WO1998019112A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO1998019112A1
WO1998019112A1 PCT/JP1997/003730 JP9703730W WO9819112A1 WO 1998019112 A1 WO1998019112 A1 WO 1998019112A1 JP 9703730 W JP9703730 W JP 9703730W WO 9819112 A1 WO9819112 A1 WO 9819112A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fins
heat
air conditioner
heat transfer
Prior art date
Application number
PCT/JP1997/003730
Other languages
French (fr)
Japanese (ja)
Inventor
Junichirou Tanaka
Yoshiaki Fukumura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU45732/97A priority Critical patent/AU4573297A/en
Publication of WO1998019112A1 publication Critical patent/WO1998019112A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air

Definitions

  • the present invention relates to an air conditioner provided with an inverted V-shaped heat exchanger.
  • FIG. 9 is a cross-sectional view showing an indoor unit of a separation type air conditioner equipped with the above-described inverted V-shaped heat exchanger.
  • a front grille 41 having a front suction port 34 formed on the front side of a main body casing 49 is provided, and an upper grille 42 having a top suction port 35 formed also on the upper surface side.
  • a front-side heat exchanger 38 is provided behind the front grille 41, and the lower end of the front-side heat exchanger 38 is close to the lower part of the front grille 41, and the upper end is closer to the lower end. Also, it is inclined so as to be located near the lower side of the upper surface grill 42 on the back side.
  • a rear-side heat exchanger 32 whose vertical width is about 2/5 of the front-side heat exchanger 38 is disposed.
  • the upper end of the rear heat exchanger 32 is the upper end of the front heat exchanger 38.
  • the lower end is inclined further so as to be closer to the rear side than the lower end.
  • the front-side heat exchanger 38 and the rear-side heat exchanger 32 are combined to form an inverted V-shaped heat exchanger 40, and the upper end of the front-side heat exchanger 38 and the rear-side heat exchanger
  • the upper end of the heat exchanger 32 is the top of the inverted V-shaped heat exchanger 40.
  • the inverted V-shaped outer side of the heat exchanger 40 is a suction side 44 in the main body casing 49, and the inner side thereof is an outlet side 45.
  • the blower side 45 has a cylindrical fan rotor 33 having a rotating shaft 33a extending in a direction substantially perpendicular to the paper surface of the drawing, and a fan rotor 33 close to the fan rotor 33 along the axial direction.
  • a cross flow fan is constituted by the tongue portion 37 provided as described above, and a scroll portion 36 formed so that the lower end side thereof is smoothly connected to the air outlet 43.
  • the indoor air is sucked from both the front and top surfaces of the main body casing 49, and the sucked indoor air is heat-exchanged by both the front heat exchanger 38 and the rear heat exchanger 82. It is supposed to be. Therefore, the contact area where the heat exchanger 40 contacts the indoor air is the sum of the two heat exchangers 38 and 32. It is almost the same as that of the heat exchanger whose shape is extended by the length of the heat exchanger 32. Therefore, in this air conditioner, it is necessary to reduce the heat exchange capacity without reducing its heat exchange capacity. And you can do it.
  • the capacity of the heat exchanger 40 In order to make the above-mentioned conventional indoor unit compact without reducing the heat exchange capacity, the capacity of the heat exchanger 40 must be improved, that is, per unit frontal area of the heat exchanger 40. It is necessary to increase the amount of heat exchange. However, if the capacity of the rear-side heat exchanger 32 is improved in the same way as the capacity of the front-side heat exchanger 38, the amount of drain water generated in the rear-side heat exchanger 38 during continuous cooling is reduced. Therefore, it is necessary to increase the size of the rear drain pan 39. Since the ventilation path of the rear heat exchanger 32 is formed from above to below, if the rear drain pan 89 becomes large, the rear drain pan 39 will protrude above the ventilation path. However, the ventilation performance is reduced, and as a result, the capacity of the rear heat exchanger 32 is reduced. In addition, the large-sized rear-side drain pan 39 narrows the air passage, which causes a new problem of generating abnormal noise.
  • the present invention has been made to solve the above-mentioned conventional disadvantages, and an object of the present invention is to provide an air conditioner capable of improving heat exchange capacity while achieving compactness and low noise. Is to do.
  • the air conditioner of the present invention includes a front heat exchanger 1 and a rear heat exchanger 2 in a main body casing 19 having suction ports 4 and 5 on the front and upper surfaces thereof.
  • Heat exchanger 10 which is made up of inverted V-shape and this heat exchange Fan rotor 3 arranged downstream of unit 10, front drain pan 8 arranged below front heat exchanger 1, and rear drain pan 2 arranged below rear heat exchanger 2 2
  • the amount of heat exchange per unit front area of the front heat exchanger 1 is larger than that of the rear heat exchanger 2.
  • the heat exchange amount per unit front area of the front heat exchanger 1 is configured to be larger than the heat exchange amount per unit front area of the rear heat exchanger 2. I have. Therefore, the capacity of the heat exchanger 10 can be improved without increasing the size of the heat exchanger 10 itself, and compactness can be achieved. Also, since the heat exchange amount per unit front area of the rear heat exchanger 2 is smaller than that of the front heat exchanger 1, the amount of drain water generated in the rear heat exchanger 2 during cooling operation is relatively small. Therefore, there is no need to increase the size of the rear drain pan 22.
  • the rear-side drain pan 22 does not protrude above the air-supply path of the rear-side heat exchanger 2 to narrow the air-supply path, so that it is possible to prevent the deterioration of the air-supply performance and the generation of abnormal noise.
  • the front-side drain pan 8 is located below the front-side heat exchanger 1, and the ventilation path is formed from the front side to the rear side. It does not protrude on the path. Therefore, there are no problems such as a decrease in the blowing capacity and generation of abnormal noise.
  • the heat exchanger 10 is a cross-fin tube type heat exchanger formed by arranging the heat transfer tubes 21 through a plurality of fins 17 arranged in parallel.
  • the fin 17 of the heat exchanger 10 is formed by raising a part 28 sandwiched between two parallel cuts 27 toward one surface side. Multiple slits 24 were formed, and the area occupied by the slits 24 in the fins 17 of the front heat exchanger 1 was made larger than that of the rear heat exchanger 2.
  • the fin 17 of the heat exchanger 10 has a louver 29 formed by raising a portion 31 adjacent to one side of the cut 30 on one surface side.
  • the occupied area ratio of the louvers 24 in the fins 17 of the front-side heat exchanger 1 is made larger than that of the front-side heat exchanger 2.
  • the heat exchange amount of the front-side heat exchanger 1 increases due to the improvement of the heat conductivity on the air side (fins 17). Further, since the slit louver can be formed by processing an existing fin, it can be implemented relatively easily.
  • the heat exchanger 10 is a cross-fin tube type heat exchanger in which a plurality of fins 17 arranged side by side and heat transfer tubes 21 are arranged in a penetrating state.
  • the fin pitch P 1 of the front-side heat exchanger 1 is smaller than that of the rear-side heat exchanger 2.
  • the air conditioner of another embodiment is characterized in that the width W 1 of the fins 17 of the front heat exchanger 1 in the air flow direction is larger than that of the rear heat exchanger 2. In these air conditioners, the amount of heat exchange of the front heat exchanger 1 increases due to an increase in the heat transfer area on the air side.
  • the heat exchanger 10 is a cross-fin tube type heat exchanger in which a plurality of fins 17 arranged side by side and heat transfer tubes 21 are arranged in a penetrating state.
  • the heat transfer tube pitch Pt1 of the front-side heat exchanger 1 is smaller than that of the rear-side heat exchanger 2.
  • the air conditioner of another embodiment is characterized in that the plate thickness T1 of the fins 17 of the front heat exchanger 1 is larger than that of the rear heat exchanger 2.
  • the heat exchanger 10 is a cross-fin type heat exchanger in which the heat transfer tubes 21 are arranged in a state of being penetrated by a plurality of fins 17 arranged in parallel.
  • the heat conductivity of the heat transfer tubes 21 of the front heat exchanger 1 is higher than that of the rear heat exchanger 2. By doing so, the heat exchange amount of the front heat exchanger 1 also increases.
  • the heat exchanger 10 is a cross-fin tube type heat exchange configured by disposing the heat transfer tube 21 in a state of being penetrated by a plurality of fins 17 arranged in parallel.
  • the heat transfer tubes 21 of the heat exchanger 10 are connected to form a plurality of paths Rl, R2, R3, and the refrigerant from the refrigerant supply means receives the plurality of paths Rl, R2 and R8 are supplied separately from the supply ports, and after passing through each II path Rl, R2 and R3, are discharged from the discharge ports of the above multiple paths Rl, R2 and R3 And is returned to the refrigerant supply means, and the number of heat transfer tubes 21 included in the route R 1 passing through the rear heat exchanger 2 is reduced by the route R 2 passing through the front heat exchanger 1.
  • the number of heat transfer tubes 21 included in R3 is larger than that of R3.
  • the pressure loss arrow on the refrigerant side in the routes Rl and R2 in the front side heat exchanger 1 is reduced, and the temperature difference with the air side is increased. The amount of heat exchange in vessel 1 increases.
  • FIG. 1 is a cross-sectional view showing an embodiment in which the air conditioner of the present invention is configured as an indoor unit of a separation type air conditioner.
  • FIG. 2 is a perspective view showing a schematic configuration of the heat exchanger according to the embodiment of the present invention.
  • FIG. 3 is a partially enlarged plan view of the front-side heat exchanger according to the embodiment of the present invention. 3 ⁇ 4 o
  • FIG. 4 is a partially enlarged plan view of the rear heat exchanger according to the embodiment of the present invention.
  • FIG. 5A and FIG. 5B are explanatory views for explaining a method of forming a slit.
  • 6A and 6B are explanatory views illustrating a method of forming a louver.
  • FIG. 7 is an explanatory diagram illustrating a supply path of the refrigerant to the heat exchanger according to the embodiment of the present invention.
  • FIG. 8 is an explanatory diagram illustrating a supply path of a refrigerant to a heat exchanger in a conventional technique.
  • FIG. 9 is a sectional view showing a conventional example of an indoor unit of a separation type air conditioner.
  • FIG. 1 is a cross-sectional view showing an application example when one embodiment of the air conditioner is applied to an indoor unit of a separation type air conditioner.
  • a front grill 11 having a front suction port 4 is provided on the front side of the main body casing 19, and a top suction port 5 is also formed on the upper surface side.
  • Top grille 12 is provided.
  • 1 shown in the figure is a front-side heat exchanger.
  • the front-side heat exchanger 1 is configured by inserting 20 refrigerant tubes 21, and the first to the first sections are defined by a section where the four refrigerant tubes 21 are inserted as one section.
  • the division is divided into 5 divisions, 1 a to le. Then, by bending between the adjacent partitioning portions, it is curved so as to protrude forward from the top to the lower portion, and the fourth partitioning portion 1 d, which is the fourth counting from the top, is the frontmost side. Is located.
  • Reference numeral 2 in the figure denotes a rear-side heat exchanger 2.
  • the rear-side heat exchanger 2 is configured by inserting eight refrigerant pipes 21 into the rear-side heat exchanger 2.
  • the portion through which the four refrigerant pipes 21 are inserted is divided into two sections, a first section and a second section 2a, 2b, as one section, and the space between the two sections 2a, 2b is folded.
  • an inverted V-shaped heat exchanger 10 is formed.
  • the outside of the inverted V-shaped heat exchanger 10 is the suction side 14 in the main body casing 19, and the inside, that is, the downstream side of the heat exchanger 10 is the discharge side 15.
  • a certain space is formed between the upper part of the front heat exchanger 1 and the upper space.
  • an air purification filter 16 having antibacterial and deodorizing effects is provided in this space.
  • a cross-flow fan composed of a columnar fan rotor 3, a tongue 7, a scroll 6 and the like is provided on the outlet side 15 as in the conventional example.
  • the fan rotor 3 of the cross flow fan is arranged such that the rotating shaft 3 a is located behind the fourth partition 1 d of the front-side heat exchanger 1.
  • the scroll portion 6 is formed such that the lower end side thereof is smoothly connected to the outlet 13.
  • a front-side drain pan 8 integrally formed with the tongue 7 is provided to receive drain water generated in the front-side heat exchanger 1 during the cooling operation. Drain water generated in the rear heat exchanger 2 is received by a rear drain pan 22 integrally formed with the heat exchanger support 23. Further, drain water may also be generated on the back of the scroll section 6, but this is configured to be received by the back drain pan 9.
  • the fan rotor 3 shown in FIG. When driven in rotation, a swirling air flow is generated by the action of the cross-floor fan, and the swirling air current sucks indoor air from the front suction port 4 and the top suction port 5.
  • the sucked room air further flows from the suction side 14 of the main body casing 19 to the blowout side 15, where it is heat-exchanged (cooled) by the heat exchanger 10 to be conditioned air.
  • the conditioned air is blown out of the outlet 13 again into the room while changing the flow direction to the front side along the scroll portion 6.
  • the heat exchange capacity is improved over the conventional heat exchanger by various methods described later, but the heat exchange capacity per unit front area of the front side heat exchanger 1 is increased.
  • the heat exchange amount is configured to be larger than the heat exchange amount per unit front area of the rear heat exchanger 2. Therefore, the capacity of the heat exchanger 10 can be improved without increasing the size of the heat exchanger 10 itself, and compactness can be achieved.
  • the heat exchange amount per unit front area of the rear heat exchanger 2 is smaller than that of the front heat exchanger 1, so it is generated in the rear heat exchanger 2 during cooling rotation.
  • the amount of drain water generated is relatively small, and there is no need to increase the size of the rear drain pan 9.
  • the ventilation path of the rear side heat exchanger 2 is formed from the upper surface inlet 5 to the outlet side 15 through the inlet side 14, that is, from the upper part of the main body casing 19 to the lower part where the outlet 13 is located. Therefore, if the rear drain pan 9 arranged below the rear heat exchanger 2 is made larger, it will be provided so as to protrude into the ventilation path, and the ventilation path will be narrowed, resulting in reduced ventilation performance and noise.
  • the rear side drain pan 9 arranged below the rear heat exchanger 2 is made larger, it will be provided so as to protrude into the ventilation path, and the ventilation path will be narrowed, resulting in reduced ventilation performance and noise.
  • the rear side drain pan 9 arranged below the rear heat exchanger 2
  • the front drain pan 8 is located below the front heat exchanger 1, and the air flow is roughly from the front inlet 4 to the outlet 15 and the fan Since it is formed toward the air outlet 13 through the rotor 3, the front drain pan 8 does not protrude into the air supply path. Therefore, problems such as a reduction in the blowing capacity and generation of abnormal noise do not occur.
  • FIG. 2 is a perspective view showing a configuration of the heat exchanger 10.
  • the heat exchanger 10 is composed of the front heat exchanger 1 and the rear heat exchanger 2 as described above, and the configuration of each of the heat exchangers 1 and 2 is basically the same. It is a vessel.
  • the cross fin tube type heat exchanger includes a plurality of fins 17 arranged side by side, and a plurality of heat transfer tubes 21 arranged in a penetrating state.
  • L is the effective length of the heat exchanger, specifically, the length from the fin at one side end to the fin at the other side end.
  • HI is the length of the air flow suction side of the fin 17.
  • H 2 is the length of the air flow suction side of the fin 17.
  • the value obtained by dividing the total heat exchange amount of the front heat exchanger 1 by the front area S1 of the front heat exchanger 1 is called the heat exchange amount per unit front area of the front heat exchanger 1, and Heat exchange per unit front area of rear heat exchanger 2 divided by total heat exchange amount of rear heat exchanger 2 by front area S 2 of rear heat exchanger 2 Called quantity.
  • FIG. 3 is a partially enlarged plan view of the fins 17 of the front-side heat exchanger 1
  • FIG. 4 is a partially enlarged plan view of the fins 17 of the rear-side heat exchanger 2.
  • the first method is to form a plurality of slits 24 on the fins 17 of the heat exchangers 1 and 2 as shown in FIGS.
  • the occupied area ratio of the slit 24 is to be larger than the occupied area ratio of the slit 24 in the fins 17 of the rear heat exchanger 2.
  • FIG. 5A and FIG. 5B are diagrams illustrating a method of forming the slit 24.
  • the slit 24 forms a pair of parallel cuts 27 in the fins 17 as shown in FIG. 5A, and the causing portion 28 sandwiched between the cuts 27 is shown in FIG. 5B.
  • fins 17 are formed on one surface side of the fins.
  • an edge is formed on the fin 17, and the edge effect of the edge improves the heat transfer coefficient and increases the amount of heat exchange. Therefore, by increasing the ratio of the area occupied by the slits 24 in the fins 17 of the front-side heat exchanger 1 to that of the rear-side heat exchanger 2, the amount of heat exchange per unit frontal area can be reduced. A difference can be provided.
  • reference numeral 26 denotes a protrusion, which is provided to improve the heat transfer coefficient by increasing the surface area.
  • Reference numeral 25 denotes a notch slit, which is formed near the center of the fin 17 in the width direction at a constant interval substantially in parallel with the longitudinal direction of the fin 17. The cut slits 25 are provided for thermally separating each of the two regions separated by them.
  • the second realization method is to form a louver 29 instead of the slit 24.
  • 6A and 6B are views for explaining a method of forming the louver 29.
  • FIG. Louver 29 is straight to fin 17 as shown in Figure 6A
  • a notch 30 is formed, and a roughly rectangular portion 31 adjacent to one side of the notch 30 is raised by a certain angle on one surface side of the fin 17 as shown in FIG. 6B. It is formed.
  • the louver 29 is not limited to such a structure. For example, a pair of parallel cuts is formed, and a roughly rectangular portion adjacent to one cut is formed on one surface at a position between the cuts.
  • a structure in which a rectangular portion adjacent to the other cut is raised by a certain angle on the other surface side (a louver shown by a virtual line is added to a louver 29 shown by a solid line in FIG. 6B). Structure).
  • the louver 29 By forming the louver 29, an edge is formed on the fin 17, and the heat transfer coefficient is improved by the edge effect of the edge, and the heat exchange amount is increased. Therefore, by making the occupied area ratio of the louver 29 in the fins 17 of the front heat exchanger 1 larger than that of the rear heat exchanger 2, the heat exchange amount per unit front area becomes different. Can be provided.
  • the third realization method is to make the fin pitch P 1 of the front heat exchanger 1 (see FIG. 2) smaller than the fin pitch P 2 of the rear heat exchanger 2.
  • the fin pitch P 1 is reduced, the number of the fins 17 included in the same effective length L increases, and as a result, the heat transfer area of the heat exchanger 1 increases, and the heat exchange amount increases.
  • the length W 1 of the front heat exchanger 1 in the air flow direction is changed to the length W 2 of the rear heat exchanger 2 in the air flow direction (see FIG. 4). It is longer.
  • the fifth realization method is to make the pipe pitch Pt1 of the heat transfer tubes 21 of the front heat exchanger 1 (see Fig. 3) more than the pipe pitch Pt2 of the rear heat exchanger 2 (see Fig. 4). It is to make it smaller.
  • the tube pitch Pt1 is reduced, more heat transfer tubes 21 penetrate the fins 17, thereby improving the heat transfer coefficient and increasing the heat exchange amount of the front heat exchanger 1.
  • the sixth realization method is to make the thickness T1 of the fins 17 of the front heat exchanger 1 larger than the thickness T2 of the fins 17 of the rear heat exchanger 2. By increasing the plate thickness T1 of the fins 17, the heat transfer coefficient is improved, and the amount of heat exchange of the front heat exchanger 1 is increased.
  • a seventh realization method is to make the heat transfer coefficient of the heat transfer tubes 21 of the front heat exchanger 1 higher than the heat transfer coefficient of the heat transfer tubes of the rear heat exchanger 2.
  • a material having high thermal conductivity may be used.
  • FIG. 7 is a diagram for explaining a supply path of the refrigerant to the heat exchanger 10 in the present invention
  • FIG. 8 is a diagram for explaining a supply path of the refrigerant to the heat exchanger 40 in the conventional technology.
  • the solid line connecting the heat transfer tubes 21 and 50 indicates that the two heat transfer tubes are connected on the near side of the drawing
  • the broken line indicates that the two tubes are on the back side of the drawing. Indicates that the heat transfer tubes are connected.
  • Refrigerant is provided to the heat exchangers 10 and 40 from the refrigerant supply means 20 and 46 through a plurality of supply ports 1, 1, 1, 2, 1, 3, i 1, and i 2. After being discharged from the same number of outlets 0 1, 0 2, 0 3, ol, 02 as the supply ports, they are joined again and returned to the refrigerant supply means 20, 46. Therefore, a plurality of paths through which the refrigerant in the heat exchangers 10 and 40 flows are provided.
  • the conventional heat exchanger 40 has two paths R4 and R5 as shown in Fig. 8. Can be In the conventional heat exchanger 40, the paths R4 and R5 each include 14 heat transfer tubes 50. Accordingly, the refrigerant-side pressure loss per path is substantially the same, and the heat exchange amounts of the front-side heat exchanger 31 and the rear-side heat exchanger 32 are the same.
  • the heat exchanger 10 is provided with three paths R1, R2, and R3.
  • the path R1 passing through the rear heat exchanger 2 includes 12 heat transfer tubes 21 and the paths R2 and R3 passing through the front heat exchanger 1 are both 8 Including heat transfer tubes 21 Therefore, the refrigerant-side pressure loss in the paths R 2 and R 3 is smaller than that in the path R 1, so that the refrigerant can easily flow c. Therefore, the fins 17 (air side) and the heat transfer tubes 21 in the front-side heat exchanger 1 Is larger than the temperature difference between the fins 17 (air side) in the rear heat exchanger 2 and the heat transfer tubes 21, whereby the temperature difference in the front heat exchanger 1 However, the amount of heat exchange increases. This is because most of the refrigerant in the evaporator is in a two-phase flow state, and the concentration of the two-phase flow of the refrigerant is determined by the pressure.
  • the above-described realization methods may be performed independently, or may be performed in combination of a plurality of types.
  • the present invention can also be applied to a heat exchanger having a structure other than the cross fin tube type heat exchanger.
  • the heat exchanger of the present invention can be suitably applied to an air conditioner, particularly an indoor unit of a separation type air conditioner which is required to be compact and thin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

A heat exchanger (10) comprises a front side heat exchanger (1) and a rear side heat exchanger (2), which are combined in an inverted V-shaped configuration, the front side heat exchanger (1) having a larger amount of heat exchange per unit front surface area than that of the rear side heat exchanger (2). Concretely, slits (24) or louvers (29), for example, are formed on fins (17) of the heat exchanger (10), and an occupied area ratio of the slits (24) or louvers (29) on the fins (17) of the front side heat exchanger (1) is greater than that on the rear side heat exchanger (2). Accordingly, it is possible to enhance a heat exchanging capacity while achieving compactness and low noise.

Description

明細書  Specification
空気調和機  Air conditioner
技術分野 Technical field
この発明は、 逆 V字状の熱交換器を備えた空気調和機に関する。  The present invention relates to an air conditioner provided with an inverted V-shaped heat exchanger.
背景技術 Background art
空気謝和機、 特に分離形空気調和機の室内機等においては、 居住空間を 少しでも有効に利用することができるように、 本体ケ一シングをコンパク トでしかも薄形とすることが要求される。 しかし本体ケーシングをコンパ ク ト化すると、 それに従って熱交換器も小型化しなければならず、 そのた め熱交換器の熱交換量が減少して熱交換能力が低下するという問題があつ 十- そこでこの問題を解決するものとして、 熱交換器を前面側と背面側とに 分割して逆 V字状に組み合わせ、 本体ケーシングの上面にも吸込口を設け るようにした空気調和機がある (例えば実公昭 5 7— 3 5 7 7 1号公報、 特願平 7— 1 9 2 3 5 1号参照) 。 図 9は、 上記のような逆 V字状の熱交 換器を備えた分離形空気調和機の室内機を示す断面図である。 この室内機 では、 本体ケーシング 4 9の前面側に前面吸込口 3 4が形成された前面グ リル 4 1が設けられると共に、 その上面側にも上面吸込口 3 5が形成され た上面グリル 4 2が設けられている。 そして上記前面グリル 4 1の後方に は前面側熱交換器 3 8が設けられ、 この前面側熱交換器 3 8は、 その下端 部が前面グリル 4 1の下部に近接し、 上端部がこれよりも背面側における 上面グリル 4 2の下方近傍に位置するよう傾斜して配置されている。 さら にこの前面側熱交換器 3 8の背面側には、 その上下方向の幅が上記前面側 熱交換器 3 8の約 2 / 5程度である背面側熱交換器 3 2が配置されている c この背面側熱交換器 3 2は、 その上端部が上記前面側熱交換器 3 8の上端 部と近接する一方、 下端部がこれよりもさらに背面側に位置するよう傾斜 して設けられている。 これらの前面側熱交換器 3 8と背面側熱交換器 3 2 とを組み合わせで逆 V字状の熱交換器 4 0が構成され、 前面側熱交換器 3 8の上端部及び背面側熱交換器 3 2の上端部が上記逆 V字状の熱交換器 4 0の頂部となっている。 この熱交換器 4 0の逆 V字状の外側が本体ケーシ ング 4 9内における吸込側 4 4となり、 またその内側が吹出側 4 5となつ ている。 さらに上記吹出側 4 5には、 図における紙面と略垂直な方向に延 びる回転軸 3 3 aを有する円柱状のフアンロータ 3 3と、 このファンロー タ 3 3に対し軸方向に沿って近接するよう設けられた舌部 3 7と、 その下 端側が吹出口 4 3へと滑らかに連なるように形成されたスクロール部 3 6 等とからクロスフローファンが構成されている。 In air conditioners, especially in indoor units of separation type air conditioners, it is required that the casing of the main unit be compact and thin so that the living space can be used as little as possible. You. However, when the main casing is made compact, the heat exchanger must be downsized accordingly, which causes a problem that the heat exchange capacity of the heat exchanger decreases and the heat exchange capacity decreases. In order to solve this problem, there is an air conditioner in which the heat exchanger is divided into a front side and a back side and combined in an inverted V-shape, and a suction port is also provided on the upper surface of the main casing (for example, (See Japanese Utility Model Publication No. 57-35771, Japanese Patent Application No. 7-1939251). FIG. 9 is a cross-sectional view showing an indoor unit of a separation type air conditioner equipped with the above-described inverted V-shaped heat exchanger. In this indoor unit, a front grille 41 having a front suction port 34 formed on the front side of a main body casing 49 is provided, and an upper grille 42 having a top suction port 35 formed also on the upper surface side. Is provided. A front-side heat exchanger 38 is provided behind the front grille 41, and the lower end of the front-side heat exchanger 38 is close to the lower part of the front grille 41, and the upper end is closer to the lower end. Also, it is inclined so as to be located near the lower side of the upper surface grill 42 on the back side. Further, on the rear side of the front-side heat exchanger 38, a rear-side heat exchanger 32 whose vertical width is about 2/5 of the front-side heat exchanger 38 is disposed. c The upper end of the rear heat exchanger 32 is the upper end of the front heat exchanger 38. The lower end is inclined further so as to be closer to the rear side than the lower end. The front-side heat exchanger 38 and the rear-side heat exchanger 32 are combined to form an inverted V-shaped heat exchanger 40, and the upper end of the front-side heat exchanger 38 and the rear-side heat exchanger The upper end of the heat exchanger 32 is the top of the inverted V-shaped heat exchanger 40. The inverted V-shaped outer side of the heat exchanger 40 is a suction side 44 in the main body casing 49, and the inner side thereof is an outlet side 45. Further, the blower side 45 has a cylindrical fan rotor 33 having a rotating shaft 33a extending in a direction substantially perpendicular to the paper surface of the drawing, and a fan rotor 33 close to the fan rotor 33 along the axial direction. A cross flow fan is constituted by the tongue portion 37 provided as described above, and a scroll portion 36 formed so that the lower end side thereof is smoothly connected to the air outlet 43.
上記ファンロータ 3 3が回転駆動されると、 クロスフローファンの作用 によって渦気流が発生し、 この渦気流によって前面吸込口 3 4及び上面吸 込口 3 5から室内空気を吸い込むようになる。 吸い込んだ室内空気は、 さ らに本体ケーシング 4 9の吸込側 4 4から吹出側 4 5へと流通し、 その際 に熱交換器 4 0によって熱交換されて、 空調空気となる。 この空調空気は、 上記スクロール部 3 6に沿って前面側へと流通方向を変えつつ、 吹出口 4 3から再び室内へと吹き出されるようになつている。  When the fan rotor 33 is driven to rotate, a vortex is generated by the action of the cross flow fan, and the vortex causes the indoor air to be sucked from the front suction port 34 and the top suction port 35. The sucked indoor air further flows from the suction side 44 of the main body casing 49 to the discharge side 45, and at that time, heat is exchanged by the heat exchanger 40 to be conditioned air. The conditioned air is blown out from the outlet 43 again into the room while changing the flow direction to the front side along the scroll part 36.
上記空気調和機では、 本体ケーシング 4 9の前面と上面との双方から室 内空気を吸い込み、 吸い込んだ室内空気は前面側熱交換器 3 8と背面側熱 交換器 8 2との双方によって熱交換されるようになっている。 そのため上 記熱交換器 4 0が室内空気と接触する援触面積は上記両熱交換器 3 8、 3 2の和となり、 これは例えば前面側熱交換器 3 8を、 その上端側に背面側 熱交換器 3 2の分だけ延長した形状の熱交換器のものと略等しい。 従って、 この空気調和機では熱交換能力を低下させずにそのコンパク ト化を図るこ とができるようになつている。 In the above air conditioner, the indoor air is sucked from both the front and top surfaces of the main body casing 49, and the sucked indoor air is heat-exchanged by both the front heat exchanger 38 and the rear heat exchanger 82. It is supposed to be. Therefore, the contact area where the heat exchanger 40 contacts the indoor air is the sum of the two heat exchangers 38 and 32. It is almost the same as that of the heat exchanger whose shape is extended by the length of the heat exchanger 32. Therefore, in this air conditioner, it is necessary to reduce the heat exchange capacity without reducing its heat exchange capacity. And you can do it.
しかしながら空気調和機のコンパク ト化及び高能力化に対する要求は強 く、 熱交換器 4 0を逆 V字状とすることによって熱交換能力を低下させず にある程度のコンパク ト化を図ることが可能であった上記従来例の空気調 和機の室内機についても、 これをさらに高能力かつコンパク 卜なものとす る必要が生じている。  However, there is a strong demand for compactness and high capacity of air conditioners, and it is possible to achieve a certain degree of compaction without reducing the heat exchange capacity by making the heat exchanger 40 an inverted V-shape. However, the indoor unit of the air conditioner of the above-described conventional example needs to be made even more powerful and compact.
上記従来例の室内機を、 熱交換能力を低下させずにコンパク 卜なものに するためには、 熱交換器 4 0の能力を向上させること、 すなわち熱交換器 4 0の単位前面面積当たりの熱交換量を増加させることが必要である。 し かし、 背面側熱交換器 3 2の能力を、 前面側熱交換器 3 8の能力と同様に 向上させると、 冷房連転時に背面側熱交換器 3 8で発生するドレン水の量 が増大するため、 背面側ドレンパン 3 9を大型化する必要がある。 背面側 熱交換器 3 2の送風経路は上方から下方に向かって形成されているので、 背面側ドレンパン 8 9が大型化すると、 背面側ドレンパン 3 9が送風経路 上に突出して存在することになり、 送風性能が低下し、 結果的に背面側熱 交換器 3 2の能力を低下させることになる。 また、 大型化した背面側ドレ ンパン 3 9によつて送風経路が狭くなるため、 異音が発生するという新た な問題を招来する。  In order to make the above-mentioned conventional indoor unit compact without reducing the heat exchange capacity, the capacity of the heat exchanger 40 must be improved, that is, per unit frontal area of the heat exchanger 40. It is necessary to increase the amount of heat exchange. However, if the capacity of the rear-side heat exchanger 32 is improved in the same way as the capacity of the front-side heat exchanger 38, the amount of drain water generated in the rear-side heat exchanger 38 during continuous cooling is reduced. Therefore, it is necessary to increase the size of the rear drain pan 39. Since the ventilation path of the rear heat exchanger 32 is formed from above to below, if the rear drain pan 89 becomes large, the rear drain pan 39 will protrude above the ventilation path. However, the ventilation performance is reduced, and as a result, the capacity of the rear heat exchanger 32 is reduced. In addition, the large-sized rear-side drain pan 39 narrows the air passage, which causes a new problem of generating abnormal noise.
発明の開示 Disclosure of the invention
この発明は、 上記従来の欠点を解決するためになされたものであって、 その目的は、 コンパク ト化及び低騒音化を図りながら、 ,熱交換能力を向上 することができる空気調和機を提供することにある。  SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional disadvantages, and an object of the present invention is to provide an air conditioner capable of improving heat exchange capacity while achieving compactness and low noise. Is to do.
上記目的を達成するため、 この発明の空気調和機は、 その前面及び上面 に吸込口 4、 5を有する本体ケーシング 1 9内に、 前面側熱交換器 1と背 面側熱交換器 2とを逆 V字状に繙合せて成る熱交換器 1 0と、 この熱交換 器 1 0の下流側に配置されたファンロータ 3と、 前面側熱交換器 1の下方 に配置される前面側ドレンパン 8と、 背面側熱交換器 2の下方に配置され る背面側ドレンパン 2 2とを備えた空気調和機において、 前面側熱交換器 1の単位前面面積当たりの熱交換量を、 背面側熱交換器 2のそれよりも大 きく したことを特徴としている。 In order to achieve the above object, the air conditioner of the present invention includes a front heat exchanger 1 and a rear heat exchanger 2 in a main body casing 19 having suction ports 4 and 5 on the front and upper surfaces thereof. Heat exchanger 10 which is made up of inverted V-shape and this heat exchange Fan rotor 3 arranged downstream of unit 10, front drain pan 8 arranged below front heat exchanger 1, and rear drain pan 2 arranged below rear heat exchanger 2 2 In the air conditioner provided with the above, the amount of heat exchange per unit front area of the front heat exchanger 1 is larger than that of the rear heat exchanger 2.
この発明の空気調和機では、 前面側熱交換器 1の単位前面面積当たりの 熱交換量が、 背面側熱交換器 2の単位前面面積当たりの熱交換量よりも大 きくなるように構成されている。 従って、 熱交換器 1 0自体を大きくする ことなく熱交換器 1 0の能力を向上することができ、 コンパク ト化を図る ことができる。 また、 背面側熱交換器 2の単位前面面積当たりの熱交換量 は、 前面側熱交換器 1に比べて小さいので、 冷房運転時に背面側熱交換器 2で発生するドレン水は比較的小量であり、 背面側ドレンパン 2 2を大型 化する必要がない。 従って、 背面側熱交換器 2の送風経路上に背面側ドレ ンパン 2 2が突出して送風経路を狭めることはなく、 送風性能の低下及び 異音の発生を防止することができる。 なお、 前面側熱交換器 1の能力 (前 面面積当たりの熱交換量) を向上させることによって、 発生するドレン水 が増加し、 これに伴い前面側ドレンパン 8を大型化する必要が生じるが、 前面側ドレンパン 8は前面側熱交換器 1の下方に配置されており、 送風経 路は正面側から背面側に向かって形成されているので、 前面側ドレンパン 8は前面側熱交換器 1の送風経路上に突出することはない。 従って、 送風 能力の低下及び異音の発生といった不具合は生じない。  In the air conditioner of the present invention, the heat exchange amount per unit front area of the front heat exchanger 1 is configured to be larger than the heat exchange amount per unit front area of the rear heat exchanger 2. I have. Therefore, the capacity of the heat exchanger 10 can be improved without increasing the size of the heat exchanger 10 itself, and compactness can be achieved. Also, since the heat exchange amount per unit front area of the rear heat exchanger 2 is smaller than that of the front heat exchanger 1, the amount of drain water generated in the rear heat exchanger 2 during cooling operation is relatively small. Therefore, there is no need to increase the size of the rear drain pan 22. Therefore, the rear-side drain pan 22 does not protrude above the air-supply path of the rear-side heat exchanger 2 to narrow the air-supply path, so that it is possible to prevent the deterioration of the air-supply performance and the generation of abnormal noise. It should be noted that by increasing the capacity of the front heat exchanger 1 (the amount of heat exchange per front area), the amount of drain water generated increases, and accordingly, the size of the front drain pan 8 needs to be increased. The front-side drain pan 8 is located below the front-side heat exchanger 1, and the ventilation path is formed from the front side to the rear side. It does not protrude on the path. Therefore, there are no problems such as a decrease in the blowing capacity and generation of abnormal noise.
また、一実施例の空気調和機は、 上記熱交換器 1 0は、 並設された複数 のフィ ン 1 7に伝熱管 2 1を貫通状態で配置して成るクロスフィンチュー ブ型熱交換器にて構成し、 上記熱交換器 1 0のフィン 1 7には、 2本の平 行な切り込み 2 7に挟まれた部分 2 8を一方表面側に引き起こして形成さ れたスリッ ト 2 4が複数個形成され、 前面側熱交換器 1のフィン 1 7にお けるスリッ ト 2 4の占有面積割合を、 背面側熱交換器 2のそれよりも大き く したことを特徴としている。 また、 別の実施例の空気調和機は、 熱交換 器 1 0のフィン 1 7には、 切り込み 3 0の一方の側に隣接する部分 3 1を 一方表面側に引き起こして形成されたルーバー 2 9が複数個形成され、 前 面側熱交換器 1のフィン 1 7におけるルーバー 2 4の占有面積割合を、 前 面側熱交換器 2のそれよりも大きく したことを特徴としている。 これらの 実施例の空気調和機においては、 空気側 (フィン 1 7 ) の熱伝導率向上に より前面側熱交換器 1の熱交換量が増加する。 また、 既存のフィンを加工 することによってスリツ トゃルーバーを形成できるので、 比較的容易に実 施することができる。 Further, in the air conditioner of one embodiment, the heat exchanger 10 is a cross-fin tube type heat exchanger formed by arranging the heat transfer tubes 21 through a plurality of fins 17 arranged in parallel. The fin 17 of the heat exchanger 10 is formed by raising a part 28 sandwiched between two parallel cuts 27 toward one surface side. Multiple slits 24 were formed, and the area occupied by the slits 24 in the fins 17 of the front heat exchanger 1 was made larger than that of the rear heat exchanger 2. Features. Further, in the air conditioner of another embodiment, the fin 17 of the heat exchanger 10 has a louver 29 formed by raising a portion 31 adjacent to one side of the cut 30 on one surface side. Are formed, and the occupied area ratio of the louvers 24 in the fins 17 of the front-side heat exchanger 1 is made larger than that of the front-side heat exchanger 2. In the air conditioners of these embodiments, the heat exchange amount of the front-side heat exchanger 1 increases due to the improvement of the heat conductivity on the air side (fins 17). Further, since the slit louver can be formed by processing an existing fin, it can be implemented relatively easily.
また、 一実施例の空気調和機は、 上記熱交換器 1 0は、 並設された複数 のフィン 1 7に伝熱管 2 1を貫通状態で配置して成るクロスフィンチュー ブ型熱交換器にて構成し、 上記前面側熱交換器 1のフィンピッチ P 1を、 背面側熱交換器 2のそれよりも小さく したことを特徴としている。 また、 別の実施例の空気調和機は、 前面側熱交換器 1のフィン 1 7の空気流方向 の幅 W 1を、 背面側熱交換器 2のそれよりも大きく したことを特徴として いる。 これらの空気調和機においては、 空気側の伝熱面積の増加により前 面側熱交換器 1の熱交換量が増加する。  Further, in the air conditioner of one embodiment, the heat exchanger 10 is a cross-fin tube type heat exchanger in which a plurality of fins 17 arranged side by side and heat transfer tubes 21 are arranged in a penetrating state. The fin pitch P 1 of the front-side heat exchanger 1 is smaller than that of the rear-side heat exchanger 2. Further, the air conditioner of another embodiment is characterized in that the width W 1 of the fins 17 of the front heat exchanger 1 in the air flow direction is larger than that of the rear heat exchanger 2. In these air conditioners, the amount of heat exchange of the front heat exchanger 1 increases due to an increase in the heat transfer area on the air side.
また、一実施例の空気調和機は、 上記熱交換器 1 0は、 並設された複数 のフィン 1 7に伝熱管 2 1を貫通状態で配置して成るクロスフィンチュー ブ型熱交換器にて構成し、 上記前面側熱交換器 1の伝熱管ピッチ P t 1を、 背面側熱交換器 2のそれよりも小さく したことを特徴としている。 また、 別の実施例の空気調和機は、 前面側熱交換器 1のフィン 1 7の板厚 T 1を、 背面側熱交換器 2のそれよりも厚く したことを特徴としている。 これらの 実施例の空気調和機においては、 フィン 1 7のフィン効率の向上により前 面側熱交換器 1の熱交換量が増加する。 Further, in the air conditioner of one embodiment, the heat exchanger 10 is a cross-fin tube type heat exchanger in which a plurality of fins 17 arranged side by side and heat transfer tubes 21 are arranged in a penetrating state. The heat transfer tube pitch Pt1 of the front-side heat exchanger 1 is smaller than that of the rear-side heat exchanger 2. Further, the air conditioner of another embodiment is characterized in that the plate thickness T1 of the fins 17 of the front heat exchanger 1 is larger than that of the rear heat exchanger 2. these In the air conditioner of the embodiment, the amount of heat exchange of the front-side heat exchanger 1 increases due to the improvement of the fin efficiency of the fins 17.
また、一実施例の空気調和機では、 上記熱交換器 1 0は、 並設された複 数のフィン 1 7に伝熱管 2 1を貫通状態で配置して成るクロスフィンチュ —ブ型熱交換器にて構成し、 上記前面側熱交換器 1の伝熱管 2 1の熱伝導 率を、 背面側熱交換器 2のそれよりも高く している。 このようにすること によっても前面側熱交換器 1の熱交換量は増加する。  Further, in the air conditioner of one embodiment, the heat exchanger 10 is a cross-fin type heat exchanger in which the heat transfer tubes 21 are arranged in a state of being penetrated by a plurality of fins 17 arranged in parallel. The heat conductivity of the heat transfer tubes 21 of the front heat exchanger 1 is higher than that of the rear heat exchanger 2. By doing so, the heat exchange amount of the front heat exchanger 1 also increases.
また、 一実施例の空気調和機では、 上記熱交換器 1 0は、 並設された複 数のフィン 1 7に伝熱管 2 1を貫通状態で配置して成るクロスフィンチュ ーブ型熱交換器にて構成し、 上記熱交換器 1 0の伝熱管 2 1は連結されて 複数の経路 R l、 R 2、 R 3を構成し、 冷媒供給手段からの冷媒が複数の 上記経路 R l、 R 2、 R 8の各供給口から分流して供給され、 各 II路 R l、 R 2、 R 3を通過した後に複数の上記経路 R l、 R 2、 R 3の各排出口か ら排出されて再び合流されて上記冷媒供給手段に戻されており、 背面側熱 交換器 2を通る経路 R 1中に含まれる伝熱管 2 1の本数を、 前面側熱交換 器 1を通る経路 R 2、 R 3中に含まれる伝熱管 2 1の本数よりも多く した ことを特徴としている。 この実施例の空気調和機では、 前面側熱交換器 1 における経路 R l、 R 2での冷媒側圧力損矢が滅少し、 そのため空気側と の温度差が増加することにより、 前面側熱交換器 1の熱交換量が増加する 図面の簡単な説明  Further, in the air conditioner of one embodiment, the heat exchanger 10 is a cross-fin tube type heat exchange configured by disposing the heat transfer tube 21 in a state of being penetrated by a plurality of fins 17 arranged in parallel. The heat transfer tubes 21 of the heat exchanger 10 are connected to form a plurality of paths Rl, R2, R3, and the refrigerant from the refrigerant supply means receives the plurality of paths Rl, R2 and R8 are supplied separately from the supply ports, and after passing through each II path Rl, R2 and R3, are discharged from the discharge ports of the above multiple paths Rl, R2 and R3 And is returned to the refrigerant supply means, and the number of heat transfer tubes 21 included in the route R 1 passing through the rear heat exchanger 2 is reduced by the route R 2 passing through the front heat exchanger 1. In addition, the number of heat transfer tubes 21 included in R3 is larger than that of R3. In the air conditioner of this embodiment, the pressure loss arrow on the refrigerant side in the routes Rl and R2 in the front side heat exchanger 1 is reduced, and the temperature difference with the air side is increased. The amount of heat exchange in vessel 1 increases.
図 1は、 本発明の空気調和機を分離形空気調和機の室内機として構成し た一実施の形態を示す断面図である。  FIG. 1 is a cross-sectional view showing an embodiment in which the air conditioner of the present invention is configured as an indoor unit of a separation type air conditioner.
図 2は、 本発明の実施の形態における熱交換器の概略的構成を示す斜視 図である。  FIG. 2 is a perspective view showing a schematic configuration of the heat exchanger according to the embodiment of the present invention.
図 3は本発明の実施の形態における前面側熱交換器の部分拡大平面図で ¾ o FIG. 3 is a partially enlarged plan view of the front-side heat exchanger according to the embodiment of the present invention. ¾ o
図 4は本発明の実施の形態における背面側熱交換器の部分拡大平面図で める。  FIG. 4 is a partially enlarged plan view of the rear heat exchanger according to the embodiment of the present invention.
図 5 Aおよび図 5 Bはスリッ 卜の形成方法を説明する説明図である。 図 6 Aおよび図 6 Bはルーバーの形成方法を説明する説明図である。 図 7は、 本発明の実施の形態における熱交換器への冷媒の供給経路を説 明する説明図である。  FIG. 5A and FIG. 5B are explanatory views for explaining a method of forming a slit. 6A and 6B are explanatory views illustrating a method of forming a louver. FIG. 7 is an explanatory diagram illustrating a supply path of the refrigerant to the heat exchanger according to the embodiment of the present invention.
図 8は、 従来技術における熱交換器への冷媒の供給経路を説明する説明 図である。  FIG. 8 is an explanatory diagram illustrating a supply path of a refrigerant to a heat exchanger in a conventional technique.
図 9は分離形空気調和機の室内機の従来例を示す断面図である。  FIG. 9 is a sectional view showing a conventional example of an indoor unit of a separation type air conditioner.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
次に、 この発明の空気調和機の具体的な実施の形態について、 図面を参 照しつつ詳細に説明する。 図 1は、 上記空気調和機の一実施の形態を分離 形空気調和機の室内機に適用した場合の適用例を示す断面図である。 この 室内機においても上記従来例と同様に、 本体ケーシング 1 9の前面側に前 面吸込口 4が形成された前面グリル 1 1が設けられると共に、 その上面側 にも上面吸込口 5が形成された上面グリル 1 2が設けられている。 同図に 示す 1は、 前面側熱交換器である。 この前面側熱交換器 1は、 2 0本の冷 媒管 2 1を挿通して構成されたものであり、 4本の冷媒管 2 1が挿通され た部分を一区画として、 第 1〜第 5区画部 1 a〜l eの 5区画に区分され ている。 そして互いに隣接する区画部同士の間を折曲げる,ことにより、 そ の頂部から下部にかけて前面側に凸となるよう湾曲させ、 頂部から数えて 4つ目に当たる第 4区画部 1 dを最も前面側に位置させている。 また同図 における 2は、 背面側熱交換器 2である。 この背面側熱交換器 2は、 8本 の冷媒管 2 1を挿通して構成されたものであり、 上記前面側熱交換器 1と 同じように 4本の冷媒管 2 1が挿通された部分を一区画として第 1、 第 2 区画部 2 a、 2 bの 2区画に区分され、 両区画部 2 a、 2 bの間を折曲げ ることに. よって、 その頂部から下部にかけて背面側に凸となるよう湾曲 されている。 また上記両熱交換器 1、 2の頂部は互いに近接して配置され、 この部分を頂部として両熱交換器 1、 2を組み合わせることにより、 逆 V 字状の熱交換器 1 0が構成されている。 この熱交換器 1 0の逆 V字状の外 側が本体ケーシング 1 9内における吸込側 1 4となり、 その内側、 すなわ ち熱交換器 1 0の下流側が吹出側 1 5となっている。 また上記本体ケーシ ング 1 9の前面上側コーナ部、 つまり前面グリル 1 1と上面グリル 1 2と の連設部においては、 前面側熱交換器 1の上部との間に一定のスペースが 形成されているが、 このスペース内には抗菌 ·脱臭作用等を有する空気清 浄用フィルタ 1 6が配設されている。 Next, specific embodiments of the air conditioner of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing an application example when one embodiment of the air conditioner is applied to an indoor unit of a separation type air conditioner. In this indoor unit, similarly to the above-described conventional example, a front grill 11 having a front suction port 4 is provided on the front side of the main body casing 19, and a top suction port 5 is also formed on the upper surface side. Top grille 12 is provided. 1 shown in the figure is a front-side heat exchanger. The front-side heat exchanger 1 is configured by inserting 20 refrigerant tubes 21, and the first to the first sections are defined by a section where the four refrigerant tubes 21 are inserted as one section. 5 divisions The division is divided into 5 divisions, 1 a to le. Then, by bending between the adjacent partitioning portions, it is curved so as to protrude forward from the top to the lower portion, and the fourth partitioning portion 1 d, which is the fourth counting from the top, is the frontmost side. Is located. Reference numeral 2 in the figure denotes a rear-side heat exchanger 2. The rear-side heat exchanger 2 is configured by inserting eight refrigerant pipes 21 into the rear-side heat exchanger 2. Similarly, the portion through which the four refrigerant pipes 21 are inserted is divided into two sections, a first section and a second section 2a, 2b, as one section, and the space between the two sections 2a, 2b is folded. By bending, it is curved so as to be convex on the back side from the top to the bottom. In addition, the tops of both heat exchangers 1 and 2 are arranged close to each other, and by combining these heat exchangers 1 and 2 with this portion as the top, an inverted V-shaped heat exchanger 10 is formed. I have. The outside of the inverted V-shaped heat exchanger 10 is the suction side 14 in the main body casing 19, and the inside, that is, the downstream side of the heat exchanger 10 is the discharge side 15. Further, at the upper front corner of the main body casing 19, that is, at the continuous portion between the front grill 11 and the upper grill 12, a certain space is formed between the upper part of the front heat exchanger 1 and the upper space. However, an air purification filter 16 having antibacterial and deodorizing effects is provided in this space.
さらに上記吹出側 1 5には、 従来例と同様に円柱状のファンロータ 3、 舌部 7、 スクロール部 6等によって構成されたクロスフローファンが設け られている。 このクロスフローファンのファンロータ 3は、 回転軸 3 aが 上記前面側熱交換器 1の第 4区画部 1 dの後方に位置するように配置され ている。 また上記スクロール部 6は、 その下端側が吹出口 1 3へと滑らか に連なるように形成されている。 また冷房運転時において、 前面側熱交換 器 1で発生したドレン水を受けるために、 上記舌部 7と一体に形成された 前面側ドレンパン 8が設けられている。 また背面側熱交換器 2で発生する ドレン水については、 熱交換器支持部 2 3と一体に形成された背面側ドレ ンパン 2 2で受けるようになつている。 さらにドレン水は上記スクロール 部 6の背部にも発生することがあるが、 これは背部ドレンパン 9で受ける ように構成されている。  Further, a cross-flow fan composed of a columnar fan rotor 3, a tongue 7, a scroll 6 and the like is provided on the outlet side 15 as in the conventional example. The fan rotor 3 of the cross flow fan is arranged such that the rotating shaft 3 a is located behind the fourth partition 1 d of the front-side heat exchanger 1. Further, the scroll portion 6 is formed such that the lower end side thereof is smoothly connected to the outlet 13. In addition, a front-side drain pan 8 integrally formed with the tongue 7 is provided to receive drain water generated in the front-side heat exchanger 1 during the cooling operation. Drain water generated in the rear heat exchanger 2 is received by a rear drain pan 22 integrally formed with the heat exchanger support 23. Further, drain water may also be generated on the back of the scroll section 6, but this is configured to be received by the back drain pan 9.
以上のように構成された室内機において図 1に示すフアンロータ 3が回 転駆動されると、 クロスフ口一ファンの作用によって渦気流が発生し、 こ の渦気流によって前面吸込口 4及び上面吸込口 5から室内空気を吸い込む ようになる。 吸い込んだ室内空気は、 さらに本体ケーシング 1 9の吸込側 1 4から吹出側 1 5へと流通し、 その際熱交換器 1 0によって熱交換 (冷 却) されて、 空調空気となる。 この空調空気は、 上記スクロール部 6に沿- て前面側へと流通方向を変えつつ、 吹出口 1 3から再び室内へと吹き出さ れるようになっている。 In the indoor unit configured as described above, the fan rotor 3 shown in FIG. When driven in rotation, a swirling air flow is generated by the action of the cross-floor fan, and the swirling air current sucks indoor air from the front suction port 4 and the top suction port 5. The sucked room air further flows from the suction side 14 of the main body casing 19 to the blowout side 15, where it is heat-exchanged (cooled) by the heat exchanger 10 to be conditioned air. The conditioned air is blown out of the outlet 13 again into the room while changing the flow direction to the front side along the scroll portion 6.
上記室内機の熱交換器 1 0においては、 熱交換能力は後述する種々の手 法によって従釆の熱交換器よりも向上しているが、 前面側熱交換器 1の単 位前面面積当たりの熱交換量が背面側熱交換器 2の単位前面面積当たりの 熱交換量よりも大きくなるように構成されている。 従って、 熱交換器 1 0 自体を大きくすることなく熱交換器 1 0の能力を向上することができ、 コ ンパク ト化を図ることができる。  In the heat exchanger 10 of the indoor unit, the heat exchange capacity is improved over the conventional heat exchanger by various methods described later, but the heat exchange capacity per unit front area of the front side heat exchanger 1 is increased. The heat exchange amount is configured to be larger than the heat exchange amount per unit front area of the rear heat exchanger 2. Therefore, the capacity of the heat exchanger 10 can be improved without increasing the size of the heat exchanger 10 itself, and compactness can be achieved.
また、 上述したように、 背面側熱交換器 2の単位前面面積当たりの熱交 換量は、 前面側熱交換器 1のそれに比べて小さいので、 冷房連転時に背面 側熱交換器 2で発生するドレン水は比較的小量であり、 背面側ドレンパン 9を大型化する必要がない。 背面側熱交換器 2の送風経路は、 上面吸込口 5から吸込側 1 4を通って吹出側 1 5へ、 すなわち本体ケーシング 1 9の 上部から吹出口 1 3がある下部に向かって形成されているので、 背面側熱 交換器 2の下方側に配置される背面側ドレンパン 9を大きくすると、 送風 経路に突出して設けられることになり、 送風経路が狭められ、 送風性能の 低下及び異音の発生という問題が生じるが、 本発明では背面側ドレンパン Also, as described above, the heat exchange amount per unit front area of the rear heat exchanger 2 is smaller than that of the front heat exchanger 1, so it is generated in the rear heat exchanger 2 during cooling rotation. The amount of drain water generated is relatively small, and there is no need to increase the size of the rear drain pan 9. The ventilation path of the rear side heat exchanger 2 is formed from the upper surface inlet 5 to the outlet side 15 through the inlet side 14, that is, from the upper part of the main body casing 19 to the lower part where the outlet 13 is located. Therefore, if the rear drain pan 9 arranged below the rear heat exchanger 2 is made larger, it will be provided so as to protrude into the ventilation path, and the ventilation path will be narrowed, resulting in reduced ventilation performance and noise. However, in the present invention, the rear side drain pan
9を大きくする必要がなく、 上記問題は生じない。 There is no need to increase 9, and the above problem does not occur.
なお、 前面側熱交換器 1の能力、 すなわち単位前面面積当たりの熱交換 量を向上させたことによって発生するドレン水が増加し、 前面側ドレンパ ン 8も大型化する必要が生じる可能性もあるが、 前面側ドレンパン 8は前 面側熱交換器 1の下方側に配置されており、 送風経略は前面吸込口 4から 吹出側 1 5、 ファンロータ 3を通って吹出口 1 3に向かって形成されてい るので、 前面側ドレンパン 8が送風経路に突出することはない。 従って、 送風能力の低下及び異音の発生といつた問題は生じない。 In addition, drain water generated by improving the capacity of the front heat exchanger 1, that is, the heat exchange amount per unit front area, increases, and the front Although the size of the fan 8 may need to be increased, the front drain pan 8 is located below the front heat exchanger 1, and the air flow is roughly from the front inlet 4 to the outlet 15 and the fan Since it is formed toward the air outlet 13 through the rotor 3, the front drain pan 8 does not protrude into the air supply path. Therefore, problems such as a reduction in the blowing capacity and generation of abnormal noise do not occur.
次に、 図 2〜図 8を参照しながら、 前面側熱交換器 1の単位前面面積当 たりの熱交換量を背面側熱交換器 2よりも大きくするための具体的な実現 方法について説明する。  Next, a specific method for realizing a larger heat exchange amount per unit front area of the front heat exchanger 1 than that of the rear heat exchanger 2 will be described with reference to FIGS. .
図 2は、 熱交換器 1 0の構成を示す斜視図である。 熱交換器 1 0は、 上 述したように前面側熱交換器 1及び背面側熱交換器 2から成り、 各交換器 1、 2の構成は基本的に同一であり、 クロスフィンチューブ型熱交換器で ある。 このクロスフィンチューブ型熱交換器は、 図 2に示すように、 複数 のフィン 1 7が並設され、 それに複数本の伝熱管 2 1が貫通状態で配置さ れて成る。  FIG. 2 is a perspective view showing a configuration of the heat exchanger 10. The heat exchanger 10 is composed of the front heat exchanger 1 and the rear heat exchanger 2 as described above, and the configuration of each of the heat exchangers 1 and 2 is basically the same. It is a vessel. As shown in FIG. 2, the cross fin tube type heat exchanger includes a plurality of fins 17 arranged side by side, and a plurality of heat transfer tubes 21 arranged in a penetrating state.
前面側熱交換器 1は、 板厚 T 1のフィン 1 7がフィンピッチ P 1で並設 されており、 前面面積 S l = L x H lである。 ここで、 Lは熱交換器の有 効長であり、 具体的には、 一方の側端部のフィンから他方の側端部のフィ ンまでの長さである。 H Iは、 フィン 1 7の空気流吸込側の長さである。 背面側熱交換器 2は、 板厚 T 2のフィン 1 7がフィンピッチ P 2で並設さ れており、 前面面積 S 2 = L x H 2である。 H 2は、 フィン 1 7の空気流 吸込側の長さである。 また、 熱交換器 1 0の全前面面積 Sは、 S = S 1 + S 2である。 そして前面側熱交換器 1の全熱交換量を前面側熱交換器 1の 前面面積 S 1で除した値を前面側熱交換器 1の単位前面面積当たりの熱交 換量と称し、 また背面側熱交換器 2の全熱交換量を背面側熱交換器 2の前 面面積 S 2で除した値を背面側熱交換器 2の単位前面面積当たりの熱交換 量と称する。 In the front-side heat exchanger 1, fins 17 having a plate thickness of T1 are arranged side by side at a fin pitch of P1, and the front surface area is Sl = L x Hl. Here, L is the effective length of the heat exchanger, specifically, the length from the fin at one side end to the fin at the other side end. HI is the length of the air flow suction side of the fin 17. In the rear-side heat exchanger 2, fins 17 having a plate thickness T2 are arranged side by side at a fin pitch P2, and the front surface area is S2 = L x H2. H 2 is the length of the air flow suction side of the fin 17. Further, the total front area S of the heat exchanger 10 is S = S 1 + S 2. Then, the value obtained by dividing the total heat exchange amount of the front heat exchanger 1 by the front area S1 of the front heat exchanger 1 is called the heat exchange amount per unit front area of the front heat exchanger 1, and Heat exchange per unit front area of rear heat exchanger 2 divided by total heat exchange amount of rear heat exchanger 2 by front area S 2 of rear heat exchanger 2 Called quantity.
図 3は、 前面側熱交換器 1のフィン 1 7の部分拡大平面図であり、 図 4 は背面側熱交換器 2のフィン 1 7の部分拡大平面図である。 第 1の実現方 法は、 図 3および図 4に示すように熱交換器 1、 2のフィン 1 7に複数の スリッ ト 2 4をそれぞれ形成し、 前面側熱交換器 1のフィン 1 7における スリッ ト 2 4の占有面積割合を、 背面側熱交換器 2のフィン 1 7における スリッ ト 2 4の占有面積割合よりも大きくすることである。  FIG. 3 is a partially enlarged plan view of the fins 17 of the front-side heat exchanger 1, and FIG. 4 is a partially enlarged plan view of the fins 17 of the rear-side heat exchanger 2. The first method is to form a plurality of slits 24 on the fins 17 of the heat exchangers 1 and 2 as shown in FIGS. The occupied area ratio of the slit 24 is to be larger than the occupied area ratio of the slit 24 in the fins 17 of the rear heat exchanger 2.
図 5 Aおよび図 5 Bは、 スリツ ト 2 4の形成方法を説明する図である。 スリッ ト 2 4は、 図 5 Aに示すように、 フィン 1 7に一対の平行な切り込 み 2 7を形成し、 この切り込み 2 7に挟まれた引き起こし部分 2 8を、 図 5 Bに示すように、 フィン 1 7の一方表面側に引き起こして形成される。 スリッ ト 2 4を形成することによってフィン 1 7にはエツジが形成され、 このエツジが持つエツジ効果によって熱伝達率が向上し、 熱交換量が大き くなる。 したがって、 前面側熱交換器 1のフィン 1 7におけるスリッ ト 2 4の占有面積割合を、 背面側熱交換器 2のそれよりも大きくすることによつ て、 単位前面面積当たりの熱交換量に差を設けることができる。  FIG. 5A and FIG. 5B are diagrams illustrating a method of forming the slit 24. The slit 24 forms a pair of parallel cuts 27 in the fins 17 as shown in FIG. 5A, and the causing portion 28 sandwiched between the cuts 27 is shown in FIG. 5B. As such, fins 17 are formed on one surface side of the fins. By forming the slit 24, an edge is formed on the fin 17, and the edge effect of the edge improves the heat transfer coefficient and increases the amount of heat exchange. Therefore, by increasing the ratio of the area occupied by the slits 24 in the fins 17 of the front-side heat exchanger 1 to that of the rear-side heat exchanger 2, the amount of heat exchange per unit frontal area can be reduced. A difference can be provided.
なお、 図 3及び図 4において、 2 6は突起であり、 表面積の拡大によつ て熱伝達率を向上させるために設けられるものである。 また、 2 5は切込 みスリッ トであり、 フィン 1 7の幅方向中央付近に、 フィン 1 7の長手方 向とほぼ平行に一定の間隔で形成されている。 切り込みスリツ ト 2 5はそ れらによって分断された各 2つの領域を熱的に分離するために設けられる ものである。  In FIGS. 3 and 4, reference numeral 26 denotes a protrusion, which is provided to improve the heat transfer coefficient by increasing the surface area. Reference numeral 25 denotes a notch slit, which is formed near the center of the fin 17 in the width direction at a constant interval substantially in parallel with the longitudinal direction of the fin 17. The cut slits 25 are provided for thermally separating each of the two regions separated by them.
第 2の実現方法は、 上記スリッ ト 2 4の代わりに、 ルーバー 2 9を形成 することである。 図 6 Aおよび図 6 Bは、 ルーバー 2 9の形成方法を説明 する図である。 ルーバー 2 9は、 図 6 Aに示すように、 フィン 1 7に直線 状の切り込み 3 0を形成し、 この切り込み 3 0の一方の側に隣接する概略 矩形の部分 3 1を、 図 6 Bに示すように、 フィン 1 7の一方表面側に一定 の角度だけ引き起こして形成される。 なおルーバー 2 9としては、 このよ うな構造のものに限られず、 例えば、 平行な一対の切り込みを形成し、 こ の切り込み間の位置において、 一方の切り込みに隣接する概略矩形の部分 を一方の表面側に一定の角度だけ引き起こすと共に、 他方の切り込みに隣 接する概略矩形の部分を他方の表面側に一定角度だけ引き起こした構造 (図 6 Bにおいて実線で示すルーバー 2 9に仮想線で示すルーバーを付加した 構造) としてもよい。 The second realization method is to form a louver 29 instead of the slit 24. 6A and 6B are views for explaining a method of forming the louver 29. FIG. Louver 29 is straight to fin 17 as shown in Figure 6A A notch 30 is formed, and a roughly rectangular portion 31 adjacent to one side of the notch 30 is raised by a certain angle on one surface side of the fin 17 as shown in FIG. 6B. It is formed. The louver 29 is not limited to such a structure. For example, a pair of parallel cuts is formed, and a roughly rectangular portion adjacent to one cut is formed on one surface at a position between the cuts. A structure in which a rectangular portion adjacent to the other cut is raised by a certain angle on the other surface side (a louver shown by a virtual line is added to a louver 29 shown by a solid line in FIG. 6B). Structure).
ルーバー 2 9を形成することによってフィン 1 7にはエツジが形成され、 このエツジが持つェッジ効果によつて熱伝達率が向上し、 熱交換量が大き くなる。 したがって、 前面側熱交換器 1のフィン 1 7におけるルーバー 2 9の占有面積割合を、 背面側熱交換器 2のそれよりも大きくすることによつ て、 単位前面面積当たりの熱交換量に差を設けることができる。  By forming the louver 29, an edge is formed on the fin 17, and the heat transfer coefficient is improved by the edge effect of the edge, and the heat exchange amount is increased. Therefore, by making the occupied area ratio of the louver 29 in the fins 17 of the front heat exchanger 1 larger than that of the rear heat exchanger 2, the heat exchange amount per unit front area becomes different. Can be provided.
上記第 1および第 2の実現方法は、 既存のフィン 1 7を加工することに よつて形成することができるので、 比較的容易に実施することができる。 第 3の実現方法は、 前面側熱交換器 1のフィンピッチ P 1 (図 2参照) を、 背面側熱交換器 2のフィンピッチ P 2よりも小さくすることである。 フィンピッチ P 1を小さくすると、 同一の有効長 Lに含まれるフィン 1 7 の個数が増加することになり、 その結果、 熱交換器 1の伝熱面積が増加し て熱交換量が大きくなる。  Since the first and second realization methods can be formed by processing the existing fins 17, they can be implemented relatively easily. The third realization method is to make the fin pitch P 1 of the front heat exchanger 1 (see FIG. 2) smaller than the fin pitch P 2 of the rear heat exchanger 2. When the fin pitch P 1 is reduced, the number of the fins 17 included in the same effective length L increases, and as a result, the heat transfer area of the heat exchanger 1 increases, and the heat exchange amount increases.
第 4の実現方法は、 前面側熱交換器 1の空気流方向の長さ W 1 (図 3参 照) を、 背面側熱交換器 2の空気流方向の長さ W 2 (図 4参照) よりも長 くすることである。 空気流方向の長さ W 1を長くすると、 その分だけ熱交 換器 1の伝熱面積が増加して熱交換量が大きくなる。 第 5の実現方法は、 前面側熱交換器 1の伝熱管 2 1の管ピッチ P t 1 (図 3参照) を、 背面側熱交換器 2の管ピッチ P t 2 (図 4参照) よりも小さ くすることである。 管ピッチ P t 1を小さくすると、 より多くの伝熱管 2 1がフィン 1 7を貫通することになり、 熱伝達率が向上し、 前面側熱交換 器 1の熱交換量が大きくなる。 In the fourth method, the length W 1 of the front heat exchanger 1 in the air flow direction (see FIG. 3) is changed to the length W 2 of the rear heat exchanger 2 in the air flow direction (see FIG. 4). It is longer. When the length W 1 in the air flow direction is increased, the heat transfer area of the heat exchanger 1 increases by that amount, and the heat exchange amount increases. The fifth realization method is to make the pipe pitch Pt1 of the heat transfer tubes 21 of the front heat exchanger 1 (see Fig. 3) more than the pipe pitch Pt2 of the rear heat exchanger 2 (see Fig. 4). It is to make it smaller. When the tube pitch Pt1 is reduced, more heat transfer tubes 21 penetrate the fins 17, thereby improving the heat transfer coefficient and increasing the heat exchange amount of the front heat exchanger 1.
第 6の実現方法は、 前面側熱交換器 1のフィン 1 7の板厚 T 1を、 背面 側熱交換器 2のフィン 1 7の板厚 T 2よりも大きくすることである。 フィ ン 1 7の板厚 T 1を大きくすることによって熱伝達率が向上し、 前面側熱 交換器 1の熱交換量が大きくなる。  The sixth realization method is to make the thickness T1 of the fins 17 of the front heat exchanger 1 larger than the thickness T2 of the fins 17 of the rear heat exchanger 2. By increasing the plate thickness T1 of the fins 17, the heat transfer coefficient is improved, and the amount of heat exchange of the front heat exchanger 1 is increased.
第 7の実現方法は、 前面側熱交換器 1の伝熱管 2 1の熱伝達率を、 背面 側熱交換器 2の伝熱管の熱伝達率よりも高くすることである。 そのために は、 例えば熱伝導率の高い材料を用いればよい。 熱伝達率が向上すること によって、 前面側熱交換器 1の熱交換量が大きくなる。  A seventh realization method is to make the heat transfer coefficient of the heat transfer tubes 21 of the front heat exchanger 1 higher than the heat transfer coefficient of the heat transfer tubes of the rear heat exchanger 2. For this purpose, for example, a material having high thermal conductivity may be used. By improving the heat transfer coefficient, the heat exchange amount of the front-side heat exchanger 1 increases.
次に第 8の実現方法について説明する。 まず図 7は、 本発明における熱 交換器 1 0に対する冷媒の供給経路を説明するための図であり、 図 8は従 来技術における熱交換器 4 0に対する冷媒の供給経路を説明するための図 である。 図 7及び図 8において、 伝熱管 2 1、 5 0を結ぶ実線は図面の紙 面上手前側で 2本の伝熱管が連結されていることを示し、 破線は図面の紙 面上背後側で 2本の伝熱管が連結されていることを示す。  Next, an eighth implementation method will be described. First, FIG. 7 is a diagram for explaining a supply path of the refrigerant to the heat exchanger 10 in the present invention, and FIG. 8 is a diagram for explaining a supply path of the refrigerant to the heat exchanger 40 in the conventional technology. It is. 7 and 8, the solid line connecting the heat transfer tubes 21 and 50 indicates that the two heat transfer tubes are connected on the near side of the drawing, and the broken line indicates that the two tubes are on the back side of the drawing. Indicates that the heat transfer tubes are connected.
冷媒は、 熱交換器 1 0、 4 0に対して冷媒供給手段 2 0、 4 6から複数 個の供給口 1 ,1、 1 2、 1 3、 i 1、 i 2から分流して与えられ、 供給口 と同じ数の排出口 0 1、 0 2、 0 3、 o l、 0 2から排出された後に再び 合流されて、 冷媒供給手段 2 0、 4 6に戻される。 従って、 熱交換器 1 0、 4 0内の冷媒が流れる経路は、 複数個設けられている。  Refrigerant is provided to the heat exchangers 10 and 40 from the refrigerant supply means 20 and 46 through a plurality of supply ports 1, 1, 1, 2, 1, 3, i 1, and i 2. After being discharged from the same number of outlets 0 1, 0 2, 0 3, ol, 02 as the supply ports, they are joined again and returned to the refrigerant supply means 20, 46. Therefore, a plurality of paths through which the refrigerant in the heat exchangers 10 and 40 flows are provided.
従来の熱交換器 4 0には図 8に示すように 2つの経路 R 4、 R 5が設け られる。 従来の熱交換器 4 0では、 経路 R 4、 R 5はともに 1 4本の伝熱 管 5 0を含む。 従って 1経路当たりの冷媒側圧力損失はほぼ同じであり、 前面側熱交換器 3 1と背面側熱交換器 3 2の熱交換量は同じである。 これ に対し、 図 7に示すように、 本発明では、 熱交換器 1 0には 3つの経路 R 1、 R 2、 R 3が設けられる。 熱交換器 1 0では、 背面側熱交換器 2を通 る経路 R 1は 1 2本の伝熱管 2 1を含み、 前面側熱交換器 1を通過する経 路 R 2、 R 3はともに 8本の伝熱管 2 1を含む。 従って経路 R 2、 R 3の 冷媒側圧力損失は経路 R 1のそれよりも少ないので、 冷媒が流れ易くなる c そのため、 前面側熱交換器 1におけるフィン 1 7 (空気側) と伝熱管 2 1 との間の温度差は背面側熱交換器 2におけるフィン 1 7 (空気側) と伝熱 管 2 1との間の温度差よりも大きくなり、 これによつて前面側熱交換器 1 の方が熱交換量が大きくなる。 これは、 蒸発器の冷媒は、 ほとんどが 2相 流の状態であり、 冷媒の 2相流は、 圧力によってその濃度が定まるためで める。 The conventional heat exchanger 40 has two paths R4 and R5 as shown in Fig. 8. Can be In the conventional heat exchanger 40, the paths R4 and R5 each include 14 heat transfer tubes 50. Accordingly, the refrigerant-side pressure loss per path is substantially the same, and the heat exchange amounts of the front-side heat exchanger 31 and the rear-side heat exchanger 32 are the same. On the other hand, as shown in FIG. 7, in the present invention, the heat exchanger 10 is provided with three paths R1, R2, and R3. In the heat exchanger 10, the path R1 passing through the rear heat exchanger 2 includes 12 heat transfer tubes 21 and the paths R2 and R3 passing through the front heat exchanger 1 are both 8 Including heat transfer tubes 21 Therefore, the refrigerant-side pressure loss in the paths R 2 and R 3 is smaller than that in the path R 1, so that the refrigerant can easily flow c. Therefore, the fins 17 (air side) and the heat transfer tubes 21 in the front-side heat exchanger 1 Is larger than the temperature difference between the fins 17 (air side) in the rear heat exchanger 2 and the heat transfer tubes 21, whereby the temperature difference in the front heat exchanger 1 However, the amount of heat exchange increases. This is because most of the refrigerant in the evaporator is in a two-phase flow state, and the concentration of the two-phase flow of the refrigerant is determined by the pressure.
上述の実現方法は、 それぞれ単独で実施してもよいし、 複数種類を組合 せて実施してもよい。 またクロスフィンチューブ型熱交換器以外の構造の 熱交換器においても実施可能である。  The above-described realization methods may be performed independently, or may be performed in combination of a plurality of types. The present invention can also be applied to a heat exchanger having a structure other than the cross fin tube type heat exchanger.
産業上の利用可能性 Industrial applicability
この発明の熱交換器は空気調和機、 特にコンパク 卜で薄型化が要求され る分離形空気調和機の室内機に好適に適用することができる。  INDUSTRIAL APPLICABILITY The heat exchanger of the present invention can be suitably applied to an air conditioner, particularly an indoor unit of a separation type air conditioner which is required to be compact and thin.

Claims

請求の範囲 The scope of the claims
1. その前面及び上面に吸込口 (4) (5) を有する本体ケーシング (19) 内に、 前面側熱交換器 (1) と背面側熱交換器 (2) とを逆 V字 状に組合せて成る熱交換器 (10) と、 この熱交換器 (10) の下流側に 配置されたファンロータ (3) と、 前面側熱交換器 (1) の下方に配置さ れる前面側ドレンパン (8) と、 背面側熱交換器 (2) の下方に配置され る背面側ドレンパン (22) とを備えた空気調和機において、 前面側熱交 換器 (1) の単位前面面積当たりの熱交換量を、 背面側熱交換器 (2) の それよりも大きく したことを特徴とする空気調和機。  1. A front-side heat exchanger (1) and a rear-side heat exchanger (2) are combined in an inverted V-shape in a main casing (19) having suction ports (4) and (5) on its front and top surfaces. Heat exchanger (10), a fan rotor (3) arranged downstream of the heat exchanger (10), and a front drain pan (8) arranged below the front heat exchanger (1). ) And a rear-side drain pan (22) located below the rear-side heat exchanger (2), the amount of heat exchange per unit front area of the front-side heat exchanger (1) Air conditioner characterized by having a larger size than that of the rear heat exchanger (2).
2. 上記熱交換器 (10) は、 並設された複数のフィ ン (17) に伝 熱管 (21)を貫通状態で配置して成るクロスフィ ンチューブ型熱交換器 にて構成し、 上記熱交換器 (10) のフィ ン (17) には、 2本の平行な 切り込み (27) に挟まれた部分 (28) を一方表面側に引き起こして形 成されたスリ ッ ト (24) が複数個形成され、 前面側熱交換器 (1) のフィ ン (17) におけるスリツ ト (24) の占有面積割合を、 背面側熱交換器 (2) のそれよりも大きく したことを特徴とする請求項 1の空気調和機。  2. The heat exchanger (10) is a cross-fin tube type heat exchanger in which a plurality of fins (17) arranged in parallel and heat transfer tubes (21) are arranged in a penetrating state. In the fin (17) of the exchanger (10), there are multiple slits (24) formed by raising the part (28) sandwiched between two parallel cuts (27) on one surface side. The slit (24) occupied by the slits (24) in the fins (17) of the front-side heat exchanger (1) is larger than that of the rear-side heat exchanger (2). Item 1. Air conditioner.
3. 上記熱交換器 (10) は、 並設された複数のフィ ン (17) に伝 熱管 (21) を貫通状態で配置して成るクロスフィ ンチューブ型熱交換器 にて構成し、 上記熱交換器 (10) のフィ ン (17) には、 切り込み (8 0) の一方の側に隣接する部分 (31) を一方表面側に引き起こして形成 されたルーバー (29) が複数個形成され、 前面側熱交換器 (1) のフィ ン (17) におけるルーバー (29) の占有面積割合を、 前面側熱交換器 (2) のそれよりも大きく したことを特徴とする請求項 1の空気調和機。  3. The heat exchanger (10) is a cross-fin tube type heat exchanger in which a plurality of fins (17) arranged side by side and heat transfer tubes (21) are arranged in a penetrating state. The fin (17) of the exchanger (10) has a plurality of louvers (29) formed by raising a portion (31) adjacent to one side of the cut (80) toward one surface, 2. The air conditioner according to claim 1, wherein the occupied area ratio of the louver (29) in the fins (17) of the front heat exchanger (1) is larger than that of the front heat exchanger (2). Machine.
4. 上記熱交換器 (10) は、 並設された複数のフィ ン (17) に伝 熱管 (21) を貫通状態で配置して成るクロスフィ ンチューブ型熱交換器 にて構成し、 上記前面側熱交換器 (1) のフィンピッチ (P 1) を、 背面 側熱交換器 (2) のそれよりも小さく したことを特徴とする請求項 1〜請 求項 3の L、ずれかの空気調和機。 4. The heat exchanger (10) is a cross-fin tube type heat exchanger consisting of a plurality of fins (17) arranged side by side and a heat transfer tube (21) arranged in a penetrating state. The fin pitch (P1) of the front heat exchanger (1) is smaller than that of the rear heat exchanger (2). L, some air conditioner.
5. 上記熱交換器 (10) は、 並設された複数のフィン (17) に伝 熱管 (21) を貫通状態で配置して成るクロスフィンチューブ型熱交換器 にて構成し、 上記前面側熱交換器 (1) のフィン (17) の空気流方向の 幅 (W1) を、 背面側熱交換器 (2) のそれよりも大きく したことを特徴 とする請求項 1〜請求項 4のいずれかの空気調和機。  5. The heat exchanger (10) is a cross-fin tube type heat exchanger in which a plurality of fins (17) arranged side by side and a heat transfer tube (21) is arranged in a penetrating state. The width (W1) of the fins (17) of the heat exchanger (1) in the air flow direction is larger than that of the rear heat exchanger (2). Or air conditioner.
6. 上記熱交換器 (10) は、 並設された複数のフィン (17) に伝 熱管 (21) を貫通状態で配置して成るクロスフィンチューブ型熱交換器 にて構成し、 上記前面側熱交換器 (1) の伝熱管ピッチ (P t 1) を、 背 面側熱交換器 (2) のそれよりも小さく したことを特徴とする請求項 1〜 請求項 5のいずれかの空気調和機。  6. The heat exchanger (10) is a cross-fin tube type heat exchanger in which heat transfer tubes (21) are arranged in a state of being penetrated by a plurality of fins (17) arranged side by side. The air conditioner according to any one of claims 1 to 5, wherein a heat transfer tube pitch (Pt1) of the heat exchanger (1) is smaller than that of the rear heat exchanger (2). Machine.
7. 上記熱交換器 (10) は、 並設された複数のフィン (17) に伝 熱管 (21) を貫通状態で配置して成るクロスフィンチューブ型熱交換器 にて構成し、 上記前面側熱交換器く 1) のフィン (17) の板厚 (T1) を、 背面側熱交換器 (2) のそれよりも厚く したことを特徴とする請求項 1〜請求項 6のいずれかの空気調和機。  7. The heat exchanger (10) is a cross-fin tube type heat exchanger composed of a plurality of fins (17) arranged side by side and a heat transfer tube (21) arranged in a penetrating state. The air according to any one of claims 1 to 6, wherein the thickness (T1) of the fins (17) of the heat exchanger (1) is larger than that of the rear heat exchanger (2). Harmony machine.
8. 上記熱交換器 (10) は、 並設された複数のフィン (17) に伝 熱管 (21) を貫通状態で配置して成るクロスフィンチューブ型熱交換器 にて構成し、 上記前面側熱交換器 (1) の伝熱管 (21),の熱伝導率を、 背面側熱交換器 (2) のそれよりも高く したことを持徴とする請求項 1〜 請求項 7のいずれかの空気調和機。  8. The heat exchanger (10) is a cross-fin tube type heat exchanger composed of a plurality of fins (17) arranged side by side and heat transfer tubes (21) arranged in a penetrating state. The heat exchanger according to any one of claims 1 to 7, characterized in that the heat conductivity of the heat transfer tube (21) of the heat exchanger (1) is higher than that of the rear heat exchanger (2). Air conditioner.
9. 上記熱交換器 (10) は、 並設された複数のフィン (17) に伝 熱管 (21) を貫通状態で配置して成るクロスフィンチューブ型熱交換器 にて構成し、 上記熱交換器 (10) の伝熱管 (21) は連結されて複数の 経路 (Rl) (R2) (R3) を構成し、 冷媒供給手段からの冷媒が複数 の上記経路 (Rl) (R2) (R3) の各供給口から合流して供給され、 各経路 (Rl) (R2) (R3) を通過した後に複数の上記経路 (R1)9. The heat exchanger (10) is a cross-fin tube type heat exchanger consisting of a plurality of fins (17) arranged side by side and a heat transfer tube (21) arranged in a penetrating state. The heat transfer tubes (21) of the heat exchanger (10) are connected to form a plurality of paths (Rl), (R2), and (R3). (Rl) (R2) (R3) are fed together from each supply port, and after passing through each route (Rl) (R2) (R3), multiple routes (R1)
(R2) (R3) の各排出口から排出されて再び合流されて上記冷媒供給 手段に戻されており、 背面側熱交換器 (2) を通る経路 (R1) 中に含ま れる伝熱管 (21) の本数を、 前面側熱交換器 (1) を通る経路 (R2)The heat transfer pipes (21) that are discharged from the outlets of (R2) and (R3), merged again and returned to the refrigerant supply means, and included in the path (R1) passing through the rear heat exchanger (2) ) To the path (R2) passing through the front heat exchanger (1).
(R3) 中に含まれる伝熱管 (21) の本数よりも多く したことを特徴と する請求項 1〜請求項 8のいずれか記載の空気調和機。 The air conditioner according to any one of claims 1 to 8, wherein the number of heat transfer tubes (21) included in (R3) is larger than the number of heat transfer tubes (21).
PCT/JP1997/003730 1996-10-31 1997-10-16 Air conditioner WO1998019112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU45732/97A AU4573297A (en) 1996-10-31 1997-10-16 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8307341A JPH10132372A (en) 1996-10-31 1996-10-31 Air conditioner
JP8/307341 1996-10-31

Publications (1)

Publication Number Publication Date
WO1998019112A1 true WO1998019112A1 (en) 1998-05-07

Family

ID=17967960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003730 WO1998019112A1 (en) 1996-10-31 1997-10-16 Air conditioner

Country Status (3)

Country Link
JP (1) JPH10132372A (en)
AU (1) AU4573297A (en)
WO (1) WO1998019112A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843030A (en) * 2017-11-22 2018-03-27 广东美的制冷设备有限公司 Indoor heat exchanger, indoor apparatus of air conditioner and air conditioner
EP4317829A4 (en) * 2021-06-01 2024-07-03 Gd Midea Heating & Ventilating Equipment Co Ltd Wall-mounted air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624146B2 (en) * 2005-03-15 2011-02-02 シャープ株式会社 Air conditioner indoor unit
CN102207310A (en) * 2010-03-31 2011-10-05 乐金电子(天津)电器有限公司 Dehumidifier with arc-shaped heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111465U (en) * 1974-07-12 1976-01-28
JPS5595082U (en) * 1978-12-25 1980-07-01
JPS5758089A (en) * 1980-09-26 1982-04-07 Hitachi Ltd Heat exchanger for air conditioner
JPS58116971U (en) * 1982-02-03 1983-08-10 三菱電機株式会社 Cooler
JPS6179778U (en) * 1984-10-30 1986-05-28
JPH01178481U (en) * 1988-06-07 1989-12-20
JPH07260181A (en) * 1994-03-18 1995-10-13 Toshiba Corp Air conditioner
JPH08327080A (en) * 1995-06-02 1996-12-10 Mitsubishi Heavy Ind Ltd Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111465U (en) * 1974-07-12 1976-01-28
JPS5595082U (en) * 1978-12-25 1980-07-01
JPS5758089A (en) * 1980-09-26 1982-04-07 Hitachi Ltd Heat exchanger for air conditioner
JPS58116971U (en) * 1982-02-03 1983-08-10 三菱電機株式会社 Cooler
JPS6179778U (en) * 1984-10-30 1986-05-28
JPH01178481U (en) * 1988-06-07 1989-12-20
JPH07260181A (en) * 1994-03-18 1995-10-13 Toshiba Corp Air conditioner
JPH08327080A (en) * 1995-06-02 1996-12-10 Mitsubishi Heavy Ind Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843030A (en) * 2017-11-22 2018-03-27 广东美的制冷设备有限公司 Indoor heat exchanger, indoor apparatus of air conditioner and air conditioner
CN107843030B (en) * 2017-11-22 2024-04-26 广东美的制冷设备有限公司 Indoor heat exchanger, air conditioner indoor unit and air conditioner
EP4317829A4 (en) * 2021-06-01 2024-07-03 Gd Midea Heating & Ventilating Equipment Co Ltd Wall-mounted air conditioner

Also Published As

Publication number Publication date
JPH10132372A (en) 1998-05-22
AU4573297A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP2016200338A (en) Air conditioner
JP2006336935A (en) Outdoor unit for refrigeration air conditioner
JP5338883B2 (en) Heat source unit
JP2006336909A (en) Condenser, and indoor unit for air conditioner using it
JP6370399B2 (en) Air conditioner indoor unit
WO1998019112A1 (en) Air conditioner
JP2008261552A (en) Heat source unit
JPH08334277A (en) Evaporator for room air conditioner
JPH04187992A (en) Heat exchanger
JP3170548B2 (en) Air conditioner
JP6316458B2 (en) Air conditioner
JP4075945B2 (en) Air conditioner
JPH03156221A (en) Air conditioner
EP1052457B1 (en) Indoor unit for air conditioner
JP3170545B2 (en) Air conditioner
JP2006275376A (en) Heat exchanger and outdoor unit of air conditioner
JP2009097778A (en) Air conditioner
JP3242784B2 (en) Heat exchanger
JP5997115B2 (en) Air conditioner
JP3170547B2 (en) Air conditioner
JPH1038302A (en) Indoor unit for air conditioner
JP2006084051A (en) Outdoor machine of refrigeration device
JP4861867B2 (en) Heat exchanger and air conditioner
JP3170546B2 (en) Air conditioner
JP6807766B2 (en) Indoor unit of air conditioner and air conditioner equipped with this

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN ID KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase