性層 7・・・p側窒化物半導体層 8・・・p型クラッド層 9・・・p型コンタクト層 10・・・p電極 11・・・n電極 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Buffer layer 3 ... GaN layer 4 ... n-type contact layer 5 ... n-side nitride semiconductor layer 6 ... Active layer 7 ... p-side nitride semiconductor Layer 8: p-type cladding layer 9: p-type contact layer 10: p-electrode 11: n-electrode

フロントページの続き Fターム(参考) 5F041 AA03 AA04 CA04 CA05 CA34 CA40 CA46 CA49 CA57 CA67 CA74 CA82 CA92 CB13 FF01 FF16 5F045 AA04 AB14 AB17 AB18 AC01 AC08 AC12 AC19 AD09 AD12 AD14 AF03 AF04 AF09 AF13 BB12 BB16 CA11 CA12 DA53 DA54 DA55 DA59 EB15 HA16 5F073 AA73 AA74 CA07 CB05 CB19 CB22 DA07 DA21 EA07 Continued on front page F-term (reference) 5F041 AA03 AA04 CA04 CA05 CA34 CA40 CA46 CA49 CA57 CA67 CA74 CA82 CA92 CB13 FF01 FF16 5F045 AA04 AB14 AB17 AB18 AC01 AC08 AC12 AC19 AD09 AD12 AD14 AF03 AF04 AF09 AF13 BB12 BB16 DA55 DA12 DA EB15 HA16 5F073 AA73 AA74 CA07 CB05 CB19 CB22 DA07 DA21 EA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】n型GaNを含んでなるn型コンタクト層
と、In、Gaを含み量子井戸を有する活性層と、p型
AlGaNを含んでなるp型クラッド層と、p型GaN
を含んでなるp型コンタクト層とを順に有する窒化物半
導体素子において、 前記n型コンタクト層と活性層との間にアンドープの第
1の窒化物半導体層が形成され、さらに前記p型クラッ
ド層と活性層との間にアンドープの第2の窒化物半導体
層が形成されていることを特徴とする窒化物半導体発光
素子。
1. An n-type contact layer containing n-type GaN, an active layer containing In and Ga and having a quantum well, a p-type cladding layer containing p-type AlGaN, and a p-type GaN
And a p-type contact layer comprising: an undoped first nitride semiconductor layer formed between the n-type contact layer and the active layer; A nitride semiconductor light emitting device, wherein an undoped second nitride semiconductor layer is formed between the active layer and the active layer.
【請求項2】前記n型コンタクト層はn型不純物とし
て、Siが1×1018/cm3以上、1×1021/cm3
以下でドープされていることを特徴とする請求項1に記
載の窒化物半導体発光素子。
2. The n-type contact layer contains, as an n-type impurity, Si of 1 × 10 18 / cm 3 or more and 1 × 10 21 / cm 3.
The nitride semiconductor light emitting device according to claim 1, wherein the nitride semiconductor light emitting device is doped with:
【請求項3】前記n側のアンドープからなる第1の窒化
物半導体層の膜厚は、0.5μm以下であることを特徴
とする請求項1および請求項2に記載の窒化物半導体発
光素子。
3. The nitride semiconductor light emitting device according to claim 1, wherein the thickness of the n-side undoped first nitride semiconductor layer is 0.5 μm or less. .
【請求項4】前記p側のアンドープからなる第2の窒化
物半導体層の膜厚は、0.1μm以下であることを特徴
とする請求項1から請求項3のいずれかに記載の窒化物
半導体発光素子。
4. The nitride according to claim 1, wherein the thickness of the p-side undoped second nitride semiconductor layer is 0.1 μm or less. Semiconductor light emitting device.
【請求項5】前記p型クラッド層はMgドープのAlb
Ga1-bN(0≦b<1)とMgドープのIncGa1-c
N(0≦c<1)との超格子からなる層であることを特
徴とする請求項1から請求項4のいずれかに記載の窒化
物半導体発光素子。
5. The p-type cladding layer is made of Mg-doped Al b
Ga 1-b N (0 ≦ b <1) and Mg-doped In c Ga 1-c
5. The nitride semiconductor light emitting device according to claim 1, wherein the nitride semiconductor light emitting device is a layer composed of a superlattice of N (0 ≦ c <1).
JP1142199A 1999-01-20 1999-01-20 Gallium nitride compound semiconductor light emitting device Expired - Fee Related JP3868136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142199A JP3868136B2 (en) 1999-01-20 1999-01-20 Gallium nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142199A JP3868136B2 (en) 1999-01-20 1999-01-20 Gallium nitride compound semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004117211A Division JP2004207763A (en) 2004-04-12 2004-04-12 Gallium nitride based compound semiconductor element

Publications (2)

Publication Number Publication Date
JP2000216432A true JP2000216432A (en) 2000-08-04
JP3868136B2 JP3868136B2 (en) 2007-01-17

Family

ID=11777604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142199A Expired - Fee Related JP3868136B2 (en) 1999-01-20 1999-01-20 Gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3868136B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053290A (en) * 2001-12-22 2003-06-28 엘지이노텍 주식회사 Nitrogen-Compound Semiconductor Device and Method for manufacturing a Nitrogen-Compound Semiconductor Device
WO2003103062A1 (en) * 2002-06-04 2003-12-11 Nitride Semiconductors Co.,Ltd. Gallium nitride compound semiconductor device and manufacturing method
JP2004179428A (en) * 2002-11-27 2004-06-24 Rohm Co Ltd Semiconductor light emitting element
KR100489039B1 (en) * 2002-08-19 2005-05-11 엘지이노텍 주식회사 Fabrication method for GaN semiconductor LED
KR101032847B1 (en) * 2001-05-30 2011-05-06 크리 인코포레이티드 Group Ⅲ nitride based light emitting diode structures with a quantum well and superlattice
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
JP2014078756A (en) * 2014-01-09 2014-05-01 Mitsubishi Chemicals Corp Nitride semiconductor
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
JP2017531327A (en) * 2014-10-06 2017-10-19 ウィスコンシン アルムニ リサーチ ファンデイション Hybrid heterostructure light emitting device
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US10749062B2 (en) 2015-09-14 2020-08-18 Wisconsin Alumni Research Foundation Hybrid tandem solar cells with improved tunnel junction structures
DE10213358B4 (en) * 2001-03-29 2021-05-27 Lumileds Holding B.V. III-nitride light-emitting device and process for its manufacture
DE10213395B4 (en) 2001-03-29 2021-08-26 Lumileds Holding B.V. Indium gallium nitride smoothing structures for III-nitride arrangements

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213395B4 (en) 2001-03-29 2021-08-26 Lumileds Holding B.V. Indium gallium nitride smoothing structures for III-nitride arrangements
DE10213358B4 (en) * 2001-03-29 2021-05-27 Lumileds Holding B.V. III-nitride light-emitting device and process for its manufacture
US9054253B2 (en) 2001-05-30 2015-06-09 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8546787B2 (en) 2001-05-30 2013-10-01 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
KR101032847B1 (en) * 2001-05-30 2011-05-06 크리 인코포레이티드 Group Ⅲ nitride based light emitting diode structures with a quantum well and superlattice
KR101066760B1 (en) * 2001-05-30 2011-09-21 크리 인코포레이티드 Group ⅲ nitride based light emitting diode structures with a quantum well and superlattice
US8044384B2 (en) 2001-05-30 2011-10-25 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8227268B2 (en) 2001-05-30 2012-07-24 Cree, Inc. Methods of fabricating group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US9112083B2 (en) 2001-05-30 2015-08-18 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
KR20030053290A (en) * 2001-12-22 2003-06-28 엘지이노텍 주식회사 Nitrogen-Compound Semiconductor Device and Method for manufacturing a Nitrogen-Compound Semiconductor Device
CN100359704C (en) * 2002-06-04 2008-01-02 氮化物半导体株式会社 Gallium nitride compound semiconductor device and manufacturing method
US7372066B2 (en) 2002-06-04 2008-05-13 Nitride Semiconductors Co., Ltd. Gallium nitride compound semiconductor device and manufacturing method
WO2003103062A1 (en) * 2002-06-04 2003-12-11 Nitride Semiconductors Co.,Ltd. Gallium nitride compound semiconductor device and manufacturing method
KR100489039B1 (en) * 2002-08-19 2005-05-11 엘지이노텍 주식회사 Fabrication method for GaN semiconductor LED
JP2004179428A (en) * 2002-11-27 2004-06-24 Rohm Co Ltd Semiconductor light emitting element
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9431243B2 (en) 2005-05-17 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8796734B2 (en) 2005-05-17 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8519436B2 (en) 2005-05-17 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9219112B2 (en) 2005-05-17 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US11251272B2 (en) 2005-05-17 2022-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US10522629B2 (en) 2005-05-17 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8629477B2 (en) 2005-05-17 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9318325B2 (en) 2006-09-07 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8629047B2 (en) 2006-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9105522B2 (en) 2006-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9559712B2 (en) 2006-09-27 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US10680126B2 (en) 2007-04-09 2020-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9449868B2 (en) 2007-04-09 2016-09-20 Taiwan Semiconductor Manufacutring Company, Ltd. Methods of forming semiconductor diodes by aspect ratio trapping with coalesced films
US9543472B2 (en) 2007-04-09 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9231073B2 (en) 2007-04-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10961639B2 (en) 2008-06-03 2021-03-30 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9356103B2 (en) 2008-07-01 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8629045B2 (en) 2008-07-01 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9287128B2 (en) 2008-07-15 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US9455299B2 (en) 2008-09-24 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for semiconductor sensor structures with reduced dislocation defect densities
US8809106B2 (en) 2008-09-24 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for semiconductor sensor structures with reduced dislocation defect densities
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9576951B2 (en) 2009-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
JP2014078756A (en) * 2014-01-09 2014-05-01 Mitsubishi Chemicals Corp Nitride semiconductor
JP2017531327A (en) * 2014-10-06 2017-10-19 ウィスコンシン アルムニ リサーチ ファンデイション Hybrid heterostructure light emitting device
US10749062B2 (en) 2015-09-14 2020-08-18 Wisconsin Alumni Research Foundation Hybrid tandem solar cells with improved tunnel junction structures

Also Published As

Publication number Publication date
JP3868136B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
JP3719047B2 (en) Nitride semiconductor device
JP3622562B2 (en) Nitride semiconductor light emitting diode
JP3250438B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP6079628B2 (en) Nitride semiconductor light emitting device
JP3135041B2 (en) Nitride semiconductor light emitting device
JP3427265B2 (en) Nitride semiconductor device
JP2000232237A (en) Nitride semiconductor element
JPH11340509A (en) Nitride semiconductor element
JP2001102629A (en) Nitride semiconductor element
JP2002033512A (en) Nitride semiconductor light emitting diode
JP2000133883A (en) Nitride semiconductor element
JPH11330552A (en) Nitride semiconductor light-emitting element and light-emitting device
JP4356555B2 (en) Nitride semiconductor device
JP4815732B2 (en) Nitride semiconductor device
JP3275810B2 (en) Nitride semiconductor light emitting device
JPH11191639A (en) Nitride semiconductor device
JP4622466B2 (en) Nitride semiconductor device
JPH077182A (en) Gallium nitride based compound semiconductor light emitting element
JP3271661B2 (en) Nitride semiconductor device
JP4085782B2 (en) Nitride semiconductor device
JP3897448B2 (en) Nitride semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040421

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040426

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060908

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees