JP2000205163A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JP2000205163A
JP2000205163A JP11001597A JP159799A JP2000205163A JP 2000205163 A JP2000205163 A JP 2000205163A JP 11001597 A JP11001597 A JP 11001597A JP 159799 A JP159799 A JP 159799A JP 2000205163 A JP2000205163 A JP 2000205163A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
rotary compressor
compression
compression element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11001597A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishikawa
弘 西川
Eiichi Shimizu
栄一 清水
Makoto Hazama
誠 間
Takehiro Nishikawa
剛弘 西川
Kazuya Sato
里  和哉
Yasuo Sakamoto
泰生 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11001597A priority Critical patent/JP2000205163A/en
Publication of JP2000205163A publication Critical patent/JP2000205163A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary compressor capable of adopting the conventional fundamental design unchanged substantially while effective use of energy is secured even when carbon dioxide is used as refrigerant. SOLUTION: A compressing means 12 includes a front stage compression element 20 and a rear stage compression element 30 which are coupled together in series by a coupling pipe 40. The coupling pipe 40 is fitted with a heat collector 41 to absorb the heat of refrigerant flowing in the pipe 40, and the heat collector 41 is equipped with a heat collecting pipe 42 to admit circulation of water, etc., for example water of a hot water supplier. Thereby the refrigerant from the front stage compression element 20 is coolerd by the water of hot water supplier, etc., so that the max. temp. and pressure of the refrigerant do not exceed their respective specified values, and the water of the hot water supplier is heated by the heat due to the cooling process, which allows effective use of energy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の圧縮要素を
備えたロータリ圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary compressor having a plurality of compression elements.

【0002】[0002]

【従来の技術】従来、ロータリ圧縮機は種々の技術分野
に用いられ、冷媒を圧縮する圧縮手段やこの圧縮手段を
駆動するための駆動手段であるモータ等を有して、これ
らが密閉ケース内に収納された構成となっている。
2. Description of the Related Art Conventionally, rotary compressors have been used in various technical fields, and have a compression means for compressing a refrigerant and a motor as a driving means for driving the compression means. It is configured to be stored in.

【0003】このようなロータリ圧縮機においては、こ
れまで冷媒としてR−22等の塩素を含む冷媒(以下、
特定フロンガスと記載する)が用いられていたが、この
R−22冷媒はオゾン層を破壊する原因となることが判
明し規制対象となった。
In such a rotary compressor, a refrigerant containing chlorine such as R-22 (hereinafter, referred to as a refrigerant) has been used.
However, this R-22 refrigerant was found to be a cause of destruction of the ozone layer, and was subject to regulation.

【0004】そこで、特定フロンガスに代わる冷媒の研
究開発が盛んに行われている。かかる冷媒には、二酸化
炭素冷媒等がある。
[0004] Therefore, research and development of a refrigerant replacing the specific Freon gas have been actively conducted. Such refrigerants include carbon dioxide refrigerants.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特定フ
ロンガスを用いることを前提とした従来構造のロータリ
圧縮機に二酸化炭素冷媒を用いると、従来に比べて冷媒
の最低圧力が約6倍(約30〜40kg/cm2G)、
最高圧力が約4倍(約150kg/cm2G)となって
差圧が大きくなると共に、最高圧力や最高温度が非常に
高くなる問題がある。
However, when a carbon dioxide refrigerant is used in a rotary compressor having a conventional structure on the assumption that a specific Freon gas is used, the minimum pressure of the refrigerant is about six times (about 30 to 30 times) as compared with the conventional one. 40 kg / cm 2 G),
There is a problem that the maximum pressure becomes about four times (about 150 kg / cm 2 G), the differential pressure becomes large, and the maximum pressure and the maximum temperature become extremely high.

【0006】このためロータリ圧縮機を構成するシリン
ダや密閉ケース等の部材の耐圧特性、耐熱特性及び潤滑
油の熱特性を含めた基本設計をやり直す必要が生じると
共に、このようなロータリ圧縮機を用いた冷凍回路の設
計変更が必要となってコストアップの要因となってい
る。
For this reason, it is necessary to redo the basic design including the pressure resistance characteristics, heat resistance characteristics, and thermal characteristics of the lubricating oil of the members such as the cylinder and the closed case that constitute the rotary compressor, and use such a rotary compressor. This requires a change in the design of the refrigeration circuit, which is a factor in increasing costs.

【0007】また、シリンダや密閉ケース等における耐
圧及び耐熱の問題が解決しても、冷媒の圧力が高くなる
構成の場合には、圧縮手段を駆動するための駆動手段の
負荷が大きくなり(消費電力が大きくなる)、従来に比
べて冷凍効率が低下してしまう問題がある。
Further, even if the problems of pressure resistance and heat resistance in a cylinder, a closed case, etc. are solved, in the case of a configuration in which the pressure of the refrigerant is high, the load on the driving means for driving the compression means becomes large (consumption is high). However, there is a problem that the refrigeration efficiency is reduced as compared with the related art.

【0008】このような場合に、圧縮手段を2つの圧縮
要素により形成し、冷媒を各圧縮要素に順次供給して圧
縮し、温度等が高くなるときは途中で冷媒を冷却する等
の構成が考えられる。
In such a case, the compression means is formed by two compression elements, the refrigerant is sequentially supplied to each compression element and compressed, and when the temperature or the like becomes high, the refrigerant is cooled on the way. Conceivable.

【0009】しかし、冷却により冷媒が失う熱は、駆動
手段が与えたエネルギーであるため、その分だけ圧縮効
率が低下し、このようなロータリ圧縮機を冷凍回路に用
いた場合には冷凍効率が低下する問題がある。
However, since the heat lost by the cooling due to the cooling is the energy given by the driving means, the compression efficiency is reduced by that amount. When such a rotary compressor is used in a refrigeration circuit, the refrigeration efficiency is reduced. There is a problem of decline.

【0010】そこで、本発明は、二酸化炭素冷媒を用い
た場合であっても、従来の基本設計を略そのまま適用で
きるようにすると共に、エネルギーの有効利用を図った
ロータリ圧縮機を提供することを目的とする。
Accordingly, the present invention is to provide a rotary compressor that enables the conventional basic design to be applied substantially as it is even when a carbon dioxide refrigerant is used, and that makes effective use of energy. Aim.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、請求項1にかかる発明は、圧縮室を縮小させて、該
圧縮室内の冷媒を圧縮する圧縮手段と、該圧縮手段を駆
動する駆動手段とを有したロータリ圧縮機において、圧
縮室を備えた圧縮要素を連結管により複数直列接続して
圧縮手段を形成し、かつ、連結管に当該連結管を流動す
る冷媒の熱を吸収する熱回収器を設けて、各圧縮要素に
おける冷媒の最高温度及び最高圧力が所定温度及び所定
圧力以上にならないように冷却すると共に、当該冷却に
より回収した熱の再利用を可能にしてなることを特徴と
する。
According to a first aspect of the present invention, there is provided a compressor for reducing the size of a compression chamber and compressing a refrigerant in the compression chamber, and a drive for driving the compression means. Means, a plurality of compression elements having compression chambers are connected in series by a connecting pipe to form a compression means, and the connecting pipe absorbs heat of the refrigerant flowing through the connecting pipe. A recovery device is provided to cool the refrigerant so that the maximum temperature and the maximum pressure of the refrigerant in each compression element do not exceed the predetermined temperature and the predetermined pressure, and to enable reuse of heat recovered by the cooling. I do.

【0012】請求項2にかかる発明は、熱回収器が、回
収した熱を給湯器の水の加熱に用いることを特徴とす
る。
[0012] The invention according to claim 2 is characterized in that the heat recovery device uses the recovered heat for heating water in the water heater.

【0013】請求項3にかかる発明は、冷媒として二酸
化炭素冷媒を使用したことを特徴とする。
The invention according to claim 3 is characterized in that a carbon dioxide refrigerant is used as the refrigerant.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図を参照し
て説明する。図1はロータリ圧縮機10の側断面図で、
本発明にかかるロータリ圧縮機10は駆動手段であるモ
ータ11、このモータ11の下方に設けられた圧縮手段
12等を有して、これらが密閉ケース13内に収納さ
れ、冷媒として二酸化炭素冷媒が用いられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of the rotary compressor 10,
The rotary compressor 10 according to the present invention has a motor 11 as a driving unit, a compression unit 12 provided below the motor 11, and the like. These are housed in a closed case 13, and a carbon dioxide refrigerant is used as a refrigerant. Used.

【0015】なお、密閉ケース13の底部には潤滑油1
4が貯留しており、圧縮手段12における摺動部等を潤
滑するようになっている。
The lubricating oil 1 is provided at the bottom of the closed case 13.
4 for lubricating a sliding portion or the like in the compression means 12.

【0016】圧縮手段12は、前段圧縮要素20と後段
圧縮要素30とから構成され、前段圧縮要素20には前
段吸入口21及び前段吐出口22が設けられ、後段圧縮
要素30には後段吸入口31及び後段吐出口32が設け
られている。
The compression means 12 comprises a first-stage compression element 20 and a second-stage compression element 30. The first-stage compression element 20 has a first-stage suction port 21 and a first-stage discharge port 22, and the second-stage compression element 30 has a second-stage suction port. 31 and a second-stage discharge port 32 are provided.

【0017】そして、前段吐出口22と後段吸入口31
とは連結管40により連結され、この連結管40に熱回
収器41が設けられている。
The front outlet 22 and the rear inlet 31
Are connected by a connecting pipe 40, and a heat recovery unit 41 is provided in the connecting pipe 40.

【0018】熱回収器41には熱回収管42が設けられ
て、この熱回収管42に例えば給湯器の水が循環するよ
うになっている。
The heat recovery unit 41 is provided with a heat recovery pipe 42 through which water from a water heater, for example, circulates.

【0019】前段圧縮要素20と後段圧縮要素30とは
略同じ構成で、各圧縮要素20,30は円筒状のシリン
ダ23,33内にローラ24,34が配設されている。
このローラ24,34は円筒状に形成され、その内側に
クランク25,35が配設されると共に、ローラ24,
34の外側面に図示しないベーンが当接している。
The first-stage compression element 20 and the second-stage compression element 30 have substantially the same configuration, and each of the compression elements 20 and 30 has rollers 24 and 34 disposed in cylindrical cylinders 23 and 33, respectively.
The rollers 24 and 34 are formed in a cylindrical shape, and cranks 25 and 35 are disposed inside the rollers 24 and 34.
A vane (not shown) is in contact with the outer side surface of 34.

【0020】クランク25,35はモータ11の回転軸
15に固着して(又は一体形成されて)設けられている
ので、クランク25,35の回転によりローラ24,3
4は偏心回転運動するようになる。
Since the cranks 25 and 35 are fixed to (or integrally formed with) the rotating shaft 15 of the motor 11, the rotation of the cranks 25 and 35 causes the rollers 24 and 3 to rotate.
4 makes eccentric rotational movement.

【0021】このときローラ24,34における外側面
の一端がシリンダ23,33と常に最小隙間で保持され
るので、シリンダ23,33とローラ24,34との間
に形成される空間は三日月状となる。
At this time, one end of the outer surface of each of the rollers 24 and 34 is always held at the minimum clearance with the cylinders 23 and 33, so that the space formed between the cylinders 23 and 33 and the rollers 24 and 34 has a crescent shape. Become.

【0022】そして、ベーンがローラ24,34の外側
面に当接しているので、このベーンにより三日月状の空
間は図示しない吸気室と圧縮室とに区画される。
Since the vane is in contact with the outer surfaces of the rollers 24 and 34, the vane divides the crescent-shaped space into an intake chamber and a compression chamber (not shown).

【0023】シリンダ23,33の内径及びローラ2
4,34の外径は変化しないので、ローラ24,34が
回転しても三日月状空間の容積は常に一定である。しか
しローラ24,34が回転するに伴い、ローラ24,3
4とシリンダ23,33との最小隙間の位置が変化する
ため三日月状空間の向きが変化する。
Inner diameter of cylinders 23 and 33 and roller 2
Since the outer diameters of the rollers 4 and 34 do not change, the volume of the crescent-shaped space is always constant even when the rollers 24 and 34 rotate. However, as the rollers 24, 34 rotate, the rollers 24, 3
Since the position of the minimum gap between the cylinder 4 and the cylinders 23 and 33 changes, the direction of the crescent-shaped space changes.

【0024】一方、ベーンはローラ24,34の外側面
に常に当接するようにシリンダ23,33の半径方向に
出入りする。
On the other hand, the vanes move in and out in the radial direction of the cylinders 23 and 33 so as to always contact the outer surfaces of the rollers 24 and 34.

【0025】従って、このベーンにより三日月状空間が
区画されて形成される吸気室と圧縮室との容積比は、ロ
ーラ24,34の回転に従い変化し、吸気室の容積が拡
張すると、圧縮室の容積は縮小する。
Therefore, the volume ratio between the suction chamber and the compression chamber formed by dividing the crescent-shaped space by the vane changes according to the rotation of the rollers 24 and 34, and when the volume of the suction chamber is expanded, the volume of the compression chamber is reduced. The volume shrinks.

【0026】吸気室には吸入口21,31が連通し、ま
た圧縮室には吐出口22,32が連通しており、ローラ
24,34が吸入口21,31を横切ることにより吸気
室は吐出口22,32と連通するようになって、吸気室
が圧縮室に変る。
The suction ports 21 and 31 communicate with the suction chamber, and the discharge ports 22 and 32 communicate with the compression chamber. When the rollers 24 and 34 cross the suction ports 21 and 31, the suction chamber discharges. The communication with the outlets 22 and 32 changes the intake chamber into a compression chamber.

【0027】吐出口22,32には図示しない吐出バル
ブが設けられており、圧縮室の縮小に伴い冷媒が圧縮さ
れて、この吐出バルブで規定される吐出圧に達すると冷
媒が吐出される。
A discharge valve (not shown) is provided at each of the discharge ports 22 and 32. The refrigerant is compressed as the compression chamber is reduced, and the refrigerant is discharged when the discharge pressure specified by the discharge valve is reached.

【0028】なお、前段圧縮要素20のローラ24と後
段圧縮要素30のローラ34とは、各ローラ24,34
が偏心回転運動することにより発生する振動が相殺され
るように、回転位相が180度ずれて設けられている。
即ち、クランク25とクランク35とは、回転軸15を
中心に対称に設けられている。
It should be noted that the roller 24 of the first compression element 20 and the roller 34 of the second compression element 30
The rotation phases are shifted by 180 degrees so that the vibrations generated by the eccentric rotational movement are offset.
That is, the crank 25 and the crank 35 are provided symmetrically about the rotation shaft 15.

【0029】このとき、前段圧縮要素20で圧縮された
冷媒をそのまま後段圧縮要素30に供給して圧縮する
と、冷媒の温度及び圧力が非常に高くなって、特定フロ
ンガスを用いることを前提とした従来構造のロータリ圧
縮機を略そのまま用いることが困難になる。
At this time, when the refrigerant compressed by the first-stage compression element 20 is directly supplied to the second-stage compression element 30 and compressed, the temperature and pressure of the refrigerant become extremely high, and the conventional refrigerant based on the premise that a specific CFC gas is used. It becomes difficult to use the rotary compressor having the structure as it is.

【0030】そこで、本発明では連結管40に熱回収器
41を設け、この熱回収器41で冷媒を冷却している。
また単に冷却するだけでは、その熱が有効利用されない
ので、熱回収器41に熱回収管42を設けて、この熱回
収管42を流動する流体により冷媒の熱を回収するよう
にしている。
Therefore, in the present invention, a heat recovery unit 41 is provided in the connecting pipe 40, and the refrigerant is cooled by the heat recovery unit 41.
Further, simply cooling does not effectively utilize the heat. Therefore, a heat recovery pipe 42 is provided in the heat recovery unit 41, and the heat of the refrigerant is recovered by the fluid flowing through the heat recovery pipe 42.

【0031】図2は、上記ロータリ圧縮機10を空気調
和機に用い、また熱回収管42に給湯器の水が循環する
ようにした場合の回路図を示した図である。なお、同図
においては給湯器の水はポンプ6で送られ、その流路は
点線で示されている。
FIG. 2 is a circuit diagram showing a case where the rotary compressor 10 is used for an air conditioner and water from a water heater is circulated through a heat recovery pipe 42. In the figure, the water from the water heater is sent by the pump 6, and the flow path is indicated by a dotted line.

【0032】空気調和機は、冷媒を圧縮する圧縮機1
0、冷媒を冷却する凝縮器2、冷媒を減圧する減圧器
3、冷媒を蒸発させる蒸発器4等により構成されて、圧
縮機に上記ロータリ圧縮機10が用いられている。
The air conditioner includes a compressor 1 for compressing a refrigerant.
0, a condenser 2 for cooling the refrigerant, a decompressor 3 for decompressing the refrigerant, an evaporator 4 for evaporating the refrigerant, and the like. The rotary compressor 10 is used as a compressor.

【0033】なお、二酸化炭素冷媒は凝縮器で冷却され
ても特定フロンガスのように凝縮することはないが、特
定フロンガスを用いる冷凍回路との対応を図るため敢て
凝縮器と記載した。無論、冷媒が二酸化炭素であるか特
定フロンガスであるかを問わず、凝縮器の作用は同じで
あることは付言するまでもない。
Although the carbon dioxide refrigerant is not condensed like the specific Freon gas even when cooled by the condenser, it is described as a condenser in order to cope with a refrigeration circuit using the specific Freon gas. It goes without saying that the operation of the condenser is the same irrespective of whether the refrigerant is carbon dioxide or specific chlorofluorocarbon.

【0034】この冷凍回路では、前段吸入口21から冷
媒が前段圧縮要素20に吸気され、ここで圧縮されて前
段吐出口22から連結管40に流入する。
In this refrigeration circuit, refrigerant is sucked into the front compression element 20 from the front suction port 21, compressed here, and flows into the connecting pipe 40 from the front discharge port 22.

【0035】連結管40には熱回収器41が設けられ、
この熱回収器41には給湯器の水が循環しているので、
冷媒は給湯器の水と熱交換して冷却される。無論、この
冷却により給湯器の水は加熱され、これにより冷媒の熱
の有効利用を図ることが可能になっている。
The connecting pipe 40 is provided with a heat recovery unit 41,
Since the water of the water heater is circulating in this heat recovery unit 41,
The refrigerant is cooled by exchanging heat with water in the water heater. Needless to say, the water in the water heater is heated by this cooling, so that the heat of the refrigerant can be effectively used.

【0036】熱回収器41で冷却された冷媒は後段吸入
口31から後段圧縮要素30に供給され、ここで圧縮さ
れて後段吐出口32から吐出される。従って、後段圧縮
要素30に供給される冷媒の温度を低くすることができ
るので、この後段圧縮要素30において冷媒の温度が所
定の温度及び圧力より高くなることが無くなる。
The refrigerant cooled by the heat recovery unit 41 is supplied from the latter-stage suction port 31 to the latter-stage compression element 30, where it is compressed and discharged from the latter-stage discharge port 32. Therefore, the temperature of the refrigerant supplied to the second-stage compression element 30 can be lowered, so that the temperature of the refrigerant in the second-stage compression element 30 does not become higher than the predetermined temperature and pressure.

【0037】なお、ここで言う所定の温度及び圧力と
は、特定フロンガスを用いることを前提とした従来構造
のロータリ圧縮機における圧縮要素において許容される
温度及び圧力の上限を言う。
Here, the predetermined temperature and pressure refer to the upper limit of the temperature and pressure allowed in the compression element of the rotary compressor having the conventional structure on the assumption that the specific Freon gas is used.

【0038】後段吐出口32から吐出された冷媒は、凝
縮器2に供給されて、この凝縮器2に循環している給湯
器の水と熱交換して冷却され、減圧器3で減圧されて蒸
発器4に供給される。そしてロータリ圧縮機10に戻っ
て冷凍サイクルを1巡する。
The refrigerant discharged from the downstream discharge port 32 is supplied to the condenser 2, cooled by exchanging heat with the water of the water heater circulating through the condenser 2, and decompressed by the decompressor 3. It is supplied to the evaporator 4. Then, returning to the rotary compressor 10, the refrigeration cycle is made once.

【0039】なお、図2に示す凝縮器2には給湯器の水
が循環して、この水が冷媒と熱交換する場合について示
しているが、本発明はこれに限定されるものではなく、
凝縮器2には冷媒のみを循環させるようにしてもよい。
この場合、冷媒は凝縮器2で外気等と熱交換するように
なる。
Although the water in the water heater is circulated in the condenser 2 shown in FIG. 2 and the water exchanges heat with the refrigerant, the present invention is not limited to this.
Only the refrigerant may be circulated through the condenser 2.
In this case, the refrigerant exchanges heat with the outside air in the condenser 2.

【0040】上記構成により冷媒の最高圧力及び最高温
度を抑えることができロータリ圧縮機10を構成する各
部材の耐圧、耐熱評価を含めた基本設計をやり直す必要
が無くなると共に、冷媒の圧力が予め設定された圧力よ
りも大きくなることはないので、冷凍効率の低下を抑制
することが可能になると共に、冷媒の熱を回収して有効
利用することが可能になる。
With the above structure, the maximum pressure and the maximum temperature of the refrigerant can be suppressed, so that it is not necessary to redo the basic design including the pressure resistance and heat resistance evaluation of each member constituting the rotary compressor 10, and the pressure of the refrigerant is set in advance. Since the pressure does not become higher than the set pressure, it is possible to suppress a decrease in the refrigeration efficiency and to recover and effectively use the heat of the refrigerant.

【0041】なお、通常給湯器が停止しているときは、
給水管が閉じられた状態となっており、このような状態
で冷媒の熱を熱回収管42を介して給水管内の水に放熱
すると、給水管内の水圧が上昇して思わぬ事故が起きる
恐れがある。
When the normal water heater is stopped,
When the water supply pipe is closed and the heat of the refrigerant is radiated to the water in the water supply pipe through the heat recovery pipe 42 in such a state, the water pressure in the water supply pipe may rise and an unexpected accident may occur. There is.

【0042】そのような場合には、図3に示すように、
熱回収器41及び凝縮器2と並列に空冷の熱交換器5
0,51を設けて、給湯器が停止しているときは三方弁
52、53を切替えて空冷の熱交換器50,51に冷媒
を循環させるようにしてもよい。
In such a case, as shown in FIG.
Air-cooled heat exchanger 5 in parallel with heat recovery unit 41 and condenser 2
0 and 51 may be provided so that when the water heater is stopped, the three-way valves 52 and 53 are switched to circulate the refrigerant through the air-cooled heat exchangers 50 and 51.

【0043】[0043]

【発明の効果】以上説明したように請求項1にかかる発
明によれば、圧縮手段が圧縮室を備えた圧縮要素を連結
管により複数直列接続して形成され、かつ、連結管に当
該連結管を流動する冷媒の熱を吸収する熱回収器を設け
たので、各圧縮要素における冷媒の最高温度及び最高圧
力が所定温度及び所定圧力以上にならないようにできて
例えば二酸化炭素冷媒を用いた場合であっても、従来の
基本設計を略そのまま適用できるようになると共に、冷
却により回収した熱の再利用を可能にしたのでエネルギ
ーの有効利用を図ることができるようになる。
As described above, according to the first aspect of the present invention, the compression means is formed by connecting a plurality of compression elements each having a compression chamber by a connecting pipe in series, and the connecting pipe is connected to the connecting pipe. Since the heat recovery unit that absorbs the heat of the refrigerant flowing is provided, the maximum temperature and the maximum pressure of the refrigerant in each compression element can be prevented from exceeding the predetermined temperature and the predetermined pressure, for example, when a carbon dioxide refrigerant is used. Even so, the conventional basic design can be applied almost as it is, and the heat recovered by cooling can be reused, so that the energy can be effectively used.

【0044】請求項2にかかる発明によれば、熱回収器
が、回収した熱を給湯器の水の加熱に用いるようにした
ので、冷却により回収した熱の再利用を可能にしたので
エネルギーの有効利用を図ることができるようになる。
According to the second aspect of the present invention, the heat recovery unit uses the recovered heat for heating the water in the water heater, so that the recovered heat can be reused by cooling. Effective utilization can be achieved.

【0045】請求項3にかかる発明によれば、冷媒とし
て二酸化炭素冷媒を使用し、各圧縮要素における冷媒の
最高温度及び最高圧力が所定温度及び所定圧力以上にな
らないように熱回収器等を設けたので、環境破壊の恐れ
を防止すると共に従来の基本設計を略そのまま適用でき
るようになり、かつ、冷却により回収した熱の再利用を
可能にしたのでエネルギーの有効利用を図ることができ
るようになる。
According to the third aspect of the present invention, a carbon dioxide refrigerant is used as the refrigerant, and a heat recovery device or the like is provided so that the maximum temperature and the maximum pressure of the refrigerant in each compression element do not exceed the predetermined temperature and the predetermined pressure. Therefore, the risk of environmental destruction is prevented, the conventional basic design can be applied almost as it is, and the heat recovered by cooling can be reused, so that energy can be effectively used. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の説明に適用されるロータ
リ圧縮機の断面図である。
FIG. 1 is a sectional view of a rotary compressor applied to a description of an embodiment of the present invention.

【図2】図1のロータリ圧縮機を空気調和機に適用した
ときの冷凍回路図である。
FIG. 2 is a refrigeration circuit diagram when the rotary compressor of FIG. 1 is applied to an air conditioner.

【図3】図2に代るロータリ圧縮機を空気調和機に適用
したときの冷凍回路図である。
FIG. 3 is a refrigeration circuit diagram when the rotary compressor shown in FIG. 2 is applied to an air conditioner.

【符号の説明】[Explanation of symbols]

2 凝縮器 3 減圧器 4 蒸発器 6 ポンプ 10 ロータリ圧縮機 11 モータ 12 圧縮手段 20 前段圧縮要素 21 前段吸入口 22 前段吐出口 30 後段圧縮要素 31 後段吸入口 32 後段吐出口 40 連結管 41 熱回収器 42 熱回収管 50,51 熱交換器 Reference Signs List 2 condenser 3 decompressor 4 evaporator 6 pump 10 rotary compressor 11 motor 12 compression means 20 pre-stage compression element 21 pre-stage suction port 22 pre-stage discharge port 30 post-stage compression element 31 post-stage suction port 32 post-stage discharge port 40 connecting pipe 41 heat recovery Vessel 42 heat recovery pipe 50,51 heat exchanger

フロントページの続き (72)発明者 間 誠 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西川 剛弘 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 里 和哉 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 坂本 泰生 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3H029 AA04 AA09 AA13 AA21 AB03 AB08 BB12 BB42 BB51 CC02 CC23 CC46 CC54 CC56 CC82Continued on the front page (72) Makoto Ma, Inventor 2-5-1-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Takehiro Nishikawa 2-5-2-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Kazuya Sato 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Yasuo Sakamoto 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 F-term in Sanyo Electric Co., Ltd. (Reference) 3H029 AA04 AA09 AA13 AA21 AB03 AB08 BB12 BB42 BB51 CC02 CC23 CC46 CC54 CC56 CC82

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮室を縮小させて、該圧縮室内の冷媒
を圧縮する圧縮手段と、該圧縮手段を駆動する駆動手段
とを有したロータリ圧縮機において、 前記圧縮室を備えた圧縮要素を連結管により複数直列接
続して前記圧縮手段を形成し、かつ、前記連結管に当該
連結管を流動する冷媒の熱を吸収する熱回収器を設け
て、各圧縮要素における冷媒の最高温度及び最高圧力が
所定温度及び所定圧力以上にならないように冷却すると
共に、当該冷却により回収した熱の再利用を可能にして
なることを特徴とするロータリ圧縮機。
1. A rotary compressor having compression means for reducing the size of a compression chamber and compressing refrigerant in the compression chamber, and driving means for driving the compression means, wherein a compression element having the compression chamber is provided. A plurality of connecting pipes are connected in series to form the compression means, and the connecting pipe is provided with a heat recovery unit that absorbs heat of the refrigerant flowing through the connecting pipe, and a maximum temperature and a maximum temperature of the refrigerant in each compression element are provided. A rotary compressor characterized in that cooling is performed so that a pressure does not exceed a predetermined temperature and a predetermined pressure, and that heat recovered by the cooling can be reused.
【請求項2】 前記熱回収器が、回収した熱を給湯器の
水の加熱に用いることを特徴とする請求項1記載のロー
タリ圧縮機。
2. The rotary compressor according to claim 1, wherein the heat recovery unit uses the recovered heat for heating water in a water heater.
【請求項3】 前記冷媒として二酸化炭素冷媒を使用し
たことを特徴とする請求項1又は2記載のロータリ圧縮
機。
3. The rotary compressor according to claim 1, wherein a carbon dioxide refrigerant is used as said refrigerant.
JP11001597A 1999-01-07 1999-01-07 Rotary compressor Pending JP2000205163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11001597A JP2000205163A (en) 1999-01-07 1999-01-07 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11001597A JP2000205163A (en) 1999-01-07 1999-01-07 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2000205163A true JP2000205163A (en) 2000-07-25

Family

ID=11505919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11001597A Pending JP2000205163A (en) 1999-01-07 1999-01-07 Rotary compressor

Country Status (1)

Country Link
JP (1) JP2000205163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069539A (en) * 2003-08-22 2005-03-17 Sanyo Electric Co Ltd Dryer
KR100608875B1 (en) 2004-12-28 2006-08-08 엘지전자 주식회사 Refrigerants cooling apparatus for modulation type rotary compressor
EP2522857A3 (en) * 2011-04-18 2015-03-11 CompAir Drucklufttechnik - Zweigniederlassung der Gardner Denver Deutschland GmbH Method for the intelligent control of a compressor device with heat recovery
CN105402135A (en) * 2014-08-18 2016-03-16 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069539A (en) * 2003-08-22 2005-03-17 Sanyo Electric Co Ltd Dryer
KR100608875B1 (en) 2004-12-28 2006-08-08 엘지전자 주식회사 Refrigerants cooling apparatus for modulation type rotary compressor
EP2522857A3 (en) * 2011-04-18 2015-03-11 CompAir Drucklufttechnik - Zweigniederlassung der Gardner Denver Deutschland GmbH Method for the intelligent control of a compressor device with heat recovery
US9366247B2 (en) 2011-04-18 2016-06-14 Gardner Denver Deutschland Gmbh Method for intelligent control of a compressor system with heat recovery
CN105402135A (en) * 2014-08-18 2016-03-16 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor

Similar Documents

Publication Publication Date Title
KR101410438B1 (en) Motor cooling applications
US20230106287A1 (en) Heat transfer circuit with increased bearing lubricant temperature, and method of supplying thereof
CN101680300B (en) Refrigeration cycle device and fluid machine used therefor
WO2005090875A1 (en) Refrigeration system
GB2473981A (en) Thermodynamic cycle for cooling a working fluid
JP2004150750A (en) Method for determining pressure of high pressure cooling medium in refrigerating cycle device
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
US6877340B2 (en) Expander
CN106461278A (en) Method for operating a chiller
CN109154456B (en) Turbine economizer for chiller system
JP4706451B2 (en) Integrated unit
JP2000205163A (en) Rotary compressor
JP2000205164A (en) Rotary compressor
JP2000283077A (en) Rotary compressor
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
JP4738219B2 (en) Refrigeration equipment
JP2000161276A (en) Rotary compressor and refrigeration circuit employing same
JP4617822B2 (en) Rotary expander
JP2004138333A (en) Refrigeration cycle device
JP2000171108A (en) Rotary compressor and refrigerating circuit using it
CN201093793Y (en) Frequency conversion magnetic suspension compressing and expanding unit assembly
JP2009185787A (en) Waste heat recovery system
JP7096961B2 (en) Waste heat recovery system and compound scroll fluid machine used for it
JP2010156499A (en) Refrigerating device
JP2003130479A (en) Refrigeration device