JP2000213764A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2000213764A
JP2000213764A JP11011453A JP1145399A JP2000213764A JP 2000213764 A JP2000213764 A JP 2000213764A JP 11011453 A JP11011453 A JP 11011453A JP 1145399 A JP1145399 A JP 1145399A JP 2000213764 A JP2000213764 A JP 2000213764A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
heat transfer
refrigerant
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11011453A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tanabe
義浩 田辺
Katsuyuki Aoki
克之 青木
Yasutaka Murakami
泰隆 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11011453A priority Critical patent/JP2000213764A/en
Publication of JP2000213764A publication Critical patent/JP2000213764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve performance and the withstanding of splashed dew in the cooling operation in an air conditioner which carries a resistor for generating a pressure loss of an air duct of an air cleaning filter or the like. SOLUTION: This apparatus is provided with heat exchangers 6 and 7 which are installed in an air duct 11 to a diffuser 12 from an intake port 3 to perform heat exchange between a refrigerant flowing through a heat exchanger tube 8 and air in a room, and an air cleaning filter 5 serving as pressure loss resistance on the upstream side of the heat exchanger 6 in the air duct 11. An inlet of the heat exchanger tube 8 is arranged in the direction of the refrigerant flows during the cooling operation on the wind side of the heat exchanger 6 where the air passing through the air cleaning filter 5 flows in.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は空気調和機の室内
機において、空気清浄フィルタ等の通風抵抗となる抵抗
体を備えた場合でも熱交換効率を良好に保つための熱交
換器の伝熱管の配管構成等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger tube for a heat exchanger for maintaining good heat exchange efficiency even in a case where an air conditioner indoor unit is provided with a resistance element such as an air purification filter, which is a ventilation resistance. It relates to a piping configuration and the like.

【0002】[0002]

【従来の技術】図9は例えば特開平9−264555号
公報に示された従来の空気調和装置を示す断面図であ
る。図9において、3a、3bは吸い込みグリル、4は
送風機、10はエアフィルター、11は風路、12は吹
き出し口、14は吸い込み空気、13は吹き出し空気で
ある。従来の空気調和装置による熱交換器は、前面側熱
交換器6(下側6a及び上側6b)並びに後面側熱交換
器7の一部(6a及び7)を1列にて構成している。
2. Description of the Related Art FIG. 9 is a sectional view showing a conventional air conditioner disclosed in, for example, Japanese Patent Application Laid-Open No. 9-264555. In FIG. 9, 3a and 3b are suction grills, 4 is a blower, 10 is an air filter, 11 is an air path, 12 is an outlet, 14 is suction air, and 13 is blow air. In the heat exchanger using the conventional air conditioner, the front-side heat exchanger 6 (the lower side 6a and the upper side 6b) and a part (6a and 7) of the rear-side heat exchanger 7 are configured in one row.

【0003】従来の熱交換器では、前面側熱交換器6の
下側熱交換器6aを1列にて構成しているため、熱交換
器の圧力損失を低減出来、送風量を増加することが提案
されている。さらに熱交換器の一部を1列にて構成した
場合、1列部は2列部より圧力損失は減少するが、圧力
損失は熱交換器全面にて均一になるようにバランスしよ
うとするため、その結果、1列部の風速は速くなり、2
列部の風速は遅くなる。
In the conventional heat exchanger, the lower heat exchanger 6a of the front heat exchanger 6 is formed in a single row, so that the pressure loss of the heat exchanger can be reduced and the amount of air blown can be increased. Has been proposed. Furthermore, when a part of the heat exchanger is formed in one row, the pressure loss in the first row is smaller than that in the second row, but the pressure loss is to be balanced so as to be uniform over the entire heat exchanger. As a result, the wind speed in one row becomes faster,
The wind speed in the row section decreases.

【0004】このような風速分布の不均一が生じると性
能は低下し、また、騒音は高くなるため、風速分布を均
一にすることが性能向上・騒音低減には不可欠となる。
この従来技術では、圧力損失の低い1列部分のフィンピ
ッチA1を圧力損失の高い2列部分のフィンピッチA2
よりも小さくすることにより、風速分布の均一化を図
り、高性能・低騒音化を実現したものが提案されてい
る。
[0004] When such a non-uniform wind speed distribution occurs, the performance deteriorates and the noise increases. Therefore, it is indispensable to make the wind speed distribution uniform to improve performance and reduce noise.
In this prior art, the fin pitch A1 of the one-row portion having a low pressure loss is replaced by the fin pitch A2 of the two-row portion having a high pressure loss.
There has been proposed a device which achieves high performance and low noise by making the wind speed distribution uniform by making the wind speed smaller.

【0005】[0005]

【発明が解決しようとする課題】以上の様に、風速分布
の均一化を目的とした、室内熱交換器のフィンの形状、
及び熱交換器のフィンピッチの形態は従来から提案され
ている。しかし途中風路に空気清浄フィルタ等の比較的
大きな圧力損失を発生させる装置(抵抗体)が搭載され
た空気調和装置の熱交換器伝熱管の配置については考慮
されていない。例えば空気清浄フィルタ等の風路に圧力
損失を発生させる抵抗体を搭載した場合の埃等の目詰ま
り時や、空気清浄フィルタを装着しないで運転した場合
の様に、風路抵抗が変化する場合の熱交換器の伝熱管配
置について考慮されていない。
As described above, the shapes of the fins of the indoor heat exchanger for the purpose of uniformizing the wind speed distribution are described.
And the form of the fin pitch of the heat exchanger has been proposed conventionally. However, no consideration is given to the arrangement of the heat exchanger tubes of an air conditioner equipped with a device (resistor) that generates a relatively large pressure loss such as an air purification filter in the air passage. For example, when airflow resistance changes due to clogging of dust etc. when a resistor that generates pressure loss is installed in the airflow path such as an air purification filter, or when operation is performed without an air purification filter. The heat transfer tube arrangement of the heat exchanger is not considered.

【0006】そのため、空気調和装置等の風路に空気清
浄フィルタ等の圧力損失を発生させる抵抗体を設けた場
合に、通風抵抗や圧力損失の変化により分配管に冷媒が
不均一に流れ、分配性能が悪化し性能が著しく低下して
いたため、空気清浄フィルタ等を大形化することが出来
ず、空気清浄機能等の効果が十分発揮することが出来な
いという問題があった。
For this reason, when a resistor for generating a pressure loss, such as an air purifying filter, is provided in an air path of an air conditioner or the like, the refrigerant flows unevenly through the distribution pipe due to a change in ventilation resistance or pressure loss, and is distributed. Since the performance was deteriorated and the performance was remarkably reduced, there was a problem that the size of the air purifying filter or the like could not be increased, and the effect of the air purifying function or the like could not be sufficiently exhibited.

【0007】本発明は、空気清浄フィルタ等の風路の圧
力損失を発生させる抵抗体を搭載した空気調和装置の性
能および冷房運転時の露飛び耐力を向上することを目的
としている。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the performance of an air conditioner equipped with a resistor for generating pressure loss in an air passage such as an air purifying filter and the resistance to dew drop during cooling operation.

【0008】[0008]

【課題を解決するための手段】この発明に係る空気調和
装置は、吸込口から吹出口に至る風路に設けられ伝熱管
を流れる冷媒と室内空気との間で熱交換を行う室内側熱
交換器と、前記風路内に空気流を発生させるファンと、
前記風路内の前記熱交換器上流にて圧力損失抵抗となる
抵抗体とを備え、前記抵抗体を通過した空気が流入する
前記熱交換器風上側に冷房運転時の冷媒の流れ方向にお
ける伝熱管入口を配置したものである。
SUMMARY OF THE INVENTION An air conditioner according to the present invention is an indoor heat exchanger for exchanging heat between refrigerant flowing in a heat transfer tube and indoor air provided in an air passage from an inlet to an outlet. Vessel, and a fan for generating an air flow in the air passage,
A resistor that acts as a pressure loss resistor upstream of the heat exchanger in the air path, and transfers the refrigerant in the flow direction of the refrigerant during the cooling operation to the windward side of the heat exchanger into which the air passing through the resistor flows. A heat tube inlet is arranged.

【0009】また、前記室内熱交換器の伝熱管は冷媒が
並列に複数の配管に分流する配管配置とし、前記分流し
た各伝熱管にほぼ均一に空気が通過するよう配管したも
のである。
Further, the heat transfer tubes of the indoor heat exchanger are arranged in such a manner that the refrigerant is diverted in parallel to a plurality of pipes, and the heat transfer tubes are piped so that the air passes through the divided heat transfer tubes almost uniformly.

【0010】また、前記室内熱交換器の伝熱管は途中複
数方向に冷媒を分流する配管配置とし、前記伝熱管入口
から冷媒を分流するまでの伝熱管を前記抵抗体を通過し
た空気が流入する前記熱交換器風上側に配管したもので
ある。
[0010] The heat transfer tubes of the indoor heat exchanger are arranged so as to divide the refrigerant in a plurality of directions on the way, and the air that has passed through the resistor flows through the heat transfer tubes from the heat transfer tube inlet until the refrigerant is diverted. It is piped on the windward side of the heat exchanger.

【0011】また、前記室内熱交換器の伝熱管は途中複
数方向に冷媒を分流する配管配置配置とし、前記抵抗体
を通過しない空気が流入する前記熱交換器部分で、冷媒
を分流するものである。
The heat transfer tubes of the indoor heat exchanger are arranged so as to divide the refrigerant in a plurality of directions on the way, and divide the refrigerant at a portion of the heat exchanger into which air not passing through the resistor flows. is there.

【0012】また、前記室内熱交換器の伝熱管は途中複
数方向に冷媒を分流する配管配置配置とし、前記途中分
流した伝熱管は、前記抵抗体を通過した風がそれぞれほ
ぼ均一に通過するよう配管したものである。
Further, the heat transfer tubes of the indoor heat exchanger are arranged in a pipe arrangement for dividing the refrigerant in a plurality of directions on the way, and the heat transfer tubes divided on the way allow the wind passing through the resistor to pass almost uniformly. It is piped.

【0013】また、前記抵抗体を通過した空気が流入す
る熱交換器部分と前記抵抗体を通過しない空気が流入す
る熱交換器部分とで伝熱フィンの幅を異ならせたもので
ある。
Further, the width of the heat transfer fins is different between the heat exchanger portion into which the air passing through the resistor flows and the heat exchanger portion into which the air not passing through the resistor flows.

【0014】また、前記抵抗体を通過した空気が流入す
る熱交換器部分と前記抵抗体を通過しない空気が流入す
る熱交換器部分とで伝熱管の列数を異ならせたものであ
る。
Further, the number of rows of heat transfer tubes differs between the heat exchanger portion into which the air passing through the resistor flows and the heat exchanger portion into which the air not passing through the resistor flows.

【0015】また、前記抵抗体を通過した空気が流入す
る熱交換器部分と前記抵抗体を通過しない空気が流入す
る熱交換器部分とでフィンの切り越し形状を異ならせた
ものである。
[0015] The crossover shape of the fins may be different between the heat exchanger portion into which the air passing through the resistor flows and the heat exchanger portion into which the air not passing through the resistor flows.

【0016】[0016]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態を図について説明する。図1はこの発明の実
施の形態1による熱交換器の空気調和装置へに組み込み
時の状態を示す断面図である。図において、室内側熱交
換器を収納する本体1は、本体ベース2と主吸込口グリ
ル3a、補助吸い込みグリル3b及びファン4により構
成され、風路に圧力損失を発生させる抵抗体として空気
清浄フィルター5を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a state when the heat exchanger according to Embodiment 1 of the present invention is incorporated in an air conditioner. In the figure, a main body 1 for housing an indoor heat exchanger includes a main body base 2, a main inlet grille 3a, an auxiliary suction grille 3b, and a fan 4, and an air purifying filter as a resistor for generating pressure loss in an air passage. 5 is provided.

【0017】6は前面側熱交換器、7は背面側熱交換
器、8は前記熱交換器6、7の伝熱管、9は前記熱交換
器のフィンであり、前記各熱交換器6、7は複数枚のフ
ィン9に複数の伝熱管8を垂直に貫通し嵌合させて構成
されており、伝熱管8の内部には冷媒が流れており、冷
媒の熱をフィン9に伝え、フィン間に流れる空気を冷却
・加熱するものである。前記熱交換器6を空気調和機に
組み込む場合、空気調和機の大きさを変えることなく高
性能化を可能とするために、多段に折り曲げて伝熱面積
の増加による高性能化を図ったものである。
6 is a front side heat exchanger, 7 is a rear side heat exchanger, 8 is a heat transfer tube of the heat exchangers 6 and 7, 9 is a fin of the heat exchanger, and each of the heat exchangers 6 and Reference numeral 7 denotes a structure in which a plurality of heat transfer tubes 8 are vertically penetrated and fitted to a plurality of fins 9, and a refrigerant flows inside the heat transfer tubes 8, and the heat of the refrigerant is transmitted to the fins 9. It cools and heats the air flowing between them. When the heat exchanger 6 is incorporated in an air conditioner, the heat exchanger 6 is bent in multiple stages to achieve high performance without changing the size of the air conditioner, thereby increasing the heat transfer area. It is.

【0018】10は熱交換器6、7に埃の付着を防止す
るエアフィルター、11は風路、12は吹き出し口、1
3は吹き出し空気である。室内空気はファン4の運転に
より、吸い込みグリル3a、3bにより吸い込まれる。
14は吸い込み空気であり、主吸い込み口のほぼ一面に
設けた空気清浄フィルター5は、エアフィルター10で
取り除かれない微細な埃や塵やだに等を吸着させ、空気
を清浄する働きがある。
10 is an air filter for preventing dust from adhering to the heat exchangers 6 and 7, 11 is an air passage, 12 is an outlet, 1
3 is blowing air. The indoor air is sucked by the suction grills 3a and 3b by the operation of the fan 4.
Reference numeral 14 denotes suction air, and the air cleaning filter 5 provided on substantially one surface of the main suction port has a function of adsorbing fine dust and dust and the like that cannot be removed by the air filter 10 and purifying the air.

【0019】さらに、空気清浄フィルター5は、着脱可
能な機構を備えており、使用者の好みにより、空気清浄
フィルターを装着させずに運転することも可能である事
と、フィルター5を装着して運転した場合も、運転を続
けるに従い埃や塵が増加し、風路抵抗が変化する特徴を
有する。その結果、熱交換器6の冷媒分配に悪化が生じ
性能が著しく悪化する可能性がある。そのため冷媒の分
配の悪化を最小限に留めるため、以下で述べる、熱交換
器の伝熱管配置を構成している。
Further, the air purifying filter 5 is provided with a detachable mechanism, and can be operated without the air purifying filter depending on the user's preference. Even when the vehicle is driven, dust and dirt increase as the operation is continued, and the air path resistance changes. As a result, the refrigerant distribution of the heat exchanger 6 may be deteriorated, and the performance may be significantly deteriorated. Therefore, in order to minimize the deterioration of the distribution of the refrigerant, the heat transfer tube arrangement of the heat exchanger described below is configured.

【0020】本実施の形態による熱交換器6、7の側面
図を図2に示す。熱交管器6、7の配管に示す矢印は、
冷房運転時すなわち蒸発器として使用した時に流れる冷
媒の流れ方向を示しており、波線で示した配管は断面図
の背後の配管の接続を示している。空気清浄フィルター
5を通過した風14cが流入する熱交換器部(波線部分
A)の風上側に、冷房運転時の冷媒の流れ方向における
伝熱管入口8a,8bを設置している。これは、冷媒の
流速を低下し圧力損失を低減するためである。さらに空
気清浄フィルター5を通過した空気が流入する熱交換器
の伝熱管8に、並列に流れる各伝熱管にほぼ均一に通過
するように室内熱交換器の配管配置を備える構成がなさ
れている。
FIG. 2 shows a side view of the heat exchangers 6 and 7 according to the present embodiment. The arrows shown on the pipes of the heat exchangers 6 and 7 are as follows:
It shows the flow direction of the refrigerant flowing during the cooling operation, that is, when used as an evaporator, and the pipes indicated by dashed lines show the connections of the pipes behind the sectional view. Heat transfer tube inlets 8a and 8b in the flow direction of the refrigerant during the cooling operation are installed on the windward side of the heat exchanger portion (broken line portion A) into which the wind 14c that has passed through the air purification filter 5 flows. This is to reduce the flow velocity of the refrigerant and reduce the pressure loss. Further, a configuration is provided in which the heat transfer pipes 8 of the heat exchanger into which the air that has passed through the air purification filter 5 flows are provided with the pipe arrangement of the indoor heat exchangers so as to pass almost uniformly through the heat transfer pipes flowing in parallel.

【0021】空気清浄フィルター5は埃を吸着させなが
ら運転するため、本空気調和装置を使用するにしたが
い、フィルターの通風抵抗が増加し風量が低下する。そ
のため空清フィルター5を通過した背後の熱交換器の伝
熱性能に悪化が生じる。しかし伝熱管8の各列ともほぼ
均等に風量低下が生じるため、単列のみ伝熱性能が悪化
する場合に生じる冷媒の分配悪化を生じる事なく、著し
い性能悪化を防止することが可能である。そのため空清
フィルター5の目詰まりによる性能悪化を最小限にとど
めることができるとともに、空気清浄フィルター5を従
来より大形に設置することも可能となった。
Since the air purifying filter 5 is operated while adsorbing dust, the ventilation resistance of the filter increases and the air flow decreases as the air conditioner is used. Therefore, the heat transfer performance of the heat exchanger behind the air-cleaning filter 5 deteriorates. However, since the air volume decreases almost equally in each row of the heat transfer tubes 8, it is possible to prevent a significant deterioration in performance without causing a deterioration in the distribution of the refrigerant that occurs when the heat transfer performance deteriorates only in a single row. Therefore, the performance deterioration due to clogging of the air cleaning filter 5 can be minimized, and the air cleaning filter 5 can be installed larger than before.

【0022】たとえば、図3の様に空清フィルター5を
通過した空気14cの熱交換器部(波線A)に並列に流
れる伝熱管8の一方に多く通過する配置の場合、並列に
冷媒が流れる伝熱管8の一方のみの伝熱性能が悪化す
る。そのため熱交換器を蒸発器として使用した場合、冷
媒が蒸発しガス化した時に生じる冷媒の流路抵抗に各伝
熱管8に偏りが生じる。そのため空気清浄フィルター5
による風量低下を生じない伝熱管8の列は冷媒の流路抵
抗を大きく受けるため冷媒は流れにくくなり、冷媒の入
口の分配性能が悪化する。その結果、空調性能が著しく
悪化する。
For example, as shown in FIG. 3, in a case where the air 14c that has passed through the air purifying filter 5 is arranged so as to pass through one of the heat transfer tubes 8 that flows in parallel to the heat exchanger section (broken line A), the refrigerant flows in parallel. The heat transfer performance of only one of the heat tubes 8 deteriorates. Therefore, when the heat exchanger is used as an evaporator, the heat transfer tubes 8 are biased in the flow path resistance of the refrigerant generated when the refrigerant evaporates and gasifies. Therefore, air purifying filter 5
The row of the heat transfer tubes 8 that does not cause a decrease in the air flow due to the flow of the refrigerant greatly receives the flow path resistance of the refrigerant, so that the refrigerant does not easily flow, and the distribution performance of the refrigerant inlet deteriorates. As a result, the air conditioning performance is significantly deteriorated.

【0023】本発明においては、空気清浄機能装置等の
風路に圧力損失を発生させる抵抗体を通過した風が流入
する熱交換器部の冷媒が流れる伝熱管に冷房運転時の冷
媒流れの入口伝熱管を設置しているため、空気清浄装置
が埃等により通風抵抗が変化しても、冷媒分配が著しく
悪化することなく、高い性能を確保することが可能であ
る。
In the present invention, the inlet of the refrigerant flow at the time of cooling operation is introduced into the heat transfer tube through which the refrigerant in the heat exchanger section through which the wind passing through the resistor that generates pressure loss flows into the air path of the air purifying function device or the like flows. Since the heat transfer tubes are provided, even if the air purification device changes ventilation resistance due to dust or the like, it is possible to ensure high performance without significantly deteriorating refrigerant distribution.

【0024】また、空気清浄機能装置等の風路に圧力損
失を発生させる抵抗体を通過した風が流入する熱交換気
部の冷媒が流れる伝熱管に、分流した各伝熱管にほぼ均
一に通過するように室内熱交換器の配管配置を備えてい
るため、空気清浄装置が埃等により通風抵抗が変化して
も、分流した各配管にほぼ均一に伝熱性能が変化するた
め、冷媒分配が著しく悪化することなく、高い性能を確
保することが可能である。
Further, the air passing through the resistor that generates a pressure loss in the air path of the air purifying function device or the like flows almost uniformly through the heat transfer tubes through which the refrigerant in the heat exchange air portion, into which the refrigerant flows, flows through the divided heat transfer tubes. As a result, even if the air purification device changes the ventilation resistance due to dust or the like, the heat transfer performance changes almost uniformly to each of the divided pipes. High performance can be ensured without remarkable deterioration.

【0025】さらにこれまでの空気調和装置は、長期間
使用すると熱交換器の材料であるアルミニウムや銅材に
埃や塵が付着し、廃却時に原材料の再利用がしにくい問
題がある。しかし、本発明のものでは空調性能の向上で
空気清浄フィルターを大形化することが可能になること
により、長期間使用されても熱交換器に埃や塵等が付着
しにくくなり、廃却時の原材料の再利用化しやすくな
り、環境を保護する効果もある。
Further, the conventional air conditioner has a problem that when used for a long period of time, dust and dirt adhere to aluminum or copper as the material of the heat exchanger, and it is difficult to reuse the raw materials at the time of disposal. However, according to the present invention, it is possible to increase the size of the air purifying filter by improving the air conditioning performance. It is easy to reuse raw materials at the time, and there is also an effect of protecting the environment.

【0026】実施の形態2.図4は本実施の形態の熱交
換器を蒸発器と使用したときの冷媒の流れを示した側面
図であり以下本図の説明を行う。伝熱管8に示した矢印
は冷房運転時に流れる冷媒の流れ方向を示している。本
空気調和装置の熱交換器6,7は冷媒の圧力損失を低減
するため、途中冷媒を分配管15により分流し並列に冷
媒が流れる伝熱管8の配置を構成している。
Embodiment 2 FIG. FIG. 4 is a side view showing the flow of the refrigerant when the heat exchanger of the present embodiment is used with an evaporator, and the description of the present drawing will be given below. The arrows shown on the heat transfer tubes 8 indicate the flow direction of the refrigerant flowing during the cooling operation. The heat exchangers 6 and 7 of the present air conditioner have an arrangement of heat transfer tubes 8 in which the refrigerant is divided by the distribution pipe 15 and the refrigerant flows in parallel in order to reduce the pressure loss of the refrigerant.

【0027】さらに空気清浄フィルター5を通過した空
気が流入する熱交換器部(波線A)の伝熱効果の高い風
上側の熱交換器部に冷房運転時における伝熱管8の入口
部(8a)を設け、伝熱管の入口部から冷媒を分配する
までの伝熱管を空気清浄フィルター5での風路抵抗の影
響を受ける風上側の熱交換器部に設置し、さらに空気清
浄フィルター5による空気抵抗の影響を受けにくい部分
で伝熱管8を分流する伝熱管配置している。従って、空
気清浄フィルター5による伝熱性能への影響が受けやす
い、熱交換器の風上側熱交換器部に、冷房運転時の冷媒
分配部での分配性能に無関係な、伝熱管の入口部及び入
口から冷媒分配管15までの伝熱管部を設けている。
Further, the inlet (8a) of the heat transfer tube 8 at the time of cooling operation is connected to the heat exchanger on the windward side having a high heat transfer effect of the heat exchanger (wave line A) into which the air passing through the air cleaning filter 5 flows. The heat transfer tube from the inlet of the heat transfer tube to the distribution of the refrigerant is installed in the heat exchanger section on the windward side affected by the air path resistance in the air purification filter 5. A heat transfer tube that divides the heat transfer tube 8 at a portion that is not easily affected by the heat transfer is disposed. Therefore, the heat transfer performance of the air purifying filter 5 is easily affected by the air-cleaning filter. A heat transfer pipe section from the inlet to the refrigerant distribution pipe 15 is provided.

【0028】さらに空気清浄フィルター5による伝熱性
能悪化の影響の受けにくい部分で冷媒を分配しているた
め、各列の伝熱性能のアンバランスから生じる、冷媒分
配部での分配悪化をさらに抑制する事が可能である。従
って冷媒の分配不均一から生じる著しい性能悪化を防止
することが可能である。そのため空清フィルター5の目
詰まり等による性能悪化を最小限にとどめることができ
るとともに、空気清浄フィルター5を従来より大形に設
置することも可能となった。
Further, since the refrigerant is distributed in a portion that is not easily affected by the deterioration of the heat transfer performance by the air purifying filter 5, the deterioration of the distribution in the refrigerant distribution section caused by the imbalance of the heat transfer performance of each row is further suppressed. It is possible to do. Therefore, it is possible to prevent a significant deterioration in performance caused by uneven distribution of the refrigerant. Therefore, the performance deterioration due to clogging of the air cleaning filter 5 can be minimized, and the air cleaning filter 5 can be installed in a larger size than before.

【0029】実施の形態3.図5は本実施の形態の熱交
換器を蒸発器と使用したときの冷媒の流れを示した側面
図であり以下本図の説明を行う。本空気調和装置の熱交
換器6,7は実施の形態2に示す伝熱管8の配置と同様
に構成している。伝熱管8に示した矢印は冷房運転時の
冷媒の流れ方向を示している。空気清浄フィルター5を
通過した空気が流入する熱交換器部(波線A)の伝熱効
果の高い風上側の熱交換器部に冷房運転時における伝熱
管8の入口部(8a)を設けている。
Embodiment 3 FIG. 5 is a side view showing the flow of the refrigerant when the heat exchanger of the present embodiment is used with an evaporator, and the description of the present drawing will be given below. The heat exchangers 6 and 7 of the present air conditioner have the same configuration as the arrangement of the heat transfer tubes 8 shown in the second embodiment. The arrows shown on the heat transfer tubes 8 indicate the flow direction of the refrigerant during the cooling operation. An inlet portion (8a) of the heat transfer tube 8 during the cooling operation is provided in the heat exchanger portion on the windward side of the heat exchanger portion (broken line A) into which the air that has passed through the air purification filter 5 flows has a high heat transfer effect. .

【0030】さらに途中冷媒の圧力損失を低減するため
に冷媒を分配管15により分流しているが、分流した後
の各列の伝熱管8は空気清浄フィルター5による空気抵
抗の影響をそれぞれほぼ均一に受ける様な伝熱管8を配
置している。従って空気清浄フィルター5が目詰まり等
で空気清浄フィルター5を通過する空気抵抗が増加し、
風量が低下しても、分流したそれぞれの伝熱管8にほぼ
均一に伝熱性能悪化の影響の受けるため、各列の伝熱性
能のアンバランスから生じる、冷媒分流部での分配悪化
が生じることがない。
Further, in order to reduce the pressure loss of the refrigerant on the way, the refrigerant is diverted by the distribution pipe 15, but the heat transfer tubes 8 of each row after the divergence substantially uniformly influence the air resistance by the air cleaning filter 5. A heat transfer tube 8 is disposed so as to receive the heat transfer tube. Therefore, the air resistance passing through the air purifying filter 5 due to clogging of the air purifying filter 5 increases,
Even if the air volume is reduced, the heat transfer performance is almost uniformly affected by the divided heat transfer tubes 8, so that the distribution in the refrigerant branching portion may be deteriorated due to the imbalance in the heat transfer performance of each row. There is no.

【0031】従って著しい性能悪化を防止することが可
能である。そのため空清フィルター5の目詰まりによる
性能悪化を最小限にとどめることができるとともに、空
気清浄フィルター5を従来より大型に設置することも可
能となった。
Therefore, it is possible to prevent a significant deterioration in performance. Therefore, deterioration of performance due to clogging of the air cleaning filter 5 can be minimized, and the air cleaning filter 5 can be installed larger than before.

【0032】実施の形態4.図6に示す空気調和装置
は、実施の形態1または実施の形態2の空気調和装置
に、さらに空気清浄フィルター5背後の熱交換器のフィ
ン幅16を、空気清浄フィルター5を通過しない熱交換
器のフィン幅16より広く設けている。実施の形態1の
様に空気清浄フィルター5を設けた場合、風圧抵抗が高
まり、空気清浄フィルターを設けていない部分の熱交換
器に風速が高まり、風速分布の偏りから熱交換器の効率
が悪化する。
Embodiment 4 FIG. The air conditioner shown in FIG. 6 is different from the air conditioner of the first or second embodiment in that the fin width 16 of the heat exchanger behind the air purification filter 5 is further reduced by the heat exchanger that does not pass through the air purification filter 5. Are provided wider than the fin width 16. When the air purifying filter 5 is provided as in the first embodiment, the wind pressure resistance increases, the wind speed increases in the heat exchanger where the air purifying filter is not provided, and the efficiency of the heat exchanger deteriorates due to the bias of the wind speed distribution. I do.

【0033】通常熱交換器のフィン幅は小さくするほど
熱交換器の熱を空気に伝熱する効率は高まるが、図6に
示す熱交換器の様に、空気清浄フィルター背後のフィン
幅16を広く設けることにより風圧を均一にする方が熱
交換器全体の効率は高まる。その結果熱交換器の伝熱性
能を十分に発揮する事が可能になり、性能向上するとと
もに、風速が不均一な時に発生する騒音を低減すること
が可能になる。
Normally, the smaller the fin width of the heat exchanger, the higher the efficiency of transferring the heat of the heat exchanger to the air. However, as in the heat exchanger shown in FIG. 6, the fin width 16 behind the air cleaning filter is reduced. If the wind pressure is made uniform by providing the heat exchanger widely, the efficiency of the entire heat exchanger increases. As a result, the heat transfer performance of the heat exchanger can be sufficiently exhibited, the performance can be improved, and noise generated when the wind speed is not uniform can be reduced.

【0034】実施の形態5.図7は実施の形態1または
実施の形態2の空気調和装置において、空気清浄フィル
ター5背後の熱交換器の列数を、空気清浄フィルター5
を通過しない熱交換器の列数より少なく設けている。実
施の形態1の様に空気清浄フィルター5を設けた場合、
風圧抵抗が高まり、空気清浄フィルターを設けていない
部分の熱交換器に風速が高まり、風速分布の偏りから熱
交換器の効率が悪化する。通常熱交換器の列数は多く設
けるほど熱交換器の熱を空気に伝熱する効率は高まる。
Embodiment 5 FIG. 7 shows the number of rows of heat exchangers behind the air purifying filter 5 in the air conditioner according to the first or second embodiment.
Less than the number of rows of heat exchangers that do not pass through. When the air cleaning filter 5 is provided as in the first embodiment,
The wind pressure resistance is increased, the wind speed is increased in the heat exchanger where the air cleaning filter is not provided, and the efficiency of the heat exchanger is deteriorated due to the bias of the wind speed distribution. Usually, the greater the number of rows of heat exchangers, the higher the efficiency of transferring the heat of the heat exchangers to the air.

【0035】しかし、風速分布に偏りが生じている場
合、図7に示す熱交換器の様に、空気清浄フィルター背
後の熱交換器の列数を少なく設けることにより、風圧を
均一にする方が熱交換器全体の効率は高まる。その結果
熱交換器の伝熱性能を十分に発揮する事が可能になり性
能が向上するとともに、風速が不均一な時に発生する騒
音を低減することが可能になる。
However, when the wind speed distribution is uneven, it is better to make the wind pressure uniform by providing a smaller number of rows of heat exchangers behind the air purifying filter as in the heat exchanger shown in FIG. The overall efficiency of the heat exchanger increases. As a result, the heat transfer performance of the heat exchanger can be sufficiently exhibited, the performance can be improved, and the noise generated when the wind speed is uneven can be reduced.

【0036】実施の形態6.図8に示すように実施の形
態1または実施の形態2の空気調和装置において、空気
清浄フィルター5背後の熱交換器のフィン9の伝熱性能
を向上するために設けている切り起し17密度を、空気
清浄フィルター5を通過しない熱交換器のフィンの切り
起し17密度より、広く設けている。実施の形態1の様
に空気清浄フィルター5を設けた場合、風圧抵抗が高ま
り、空気清浄フィルターを設けていない部分の熱交換器
に風速が高まり、風速分布の偏りから熱交換器の効率が
悪化する。
Embodiment 6 FIG. As shown in FIG. 8, in the air conditioner according to the first or second embodiment, the cut-and-raised 17 density provided for improving the heat transfer performance of the fins 9 of the heat exchanger behind the air purifying filter 5 is provided. Is wider than the cut-and-raised 17 density of the fins of the heat exchanger that does not pass through the air purification filter 5. When the air purifying filter 5 is provided as in the first embodiment, the wind pressure resistance increases, the wind speed increases in the heat exchanger where the air purifying filter is not provided, and the efficiency of the heat exchanger deteriorates due to the bias of the wind speed distribution. I do.

【0037】通常熱交換器のフィン9に設けた切り起し
17は、密度を高めるほど、熱交換器の熱を空気に伝熱
する効率は高まる。しかし、風速分布に偏りが生じてい
る場合、図7に示す熱交換器の様に、空気清浄フィルタ
ー背後の熱交換器のフィン切り起し17の密度を小さく
することにより、風圧を均一にする方が熱交換器全体の
効率は高まる。その結果熱交換器の伝熱性能を十分に発
揮する事が可能になり性能が向上するとともに、風速が
不均一な時に発生する騒音を低減することが可能にな
る。
The efficiency of transferring the heat of the heat exchanger to the air increases as the density of the cut-and-raised portions 17 provided on the fins 9 of the heat exchanger increases. However, when the wind speed distribution is deviated, the wind pressure is made uniform by reducing the density of the fins 17 of the heat exchanger behind the air cleaning filter, as in the heat exchanger shown in FIG. This increases the efficiency of the entire heat exchanger. As a result, the heat transfer performance of the heat exchanger can be sufficiently exhibited, the performance can be improved, and the noise generated when the wind speed is uneven can be reduced.

【0038】[0038]

【発明の効果】以上のように、この発明によれば、吸込
口から吹出口に至る風路に設けられ伝熱管を流れる冷媒
と室内空気との間で熱交換を行う室内側熱交換器と、前
記風路内に空気流を発生させるファンと、前記風路内の
前記熱交換器上流にて圧力損失抵抗となる抵抗体とを備
え、前記抵抗体を通過した空気が流入する前記熱交換器
風上側に冷房運転時の冷媒の流れ方向における伝熱管入
口を配置したので、空気清浄フィルター等の抵抗体に目
詰まりが生じたり、または空気清浄フィルターを装着し
ないで運転しても、冷媒の分配がアンバランスを生じる
ことなく、性能低下をおさえることが可能になる効果が
得られる。
As described above, according to the present invention, the indoor heat exchanger for exchanging heat between the refrigerant flowing through the heat transfer tube and the indoor air provided in the air passage from the suction port to the air outlet is provided. A fan that generates an airflow in the air passage, and a resistor that serves as a pressure loss resistance upstream of the heat exchanger in the air passage, wherein the heat exchange through which air that has passed through the resistor flows in. Since the heat transfer tube inlet in the flow direction of the refrigerant during cooling operation is arranged on the windward side of the cooling device, even if the resistors such as the air purification filter are clogged, or the operation is performed without the air purification filter, An effect is obtained in which performance degradation can be suppressed without causing imbalance in distribution.

【0039】また、前記室内熱交換器の伝熱管は冷媒が
並列に複数の配管に分流する配管配置とし、前記分流し
た各伝熱管にほぼ均一に空気が通過するよう配管したの
で、抵抗体の通風抵抗が変化しても、分流した各配管に
ほぼ均一に伝熱性能が変化するため、冷媒分配が著しく
悪化することを防止でき、高い性能を維持することが可
能になる効果が得られる。
Further, the heat transfer tubes of the indoor heat exchanger are arranged in such a manner that the refrigerant is diverted in parallel to a plurality of pipes, and the pipes are arranged such that air passes through the divided heat transfer tubes almost uniformly. Even if the ventilation resistance changes, the heat transfer performance changes almost uniformly in each of the divided pipes, so that the distribution of the refrigerant can be prevented from remarkably deteriorating, and the effect of maintaining high performance can be obtained.

【0040】また、前記室内熱交換器の伝熱管は途中複
数方向に冷媒を分流する配管配置とし、前記伝熱管入口
から冷媒を分流するまでの伝熱管を前記抵抗体を通過し
た空気が流入する前記熱交換器風上側に配管したので、
抵抗体の通風抵抗の変化によって冷媒の分配がアンバラ
ンスを生じることなく、性能低下をおさえることが可能
になる効果が得られる。
The heat transfer tubes of the indoor heat exchanger are arranged so as to divide the refrigerant in a plurality of directions on the way, and the air passing through the heat transfer tubes from the inlet of the heat transfer tubes until the refrigerant is diverted flows into the heat transfer tubes. Because it was piped on the windward side of the heat exchanger,
An effect is obtained in which the distribution of the refrigerant does not become unbalanced due to the change in the ventilation resistance of the resistor, and the performance can be reduced.

【0041】また、前記室内熱交換器の伝熱管は途中複
数方向に冷媒を分流する配管配置配置とし、前記抵抗体
を通過しない空気が流入する前記熱交換器部分で、冷媒
を分流するので、空気清浄フィルター等の抵抗体が埃等
により通風抵抗が変化しても、冷媒分配が著しく悪化す
ることなく、高い性能を維持することができる効果が得
られる。
Further, the heat transfer tubes of the indoor heat exchanger are arranged in a pipe arrangement for diverting the refrigerant in a plurality of directions on the way, and the refrigerant is diverted at the heat exchanger portion where the air not passing through the resistor flows in. Even if the ventilation resistance of a resistor such as an air cleaning filter changes due to dust or the like, the effect of maintaining high performance without significantly deteriorating the refrigerant distribution can be obtained.

【0042】 前記室内熱交換器の伝熱管は途中複数方
向に冷媒を分流する配管配置配置とし、前記途中分流し
た伝熱管は、前記抵抗体を通過した風がそれぞれほぼ均
一に通過するよう配管したので、冷媒分配が著しく悪化
することを防止でき、高い性能を維持することが可能に
なる効果が得られる。
The heat transfer tubes of the indoor heat exchanger are arranged so as to divide the refrigerant in a plurality of directions on the way, and the heat transfer tubes divided on the way are arranged so that the wind passing through the resistor passes almost uniformly. Therefore, it is possible to prevent the refrigerant distribution from being significantly deteriorated, and to obtain an effect that high performance can be maintained.

【0043】また、前記抵抗体を通過した空気が流入す
る熱交換器部分と前記抵抗体を通過しない空気が流入す
る熱交換器部分とで伝熱フィンの幅を異ならせたので、
熱交換器の風圧抵抗の均一化が図れ性能を向上する事が
可能になる効果が得られる。
Further, the width of the heat transfer fin is made different between the heat exchanger portion into which the air passing through the resistor flows and the heat exchanger portion into which the air not passing through the resistor flows.
The effect that the wind pressure resistance of the heat exchanger can be made uniform and the performance can be improved can be obtained.

【0044】また、前記抵抗体を通過した空気が流入す
る熱交換器部分と前記抵抗体を通過しない空気が流入す
る熱交換器部分とで伝熱管の列数を異ならせたので、熱
交換器の風圧抵抗の均一化が図れ性能を向上する事が可
能になる効果が得られる。
Further, the number of rows of the heat transfer tubes is different between the heat exchanger portion into which the air passing through the resistor flows and the heat exchanger portion into which the air not passing through the resistor flows. This has the effect that the wind pressure resistance can be made uniform and the performance can be improved.

【0045】また、前記抵抗体を通過した空気が流入す
る熱交換器部分と前記抵抗体を通過しない空気が流入す
る熱交換器部分とでフィンの切り越し形状を異ならせた
ので、熱交換器の風圧抵抗の均一化が図れ性能を向上す
る事が可能になる効果が得られる。
Further, since the fin cross-over shape is made different between the heat exchanger portion into which the air that has passed through the resistor flows and the heat exchanger portion into which the air does not flow through the resistor, This has the effect that the wind pressure resistance can be made uniform and the performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1における空気調和装
置を示す断面図である。
FIG. 1 is a sectional view showing an air conditioner according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1における熱交換器を
示す側面図である。
FIG. 2 is a side view showing the heat exchanger according to Embodiment 1 of the present invention.

【図3】 この発明との比較のための熱交換器を示す側
面図である。
FIG. 3 is a side view showing a heat exchanger for comparison with the present invention.

【図4】 この発明の実施の形態2における熱交換器を
示す側面図である。
FIG. 4 is a side view showing a heat exchanger according to Embodiment 2 of the present invention.

【図5】 この発明の実施の形態3における熱交換器を
示す側面図である。
FIG. 5 is a side view showing a heat exchanger according to Embodiment 3 of the present invention.

【図6】 この発明の実施の形態4における熱交換器を
示す斜視図である。
FIG. 6 is a perspective view showing a heat exchanger according to Embodiment 4 of the present invention.

【図7】 この発明の実施の形態5における熱交換器を
示す側面図である。
FIG. 7 is a side view showing a heat exchanger according to Embodiment 5 of the present invention.

【図8】 この発明の実施の形態6における熱交換器を
示す側面図である。
FIG. 8 is a side view showing a heat exchanger according to Embodiment 6 of the present invention.

【図9】 従来の空気調和装置を示す断面図である。FIG. 9 is a cross-sectional view showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 本体、 2 本体ベース、 3a 主吸い込みグリ
ル、 3b 補助吸い込みグリル、 4 ファン、 5
空気清浄フィルター、 6 前面側熱交換器、 7
背面側熱交換器、 8 伝熱管、 9 フィン、 11
風路、 12吹出口。
1 body, 2 body base, 3a main suction grill, 3b auxiliary suction grill, 4 fan, 5
Air purifying filter, 6 Front heat exchanger, 7
Rear heat exchanger, 8 heat transfer tubes, 9 fins, 11
Airways, 12 outlets.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 泰隆 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L051 BE09 BF01 3L092 AA01 BA12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasutaka Murakami 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Electric Corporation (reference) 3L051 BE09 BF01 3L092 AA01 BA12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 吸込口から吹出口に至る風路に設けられ
伝熱管を流れる冷媒と室内空気との間で熱交換を行う室
内側熱交換器と、前記風路内に空気流を発生させるファ
ンと、前記風路内の前記熱交換器上流にて圧力損失抵抗
となる抵抗体とを備え、前記抵抗体を通過した空気が流
入する前記熱交換器風上側に冷房運転時の冷媒の流れ方
向における伝熱管入口を配置したことを特徴とする空気
調和装置。
1. An indoor heat exchanger provided in an air passage from an inlet to an air outlet for exchanging heat between a refrigerant flowing through a heat transfer tube and indoor air, and generating an air flow in the air passage. A cooling element that includes a fan and a resistor that serves as a pressure loss resistor upstream of the heat exchanger in the air path, and that is located on the windward side of the heat exchanger where air that has passed through the resistor flows in at the time of cooling operation. An air conditioner characterized by arranging a heat transfer tube inlet in a direction.
【請求項2】 前記室内熱交換器の伝熱管は冷媒が並列
に複数の配管に分流する配管配置とし、前記分流した各
伝熱管にほぼ均一に空気が通過するよう配管したことを
特徴とする請求項1記載の空気調和装置。
2. The heat transfer pipe of the indoor heat exchanger is arranged in a pipe arrangement in which the refrigerant is divided in parallel into a plurality of pipes, and the pipes are arranged such that air passes through the divided heat transfer pipes substantially uniformly. The air conditioner according to claim 1.
【請求項3】 前記室内熱交換器の伝熱管は途中複数方
向に冷媒を分流する配管配置とし、前記伝熱管入口から
冷媒を分流するまでの伝熱管を前記抵抗体を通過した空
気が流入する前記熱交換器風上側に配管したことを特徴
とする請求項1記載の空気調和装置。
3. The heat transfer tube of the indoor heat exchanger has a piping arrangement for diverting the refrigerant in a plurality of directions on the way, and the air passing through the heat transfer tube from the inlet of the heat transfer tube until the refrigerant is diverted flows into the heat transfer tube. The air conditioner according to claim 1, wherein piping is arranged on the windward side of the heat exchanger.
【請求項4】 前記室内熱交換器の伝熱管は途中複数方
向に冷媒を分流する配管配置配置とし、前記抵抗体を通
過しない空気が流入する前記熱交換器部分で、冷媒を分
流することを特徴とする請求項1記載の空気調和装置。
4. A heat transfer pipe of the indoor heat exchanger is arranged in a pipe arrangement for dividing a refrigerant in a plurality of directions on the way, and the refrigerant is divided at a part of the heat exchanger into which air not passing through the resistor flows. The air conditioner according to claim 1, characterized in that:
【請求項5】 前記室内熱交換器の伝熱管は途中複数方
向に冷媒を分流する配管配置配置とし、前記途中分流し
た伝熱管は、前記抵抗体を通過した風がそれぞれほぼ均
一に通過するよう配管したことを特徴とする請求項1記
載の空気調和装置。
5. The heat transfer tube of the indoor heat exchanger is arranged in a pipe arrangement for diverting refrigerant in a plurality of directions on the way, and the heat transfer tube diverted on the way allows the air passing through the resistor to pass almost uniformly. The air conditioner according to claim 1, wherein the air conditioner is piped.
【請求項6】 前記抵抗体を通過した空気が流入する熱
交換器部分と前記抵抗体を通過しない空気が流入する熱
交換器部分とで伝熱フィンの幅を異ならせたことを特徴
とする請求項1乃至5の何れか1項に記載の空気調和装
置。
6. The width of the heat transfer fins is different between a heat exchanger portion into which the air passing through the resistor flows and a heat exchanger portion into which the air not passing through the resistor flows. The air conditioner according to any one of claims 1 to 5.
【請求項7】 前記抵抗体を通過した空気が流入する熱
交換器部分と前記抵抗体を通過しない空気が流入する熱
交換器部分とで伝熱管の列数を異ならせたことを特徴と
する請求項1乃至5の何れか1項に記載の空気調和装
置。
7. The number of rows of heat transfer tubes is different between a heat exchanger portion into which air passing through the resistor flows and a heat exchanger portion into which air not passing through the resistor flows. The air conditioner according to any one of claims 1 to 5.
【請求項8】 前記抵抗体を通過した空気が流入する熱
交換器部分と前記抵抗体を通過しない空気が流入する熱
交換器部分とでフィンの切り越し形状を異ならせたこと
を特徴とする請求項1乃至5の何れか1項に記載の空気
調和装置。
8. The heat exchanger portion into which the air passing through the resistor flows and the heat exchanger portion into which the air not passing through the resistor flows have different fin cross-over shapes. The air conditioner according to any one of claims 1 to 5.
JP11011453A 1999-01-20 1999-01-20 Air conditioner Pending JP2000213764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011453A JP2000213764A (en) 1999-01-20 1999-01-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011453A JP2000213764A (en) 1999-01-20 1999-01-20 Air conditioner

Publications (1)

Publication Number Publication Date
JP2000213764A true JP2000213764A (en) 2000-08-02

Family

ID=11778528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011453A Pending JP2000213764A (en) 1999-01-20 1999-01-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP2000213764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243184A (en) * 2001-02-20 2002-08-28 Fujitsu General Ltd Air conditioner
JP2014081150A (en) * 2012-10-17 2014-05-08 Hitachi Appliances Inc Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243184A (en) * 2001-02-20 2002-08-28 Fujitsu General Ltd Air conditioner
JP2014081150A (en) * 2012-10-17 2014-05-08 Hitachi Appliances Inc Air conditioner

Similar Documents

Publication Publication Date Title
JP4678327B2 (en) Air conditioner
JPH08270973A (en) Air conditioner
US20220032767A1 (en) Heat exchanger module for a motor vehicle
JP2016200338A (en) Air conditioner
JP3629090B2 (en) Air conditioner
JP2000329364A (en) Wall-hanging type indoor unit for air conditioner
JPH11223356A (en) Window type air conditioner
JP2010038400A (en) Finned heat exchanger
JP4724939B2 (en) Air conditioner
JPH10132423A (en) Heat-exchanger
WO2013094162A1 (en) Finned heat exchanger
JP2000213764A (en) Air conditioner
JP3141663B2 (en) Indoor unit of air conditioner
JP2010019500A (en) Heat exchanger with fin
JP2588205Y2 (en) Air conditioner
JP4196442B2 (en) Heat exchanger
JPH04316930A (en) Air conditioner
JP2003074892A (en) Air conditioning apparatus
CN212227231U (en) Wall-mounted air conditioner indoor unit
JPH06341660A (en) Heat exchanger for air conditioner
JP3055436B2 (en) Air conditioner
JPH0960911A (en) Air-conditioner
CN112923437B (en) Indoor unit of air conditioner
WO1998019112A1 (en) Air conditioner
JP3331873B2 (en) Air conditioner indoor unit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081209

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090213