WO2005090875A1 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
WO2005090875A1
WO2005090875A1 PCT/JP2005/004085 JP2005004085W WO2005090875A1 WO 2005090875 A1 WO2005090875 A1 WO 2005090875A1 JP 2005004085 W JP2005004085 W JP 2005004085W WO 2005090875 A1 WO2005090875 A1 WO 2005090875A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expander
pressure
compressor
fluid chamber
Prior art date
Application number
PCT/JP2005/004085
Other languages
French (fr)
Japanese (ja)
Inventor
Katsumi Sakitani
Eiji Kumakura
Tetsuya Okamoto
Michio Moriwaki
Masakazu Okamoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2005224499A priority Critical patent/AU2005224499A1/en
Priority to US10/593,038 priority patent/US20090007590A1/en
Priority to EP05720357A priority patent/EP1739369A1/en
Publication of WO2005090875A1 publication Critical patent/WO2005090875A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/40Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
    • F01C1/46Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Definitions

  • the present invention relates to a refrigeration apparatus that performs a refrigeration cycle in which a high pressure is set to be equal to or higher than a critical pressure of a refrigerant.
  • a refrigerating apparatus that performs a refrigerating cycle by circulating a refrigerant in a refrigerant circuit that is a closed circuit has been known, and is widely used as an air conditioner or the like.
  • this type of refrigeration apparatus for example, one disclosed in Patent Document 1 in which the high pressure of a refrigeration cycle is set higher than the critical pressure of a refrigerant is known.
  • This refrigerating apparatus includes an expander as a refrigerant expansion mechanism. The expander and the compressor are connected by a shaft, and the power obtained by the expander is used for driving the compressor to improve the COP (coefficient of performance).
  • Patent Document 1 JP 2001-107881A
  • the specifications of the expander must be determined.
  • a volumetric fluid machine of a type in which the volume of a closed fluid chamber is changed is used as an expander, immediately after the fluid chamber is shut off from the inflow side (that is, the flow of fluid in the fluid chamber). It is necessary to determine the volume of the fluid chamber at the time of the start of the expansion and the volume of the fluid chamber immediately before the fluid chamber communicates with the outflow side (that is, at the end of the expansion of the fluid in the fluid chamber). To determine these values, it is necessary to set the state of the refrigerant at the inlet and outlet of the expander.
  • the expander and the compressor are connected by a shaft or the like and the rotational speed ratio of both is fixed, it is necessary to consider the capacity of the compressor.
  • the capacity required for the refrigeration apparatus is determined, a design value of the capacity of the compressor can be set accordingly. Further, when the application of the refrigeration apparatus is determined, it can be assumed that the refrigerant radiates heat (radiation target) and the refrigerant absorbs heat (heat absorption target). For example, when an air conditioner is configured with a refrigerating device, during cooling operation, the heat radiation target is outdoor air and the heat absorption target Is room air.
  • the design value of the low pressure P is determined. However, the high pressure of the refrigeration cycle increases the critical pressure of the refrigerant.
  • the high-pressure refrigerant does not condense even if it radiates heat. Therefore, even if the temperature condition of the heat radiation target is determined, only the refrigerant temperature T after heat radiation can be set according to the temperature condition.
  • the design value of the high pressure in the freezing cycle is not uniquely determined.
  • the present invention has been made in view of its power, and an object of the present invention is to provide a refrigeration apparatus having an expander suitable for the operating conditions and having high efficiency. It is in.
  • the first invention includes a refrigerant circuit (15) in which a compressor (50), a radiator (16), an expander (60), and an evaporator (17) are connected.
  • the present invention is directed to a refrigeration system that performs a refrigeration cycle in which the refrigerant is circulated in (2) and the high pressure is equal to or higher than the critical pressure of the refrigerant.
  • Each of the compressor (50) and the expander (60) is composed of a positive displacement type fluid machine in which the volume of the fluid chamber changes, and the ratio of one rotational speed to the other is constant. While the low-pressure pressure of the refrigeration cycle and the refrigerant temperature at the outlet of the radiator (16) under the standard operating conditions, which are design standards, are referred to as the reference low pressure and the reference refrigerant temperature, respectively.
  • the high pressure of the refrigeration cycle at which the coefficient of performance of the refrigeration cycle is highest is defined as the reference high pressure, and the density of the saturated gas P, the density of the refrigerant at the reference high pressure and the reference refrigerant temperature is p, and
  • the receiver (18) force S is applied between the outlet side of the evaporator (17) and the suction side of the compressor (50). It is provided.
  • the radiator (16) is also supplied to the expansion machine (60) from the refrigerant and the evaporator (17). Internal heat exchange for exchanging heat between the refrigerant and the refrigerant (50) (20) Force S is provided.
  • the refrigerant circulates in the refrigerant circuit (15) of the refrigeration apparatus (10) to perform a refrigeration cycle.
  • the refrigerant circulating in the refrigerant circuit (15) is compressed by the compressor (50) to be in a supercritical state, then radiated by the radiator (16), and subsequently expanded by the expander (60).
  • the heat is absorbed by the evaporator (17) to evaporate, and then sucked into the compressor (50) and compressed again.
  • the expander (60) is connected to the compressor (50), and the power recovered by the refrigerant power in the expander (60) is used to drive the compressor (50).
  • the ratio of the rotation speed of the expander (60) to the rotation speed of the compressor (50) is fixed.
  • the ratio of the rotational speeds is “1” when the compressor (50) and the expander (60) are directly connected by one shaft, and when the compressor (50) and the expander (60) are connected via the speed reducer, the speed of the speed reducer is reduced. Equal to the ratio.
  • the reference low pressure which is the low pressure of the refrigeration cycle
  • the refrigerant temperature at the outlet of the radiator (16) are determined based on the operating conditions assumed for the use.
  • the reference refrigerant temperature can be set However, this alone cannot set the high pressure of the refrigeration cycle.
  • the low pressure of the refrigeration cycle and the refrigerant temperature at the outlet of the radiator (16) are set, running tests and simulations under the operating conditions will result in the highest COP under the operating conditions. It is possible to determine the high pressure of the refrigeration cycle.
  • the coefficient of performance of the refrigeration cycle is maximized in the reference operation state in which the low pressure of the refrigeration cycle becomes the reference low pressure and the refrigerant temperature at the outlet of the radiator (16) becomes the reference refrigerant temperature.
  • the high pressure of the refrigeration cycle is set as the reference high pressure.
  • the specifications of the expander (60) in the refrigeration system (10) are set based on the reference low pressure, the reference refrigerant temperature, the reference high pressure, and the physical properties of the refrigerant charged in the refrigerant circuit (15). You.
  • the volume V of the fluid chamber immediately before the fluid chamber communicates with the outflow side (that is, immediately after the expansion of the refrigerant in the fluid chamber ends) is set based on the above-described reference high pressure and the like.
  • the receiver (18) is provided in the refrigerant circuit (15).
  • a part of the refrigerant filled in the refrigerant circuit (15) is stored in the receiver (18) in a state of a liquid refrigerant.
  • the amount of liquid refrigerant in the receiver (18) increases or decreases, the amount of refrigerant circulating in the refrigerant circuit (15) changes accordingly.
  • the receiver (18) is installed between the outlet side of the evaporator (17) and the suction side of the compressor (50).
  • the refrigerant flowing out of the evaporator (17) is introduced into the receiver (18), and the refrigerant in the receiver (18) is sucked into the compressor (50). Since the liquid refrigerant exists in the receiver (18), the refrigerant in the receiver (18) sucked into the compressor (50) is saturated.
  • the refrigerant circuit (15) is provided with the internal heat exchanger (20). Internal heat exchange
  • the refrigerant flowing from the radiator (16) to the expander (60) exchanges heat with the refrigerant flowing from the evaporator (17) to the compressor (50) to be cooled.
  • the refrigerant flowing into the expander (60) is cooled by the internal heat exchange (20), so that its enthalpy decreases. Accordingly, the enthalpy of the refrigerant sent to the expander (60) and the evaporator (17) also decreases.
  • the medium temperature (reference refrigerant temperature) is constant
  • the high pressure (reference high pressure) of the refrigeration cycle that maximizes the coefficient of performance (COP) is uniquely determined! Attention has been paid, and an expander (60) whose specifications have been determined utilizing this characteristic is provided in the refrigeration system (10). Therefore, according to the present invention, it is possible to use an expander (60) having a specification adapted to the use conditions of the refrigeration apparatus (10), and the refrigerant power is surely recovered by the expander (60) so that the refrigeration apparatus can be used.
  • the coefficient of performance of (10) can be increased.
  • the refrigerant that has flowed out of the evaporator (17) is introduced into the receiver (18), and the compressor (50) sucks the refrigerant that has flowed into the receiver (18). Therefore, even in an operation state in which the refrigerant flowing out of the evaporator (17) is in an overheated state, the compressor (50) sucks the saturated refrigerant in the receiver (18). Therefore, according to the present invention, the state of the refrigerant sucked by the compressor (50) can be made to match the state assumed at the time of designing the refrigeration apparatus (10), and the refrigeration cycle in the refrigeration apparatus (10) can be stabilized. I can make it sharp.
  • the refrigerant circuit (15) is provided with the internal heat exchanger (20) to cool the refrigerant flowing into the expander (60), and the evaporator (17) is provided from the expander (60).
  • the enthalpy of the refrigerant sent to the furnace has been reduced. For this reason, the difference in the enthalpy of the refrigerant at the entrance and exit of the evaporator (17) can be increased, and the cooling capacity when the object is cooled by the evaporator (17) can be increased.
  • FIG. 1 is a schematic configuration diagram illustrating a refrigerant circuit of an air conditioner according to a first embodiment.
  • FIG. 2 is a schematic sectional view of a compression / expansion unit according to the first embodiment.
  • FIG. 3 is an enlarged view of a main part of the expander according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing a state of each rotary mechanism at every 90 ° rotation angle of a shaft in the expander of the first embodiment.
  • FIG. 5 is a Mollier diagram (pressure-enthalpy diagram) showing a refrigeration cycle in the refrigerant circuit.
  • FIG. 6 is a graph showing the relationship between high pressure and COP when the low pressure and the refrigerant temperature at the radiator outlet are fixed in the supercritical cycle.
  • FIG. 7 is a schematic configuration diagram illustrating a refrigerant circuit of an air conditioner according to a second embodiment.
  • FIG. 8 is a schematic configuration diagram illustrating a refrigerant circuit of an air conditioner according to a third embodiment.
  • FIG. 9 is a schematic configuration diagram showing a refrigerant circuit of an air conditioner according to a modification of the third embodiment.
  • FIG. 10 is a schematic sectional view showing the configuration and operation of an expander according to a fourth embodiment.
  • FIG. 11 is a Mollier diagram (pressure-enthalpy diagram) showing characteristics of a supercritical cycle.
  • the air conditioner (10) of the present embodiment is configured by the refrigeration apparatus according to the present invention. As shown in FIG. 1, the air conditioner (10) includes a refrigerant circuit (15).
  • the refrigerant circuit (15) is filled with carbon dioxide (CO 2) as a refrigerant.
  • CO 2 carbon dioxide
  • the radiator includes a radiator (16), an evaporator (17), and a compression / expansion unit (30).
  • the radiator (16) has an inlet connected to the discharge pipe (36) of the compression / expansion unit (30), and an outlet connected to the inflow port (34) of the compression / expansion unit (30).
  • the inlet side of the evaporator (17) is connected to the outlet port (35) of the compression / expansion unit (30), and the outlet side is connected to the suction port (32) of the compression-expansion unit (30). .
  • the radiator (16) and the evaporator (17) exchange heat of the refrigerant in the refrigerant circuit (15) with air.
  • the compression / expansion unit (30) includes a casing (31) which is a vertically long and cylindrical closed container. Inside the casing (31), a compressor (50), an electric motor (45), and an expander (60) are arranged in order from bottom to top.
  • a discharge pipe (36) is attached to the casing (31).
  • the discharge pipe (36) is arranged between the electric motor (45) and the expander (60), and communicates with the internal space of the casing (31).
  • the electric motor (45) is arranged at the center in the longitudinal direction of the casing (31).
  • This motor (45) is composed of a stator (46) and a rotor (47)! RU
  • the stator (46) is fixed to the casing (31).
  • the rotor (47) is disposed inside the stator (46).
  • the main shaft (44) of the shaft (40) penetrates through the rotor (47) coaxially with the rotor (47).
  • the shaft (40) forms a rotating shaft.
  • two lower eccentric portions (58, 59) are formed at the lower end thereof, and two large-diameter eccentric portions (41, 42) are formed at the upper end thereof.
  • the two lower eccentric portions (58, 59) are formed to have a larger diameter than the main shaft portion (44). Constitute the second lower eccentric part (59), respectively.
  • the eccentric directions of the main shaft portion (44) with respect to the axis are reversed.
  • the two large-diameter eccentric portions (41, 42) are formed to be larger in diameter than the main shaft portion (44), and the lower one constitutes a first large-diameter eccentric portion (41), Constitutes the second large-diameter eccentric part (42)! .
  • the first large-diameter eccentric portion (41) and the second large-diameter eccentric portion (42) are both eccentric in the same direction.
  • the outer diameter of the second large-diameter eccentric portion (42) is larger than the outer diameter of the first large-diameter eccentric portion (41).
  • the amount of eccentricity of the main shaft portion (44) with respect to the axis is larger in the second large-diameter eccentric portion (42) than in the first large-diameter eccentric portion (41).
  • the compressor (50) constitutes a swinging piston type rotary compressor.
  • This compressor (50) has two cylinders (51, 52) and two pistons (57).
  • the rear head (55), the first cylinder (51), the intermediate plate (56), the second cylinder (52), the front head (54) are stacked.
  • first and second cylinders (51, 52) Inside the first and second cylinders (51, 52), one cylindrical piston (57) is arranged. Although not shown, a flat blade is protruded from a side surface of the piston (57), and this blade is supported by the cylinders (51, 52) via a swinging bush.
  • the piston (57) in the first cylinder (51) engages with the first lower eccentric part (58) of the shaft (40).
  • the piston (57) in the second cylinder (52) engages with the second lower eccentric part (59) of the shaft (40).
  • the inner peripheral surface of each piston (57, 57) is in sliding contact with the outer peripheral surface of the lower eccentric portion (58, 59), and the outer peripheral surface is in sliding contact with the inner peripheral surface of the cylinder (51, 52).
  • a compression chamber (53) is formed between the outer peripheral surface of the piston (57, 57) and the inner peripheral surface of the cylinder (51, 52).
  • Each of the first and second cylinders (51, 52) is provided with one suction port (33).
  • Each suction port (33) penetrates the cylinder (51, 52) in the radial direction, and the terminal end is open to the inner peripheral surface of the cylinder (51, 52).
  • Each suction port (33) is extended to the outside of the casing (31) by piping.
  • Each of the front head (54) and the rear head (55) is formed with one discharge port.
  • the discharge port of the front head (54) connects the compression chamber (53) in the second cylinder (52) with the internal space of the casing (31).
  • the discharge port of the rear head (55) makes the compression chamber (53) in the first cylinder (51) communicate with the internal space of the casing (31).
  • Each discharge port is provided with a discharge valve having a reed valve force at the end thereof, and is opened and closed by the discharge valve. In FIG. 2, the illustration of the discharge port and the discharge valve is omitted.
  • the gas refrigerant discharged from the compressor (50) into the internal space of the casing (31) is sent out of the compression / expansion unit (30) through the discharge pipe (36).
  • the expander (60) is composed of a V, a so-called oscillating piston type fluid machine! This expander (60) is provided with two pairs of cylinders (71, 81) and pistons (75, 85).
  • the expander (60) includes a front head (61), an intermediate plate (63), and a rear head (62).
  • the front head (61), the first cylinder (71), the intermediate plate (63), the second cylinder (81), the rear head (62) are stacked.
  • the lower end surface of the first cylinder (71) is closed by the front head (61), and the upper end surface is closed by the intermediate plate (63).
  • the second cylinder (81) has a lower end face closed by an intermediate plate (63), and an upper end face closed by a rear head (62).
  • the inner diameter of the second cylinder (81) is larger than the inner diameter of the first cylinder (71).
  • the shaft (40) passes through the stacked front head (61), the first cylinder (71), the intermediate plate (63), the second cylinder (81), and the rear head (62). .
  • a first piston (75) is provided in the first cylinder (71), and a second piston (85) is provided in the second cylinder (81). .
  • Each of the first and second pistons (75, 85) is formed in an annular or cylindrical shape.
  • the outer diameter of the first piston (75) and the outer diameter of the second piston (85) are equal to each other.
  • a first large-diameter eccentric portion (41) penetrates the first piston (75), and a second large-diameter eccentric portion (42) penetrates the second piston (85).
  • a first fluid chamber (72) is formed between the inner peripheral surface of the first cylinder (71) and the outer peripheral surface of the first piston (75).
  • a second fluid chamber (82) is formed between the inner peripheral surface of the second cylinder (81) and the outer peripheral surface of the second piston (85).
  • Each of the first and second pistons (75, 85) is provided with a single blade (76, 86).
  • the blade (76, 86) is formed in a plate shape extending in the radial direction of the piston (75, 85), and protrudes outward from the outer peripheral surface of the piston (75, 85).
  • Each cylinder (71, 81) is provided with a pair of bushes (77, 87).
  • Each of the bushes (77, 87) is a small piece formed so that the inner surface is a flat surface and the outer surface is an arc surface.
  • the pair of bushes (77,87) are installed with the blade (76,86) sandwiched therebetween.
  • Each bush (77,87) has a blade (76,86) on the inner surface and a series Slides with the cylinders (71, 81).
  • the blade (76, 86) integral with the piston (75, 85) is supported by the cylinder (71, 81) via the bush (77, 87), and rotates with respect to the cylinder (71, 81). It is free and can move forward and backward.
  • the first cylinder (71) and the second cylinder (81) are arranged in such a posture that the positions of the bushes (77, 87) in the respective circumferential directions match.
  • the first fluid chamber (72) in the first cylinder (71) is partitioned by a first blade (76) integral with the first piston (75), and the first blade (76) in FIG.
  • the left side is a first high pressure chamber (73) on the high pressure side
  • the right side is a first low pressure chamber (74) on the low pressure side.
  • the second fluid chamber (82) in the second cylinder (81) is partitioned by a second blade (86) integral with the second piston (85), and the left side of the second blade (86) in FIG.
  • the second high-pressure chamber (83) on the high-pressure side, and the right side thereof becomes the second low-pressure chamber (84) on the low-pressure side.
  • the first cylinder (71) is formed with an inflow port (34).
  • the inflow port (34) is open in the inner peripheral surface of the first cylinder (71) at a position slightly to the left of the bush (77) in FIGS.
  • the inflow port (34) can communicate with the first high-pressure chamber (73).
  • an outflow port (35) is formed in the second cylinder (81).
  • the outflow port (35) is open at a location on the inner peripheral surface of the second cylinder (81) slightly to the right of the bush (87) in FIGS.
  • the outflow port (35) can communicate with the second low pressure chamber (84).
  • a communication passage (64) is formed in the intermediate plate (63).
  • the communication passage (64) penetrates the intermediate plate (63) in the thickness direction.
  • one end of the communication passage (64) is open at a location on the right side of the first blade (76).
  • the other end of the communication path (64) is open at a position on the left side of the second blade (86).
  • the communication path (64) extends obliquely with respect to the thickness direction of the intermediate plate (63), and connects the first low-pressure chamber (74) and the second high-pressure chamber (83). Let them communicate with each other.
  • the first cylinder (71), the bush (77) provided therein, the first piston (75), and the first blade (76) ) Constitute the first rotary mechanism (70).
  • the second cylinder (81), the bush (87) provided therein, the second biston (85), and the second blade (86) constitute a second rotary mechanism (80).
  • the displacement of the first rotary mechanism (70) that is, the maximum displacement of the first fluid chamber (72)
  • the displacement of the second rotary mechanism (80) (that is, the maximum volume of the second fluid chamber (82)) is larger than that of the second rotary mechanism (80).
  • the timing at which the first blade (76) retreats most to the outside of the first cylinder (71), and the second blade (86) is moved to the second cylinder (81) The timing that retreats farthest out is synchronized. That is, the volume of the first low-pressure chamber (74) decreases in the first rotary mechanism (70), and the volume of the second high-pressure chamber (83) increases in the second rotary mechanism (80). The process is synchronized (see Figure 4). Further, as described above, the first low-pressure chamber (74) of the first rotary mechanism (70) and the second high-pressure chamber (83) of the second rotary mechanism (80) communicate with the communication path (64). Are in communication with one another. Then, one closed space is formed by the first low-pressure chamber (74), the communication path (64), and the second high-pressure chamber (83), and this closed space constitutes the expansion chamber (66).
  • a refrigeration cycle is performed by circulating the refrigerant in the refrigerant circuit (15).
  • the refrigerant radiates heat to the outdoor air sent to the radiator (16), and the indoor aerodynamic refrigerant sent to the evaporator (17) absorbs heat. This cools the room air.
  • the refrigerant releases heat to the indoor air sent to the radiator (16), and absorbs heat from the outdoor air sent to the evaporator (17). This heats the room air.
  • the cooled refrigerant is sent to the radiator (16).
  • the refrigerant in the state at the point B radiates heat to the air, and the enthalpy decreases to the state at the point C while the pressure is kept constant. From the state of point B to the state of point C, the temperature of the refrigerant gradually decreases.
  • the refrigerant that has flowed out at the point C in the state of the radiator (16) is introduced into the expander (60).
  • the refrigerant in the state at the point C undergoes adiabatic expansion, and power is recovered by this refrigerant power.
  • the refrigerant flowing out of the expander (60) in the state at the point D is sent to the evaporator (17).
  • the refrigerant in the state at the point D absorbs aerodynamic force, and the entraumi increases with the pressure kept constant, and the state at the point A is reached. From the state of point D to the state of point A, the temperature of the refrigerant is constant. The refrigerant flowing out of the evaporator (17) in the state at the point A is sucked into the compressor (50) and is compressed again.
  • the second low-pressure chamber (84) of the second rotary mechanism (80) is driven by the refrigerant flowing out.
  • the second low pressure chamber (84) starts to communicate with the outflow port (35) when the rotation angle of the shaft (40) is 0 °. That is, the refrigerant starts flowing out of the second low-pressure chamber (84) to the outflow port (35). Thereafter, the rotation angle of the shaft (40) gradually increases to 90 °, 180 °, and 270 °, and the shaft (40) expands from the second low-pressure chamber (84) until the rotation angle reaches 360 °. Later low-pressure refrigerant flows out.
  • the displacement of the second rotary mechanism (80) is larger than the displacement of the first rotary mechanism (70).
  • the displacement volume of the first rotary mechanism (70) is the maximum volume of the first fluid chamber (72), that is, the volume of the first fluid chamber (72) immediately after being shut off from the inflow port (34).
  • the displacement volume of the second rotary mechanism (80) is the maximum volume of the second fluid chamber (82), that is, the volume of the second fluid chamber (82) immediately before communicating with the outflow port (35).
  • the refrigerant exchanges heat with indoor air or outdoor air in the radiator (16) and the evaporator (17). Therefore, taking into account the conditions of indoor air and outdoor air, the low pressure of the refrigeration cycle under the standard operating conditions, which is the design standard (standard low pressure P)
  • the refrigerant temperature (reference refrigerant temperature T) at the outlet of the radiator (16) is set. Also required for air conditioners (10)
  • the amount of refrigerant circulation (refrigerant flow rate) in the refrigerant circuit (15) required to obtain the air conditioning capacity is determined, and the suction volume V of the compressor is set accordingly.
  • the rotational speeds of the expander (60) and the compressor (50) are the same. That is, the ratio r of the rotation speed of the compressor (50) to the rotation speed of the expander (60) is “1”.
  • Ah is the amount of heat dissipated by the refrigerant to the object in the compressor (16), and A h is
  • Ah is the power required to recover the refrigerant power by the expander, and Ah is the power required to recover the refrigerant power.
  • the fixed pressure at the low pressure of the refrigeration cycle and the refrigerant temperature at the outlet of the radiator (16) uniquely determines the high pressure at which the COP becomes the highest. Focusing on the characteristics of the critical cycle, this characteristic is used to set the displacement of each rotary mechanism (70, 80).
  • be the density of the refrigerant at the reference high pressure and the reference refrigerant temperature, that is, the density of the refrigerant introduced into the expander (60).
  • the amount of refrigerant introduced into the expander (60) is
  • the refrigerant temperature at the outlet is set to 35 ° C.
  • the reference refrigerant temperature is set to 35 ° C.
  • the reference low pressure is set to 3.5 MPa at which the evaporation temperature of carbon dioxide (CO 2) as the refrigerant becomes 0 ° C. Standard low pressure 3.5MPa
  • the density P of the saturated gas refrigerant is 97.32 kg / m 3 .
  • the reference low pressure is 3.5MPa
  • the pressure, ie the reference high pressure, is 9MPa (see Figure 6).
  • the density p of the refrigerant at a reference high pressure of 9 MPa and a reference refrigerant temperature of 35 ° C. is 662.5 kg / m 3 .
  • Embodiment 2 of the present invention will be described.
  • the points of the air conditioner (10) of the present embodiment that are different from those of the first embodiment will be described.
  • a receiver (18) is provided in the refrigerant circuit (15) of the air conditioner (10).
  • the receiver (18) is formed in a cylindrical closed container shape, and is installed between the outlet side of the evaporator (17) and the suction side of the compressor (50).
  • a part of the refrigerant filled in the refrigerant circuit (15) is stored in the receiver (18) in a state of a liquid refrigerant.
  • the refrigerant that has flowed out of the evaporator (17) is introduced into the receiver (18), and the refrigerant in the receiver (18) is sucked into the compressor (50). Since the liquid refrigerant exists in the receiver (18), the refrigerant in the receiver (18) sucked into the compressor (50) is saturated. That is, even in an operation state in which the refrigerant is overheated at the outlet of the evaporator (17), the refrigerant sucked by the compressor (50) is kept in a saturated state.
  • the displacement of each rotary mechanism (70, 80) in the expander (60) is such that the refrigerant sucked into the compressor (50) is a saturated gas refrigerant. It is set on the assumption. Therefore, if the intake refrigerant of the compressor (50) is maintained in a saturated state regardless of the operating conditions by providing the receiver (18), the condition of the refrigeration cycle in the refrigerant circuit (15) was assumed at the time of design. The operation state can be approximated, and the refrigeration cycle in the refrigerant circuit (15) can be stabilized.
  • Embodiment 3 of the present invention will be described.
  • an air conditioner (10) of the present embodiment will be described while focusing on differences from the second embodiment.
  • an internal heat exchanger (20) is provided in a refrigerant circuit (15) of the air conditioner (10).
  • the internal heat exchange (20) is provided with a first flow path (21) and a second flow path (22).
  • the first flow path (21) has its inlet side connected to the radiator (16) and its outlet side connected to the inlet port (34) of the expander (60).
  • the second flow path (22) has an inlet connected to the evaporator (17) and an outlet connected to the suction port (32) of the compressor (50) via the receiver (18).
  • the radiator (16) also exerts a force on the expander (60).
  • the refrigerant is directed from the evaporator (17) to the receiver (18). Is done.
  • the refrigerant flowing into the expander (60) is cooled by the internal heat exchange (20), so that its enthalpy decreases. Accordingly, the power of the expander (60) and the enthalpy of the refrigerant sent to the evaporator (17) also decrease. For this reason, the difference in enthalpy of the refrigerant at the entrance and exit of the evaporator (17) can be increased, and the amount of heat in the evaporator (17) at which the refrigerant also absorbs air power can be increased. Therefore, according to the present embodiment, it is possible to increase the cooling capacity of the air conditioner (10) by providing the internal heat exchange (20).
  • the second flow path (22) of the internal heat exchanger (20) is connected between the receiver (18) and the compressor (50). Is also good.
  • the second flow path (22) of the internal heat exchanger (20) in this modified example has an inlet side connected to an evaporator (17) via a receiver (18) and an outlet side connected to a compressor suction port. Connected to ports (32) respectively.
  • the radiator (16) forces the refrigerant flowing to the expander (60) from the evaporator (17) to the compressor (50) ⁇ ⁇ ⁇ ⁇ heat exchange with the refrigerant.
  • the refrigerant is cooled, and the enthalpy difference of the refrigerant at the entrance and exit of the evaporator (17) increases.
  • Embodiment 4 of the present invention will be described.
  • the configuration of the expander (60) in the first embodiment is changed.
  • the expander (60) of the present embodiment is configured by a scroll-type fluid machine.
  • the expander (60) includes a movable scroll (91) and a fixed scroll (93).
  • the movable scroll (91) has a movable wrap (92).
  • the movable wrap (92) is formed in a spiral wall shape that draws an upper end force involute curve.
  • the movable scroll (91) is engaged with the shaft (40) and performs only a revolving motion while the rotation is restricted.
  • the fixed scroll (93) has a fixed side wrap (94).
  • the movable wrap (92) is formed in a spiral wall shape corresponding to the movable wrap (92), and both side surfaces thereof constitute an envelope surface of the fixed wrap (94) revolving.
  • the fixed scroll (93) has an inflow port (34) opened at the center thereof, and an outflow port (35) opened at the peripheral edge thereof.
  • the movable scroll (91) has a movable wrap (92) and a fixed scroll.
  • the fixed side wrap (94) of (93) is engaged with each other.
  • a first chamber (95) and a second chamber (96), both of which are fluid chambers, are formed between the movable wrap (92) and the fixed wrap (94).
  • the movable scroll (91) moves, the volumes of the first chamber (95) and the second chamber (96) change.
  • FIG. 10 (A) shows a state immediately after the first chamber (95) and the second chamber (96) have also cut off the inflow port (34) force. In this state, the volumes of the first chamber (95) and the second chamber (96) are minimized. In the expander (60) of the present embodiment, the sum of the volume of the first chamber (95) and the volume of the second chamber (96) in this state is V. On the other hand, in Figure 10 (D), the first room (95) and the second room (96)
  • the present invention is useful for a refrigeration apparatus that includes an expander and performs a refrigeration cycle in which the high pressure is set to be equal to or higher than the critical pressure of the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A low pressure in a refrigeration cycle and a refrigerant temperature at the outlet of a radiator under reference operating conditions are a reference low pressure and a reference refrigerant temperature, respectively, and a high pressure in a refrigeration cycle where the coefficient of performance of the refrigeration cycle becomes highest under reference operating conditions is a reference high pressure. Assuming the density of saturated gas refrigerant under the reference low pressure is ρ1, the density of refrigerant under the reference high pressure and reference refrigerant temperature is ρ2, the density of refrigerant under the reference high pressure and reference refrigerant temperature expanded adiabatically up to the reference low pressure is ρ3, the volume of the compression chamber of a compressor immediately after being shut off from the suction side is v1, and the rotation speed ratio of the compressor to that of an expansion machine is r, the volume v2 of a first fluid chamber (72) in the expansion machine (60) immediately after being shut off from the inflow side is set such that v2=ρ1·v1·r/ρ2, and the volume v3 of a second fluid chamber (82) immediately before communicating with the outflow side is set such that v3=ρ2·v2/ρ3.

Description

明 細 書  Specification
冷凍装置  Refrigeration equipment
技術分野  Technical field
[0001] 本発明は、高圧圧力が冷媒の臨界圧力以上に設定された冷凍サイクルを行う冷凍 装置に関するものである。 背景技術  The present invention relates to a refrigeration apparatus that performs a refrigeration cycle in which a high pressure is set to be equal to or higher than a critical pressure of a refrigerant. Background art
[0002] 従来より、閉回路である冷媒回路で冷媒を循環させて冷凍サイクルを行う冷凍装置 が知られており、空調機等として広く利用されている。この種の冷凍装置としては、例 えば特許文献 1に開示されて!、るように、冷凍サイクルの高圧を冷媒の臨界圧力より も高く設定したものが知られている。この冷凍装置は、冷媒の膨張機構として膨張機 を備えている。そして、この膨張機と圧縮機を軸によって連結し、膨張機で得られた 動力を圧縮機の駆動に利用して COP (成績係数)の向上を図って ヽる。  [0002] Conventionally, a refrigerating apparatus that performs a refrigerating cycle by circulating a refrigerant in a refrigerant circuit that is a closed circuit has been known, and is widely used as an air conditioner or the like. As this type of refrigeration apparatus, for example, one disclosed in Patent Document 1 in which the high pressure of a refrigeration cycle is set higher than the critical pressure of a refrigerant is known. This refrigerating apparatus includes an expander as a refrigerant expansion mechanism. The expander and the compressor are connected by a shaft, and the power obtained by the expander is used for driving the compressor to improve the COP (coefficient of performance).
特許文献 1 :特開 2001— 107881号公報  Patent Document 1: JP 2001-107881A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 膨張機を備える上記冷凍装置を設計する際には、膨張機の仕様を決めなければな らない。特に、容積型流体機械のうち閉空間となった流体室の容積が変化する形式 のものを膨張機として用いる場合には、流体室が流入側から遮断された直後(即ち流 体室内で流体の膨張の開始時点)における流体室の容積と、流体室が流出側に連 通する直前 (即ち流体室内で流体の膨張の終了時点)における流体室の容積を決め る必要がある。これらの値を決めるには、膨張機の入口と出口における冷媒の状態を 設定する必要がある。また、膨張機と圧縮機が軸などで連結されていて両者の回転 速度比が固定される場合は、圧縮機の容量も考慮する必要がある。  [0003] When designing the refrigerating apparatus including the expander, the specifications of the expander must be determined. In particular, when a volumetric fluid machine of a type in which the volume of a closed fluid chamber is changed is used as an expander, immediately after the fluid chamber is shut off from the inflow side (that is, the flow of fluid in the fluid chamber). It is necessary to determine the volume of the fluid chamber at the time of the start of the expansion and the volume of the fluid chamber immediately before the fluid chamber communicates with the outflow side (that is, at the end of the expansion of the fluid in the fluid chamber). To determine these values, it is necessary to set the state of the refrigerant at the inlet and outlet of the expander. When the expander and the compressor are connected by a shaft or the like and the rotational speed ratio of both is fixed, it is necessary to consider the capacity of the compressor.
[0004] ここで、冷凍装置に要求される能力が決まると、それに応じて圧縮機の容量の設計 値を設定できる。また、冷凍装置の用途が決まると、冷媒が放熱する対象 (放熱対象 )と冷媒が吸熱する対象 (吸熱対象)とを想定できる。例えば、冷凍装置によって空調 機を構成する場合、冷房運転中であれば、放熱対象が室外空気となって吸熱対象 が室内空気となる。 [0004] Here, when the capacity required for the refrigeration apparatus is determined, a design value of the capacity of the compressor can be set accordingly. Further, when the application of the refrigeration apparatus is determined, it can be assumed that the refrigerant radiates heat (radiation target) and the refrigerant absorbs heat (heat absorption target). For example, when an air conditioner is configured with a refrigerating device, during cooling operation, the heat radiation target is outdoor air and the heat absorption target Is room air.
[0005] 図 11のモリエル線図(圧力ーェンタルピ線図)に示すように、放熱対象の温度条件 が決まると、それに応じて冷媒の蒸発温度 Tが設定されることから、冷凍サイクルの  [0005] As shown in the Mollier diagram (pressure-enthalpy diagram) in Fig. 11, when the temperature condition of the heat radiation target is determined, the evaporation temperature T of the refrigerant is set in accordance therewith.
1  1
低圧圧力 Pの設計値が決まる。ところが、冷凍サイクルの高圧圧力が冷媒の臨界圧 し  The design value of the low pressure P is determined. However, the high pressure of the refrigeration cycle increases the critical pressure of the refrigerant.
力以上になると、高圧冷媒は放熱しても凝縮しない。従って、放熱対象の温度条件 が決まっても、それに応じて設定できるのは放熱後の冷媒温度 Tだけである。そして  When the pressure exceeds the pressure, the high-pressure refrigerant does not condense even if it radiates heat. Therefore, even if the temperature condition of the heat radiation target is determined, only the refrigerant temperature T after heat radiation can be set according to the temperature condition. And
2  2
、放熱後の冷媒の状態が温度 τの等温線上の点であることし力決まらないため、冷  Since the state of the refrigerant after heat release is a point on the isotherm of the temperature τ and cannot be determined,
2  2
凍サイクルの高圧圧力の設計値は一義的に定まらない。  The design value of the high pressure in the freezing cycle is not uniquely determined.
[0006] このように、膨張機を備えると共に冷凍サイクルの高圧圧力が冷媒の臨界圧力以上 になる上記冷凍装置については、その用途を決めただけでは冷凍サイクルの高圧圧 力の設計値を設定できない。そして、冷凍サイクルの高圧圧力が決まらなければ、膨 張機の入口における冷媒の状態(同図の点 Xで表される状態)を設定できず、更には 膨張機の出口における冷媒の状態(同図の点 Yで表される状態)も設定できない。こ のため、従来の上記冷凍装置では、膨張機の仕様が冷凍装置の使用条件に必ずし も適合せず、膨張機による効率の改善が不充分になるという問題があった。 [0006] As described above, with respect to the refrigerating apparatus including the expander and in which the high pressure of the refrigeration cycle is equal to or higher than the critical pressure of the refrigerant, it is not possible to set the design value of the high pressure of the refrigeration cycle only by deciding its use. . Unless the high-pressure pressure of the refrigeration cycle is determined, the state of the refrigerant at the inlet of the expander (the state represented by the point X in the figure) cannot be set, and further, the state of the refrigerant at the outlet of the expander (the state (The state represented by point Y in the figure) cannot be set. For this reason, in the above-mentioned conventional refrigeration system, the specifications of the expander do not always conform to the use conditions of the refrigeration system, and there is a problem that the improvement of the efficiency by the expander is insufficient.
[0007] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、その運 転条件に適合した膨張機を備えていて高効率の得られる冷凍装置を提供することに ある。  [0007] The present invention has been made in view of its power, and an object of the present invention is to provide a refrigeration apparatus having an expander suitable for the operating conditions and having high efficiency. It is in.
課題を解決するための手段  Means for solving the problem
[0008] 第 1の発明は、圧縮機 (50)と放熱器 (16)と膨張機 (60)と蒸発器 (17)とが接続され た冷媒回路(15)を備え、該冷媒回路(15)で冷媒を循環させて高圧圧力が冷媒の臨 界圧力以上となる冷凍サイクルを行う冷凍装置を対象とする。 [0008] The first invention includes a refrigerant circuit (15) in which a compressor (50), a radiator (16), an expander (60), and an evaporator (17) are connected. The present invention is directed to a refrigeration system that performs a refrigeration cycle in which the refrigerant is circulated in (2) and the high pressure is equal to or higher than the critical pressure of the refrigerant.
そして、上記圧縮機 (50)と膨張機 (60)は、何れも流体室の容積が変化する容積型 流体機械で構成されると共に、一方の回転速度に対する他方の回転速度の比が一 定となる状態で互いに連結される一方、設計基準となる基準運転条件での冷凍サイ クルの低圧圧力と放熱器(16)の出口における冷媒温度をそれぞれ基準低圧と基準 冷媒温度とし、上記基準運転状態にお!、て冷凍サイクルの成績係数が最高となる冷 凍サイクルの高圧圧力を基準高圧とし、上記基準低圧における飽和ガス冷媒の密度 を p とし、上記基準高圧及び基準冷媒温度における冷媒の密度を p とし、上記基Each of the compressor (50) and the expander (60) is composed of a positive displacement type fluid machine in which the volume of the fluid chamber changes, and the ratio of one rotational speed to the other is constant. While the low-pressure pressure of the refrigeration cycle and the refrigerant temperature at the outlet of the radiator (16) under the standard operating conditions, which are design standards, are referred to as the reference low pressure and the reference refrigerant temperature, respectively. The high pressure of the refrigeration cycle at which the coefficient of performance of the refrigeration cycle is highest is defined as the reference high pressure, and the density of the saturated gas P, the density of the refrigerant at the reference high pressure and the reference refrigerant temperature is p, and
1 2 準高圧及び基準冷媒温度の冷媒を上記基準低圧まで断熱膨張させたものの密度を とし、上記圧縮機 (50)において流体室が吸入側力も遮断された直後における該1 2 The density of a refrigerant having a medium pressure and a reference refrigerant temperature adiabatically expanded to the above reference low pressure is assumed to be, and the pressure immediately after the suction side force of the fluid chamber in the compressor (50) is also shut off.
3 Three
流体室の容積を Vとし、上記圧縮機 (50)の回転速度の上記膨張機 (60)の回転速度  Let the volume of the fluid chamber be V, and the rotational speed of the expander (60) above the rotational speed of the compressor (50)
1  1
に対する比 とした場合に、上記膨張機 (60)において流体室が流入側力も遮断さ れた直後における該流体室の容積 Vが V = ρ · ν -r/ となり、上記膨張機 (60)に  , The volume V of the fluid chamber immediately after the inflow-side force of the expander (60) is also interrupted is V = ρν-r /, and the expander (60)
2 2 1 1 2  2 2 1 1 2
おいて流体室が流出側に連通する直前における該流体室の容積 Vが V = ρ · ν /  Immediately before the fluid chamber communicates with the outflow side, the volume V of the fluid chamber is V = ρ · ν /
3 3 2 2 となるものである。  3 3 2 2
3  Three
[0009] 第 2の発明は、上記第 1の発明において、冷媒回路(15)では、蒸発器(17)の出口 側と圧縮機 (50)の吸入側との間にレシーバ(18)力 S設けられるものである。  [0009] In a second aspect based on the first aspect, in the refrigerant circuit (15), the receiver (18) force S is applied between the outlet side of the evaporator (17) and the suction side of the compressor (50). It is provided.
[0010] 第 3の発明は、上記第 1の発明において、冷媒回路(15)には、放熱器(16)カも膨 張機 (60)へ向カゝぅ冷媒と蒸発器 (17)から圧縮機 (50)へ向力ゝぅ冷媒とを熱交換させる 内部熱交^^ (20)力 S設けられるものである。  [0010] In a third aspect based on the first aspect, in the refrigerant circuit (15), the radiator (16) is also supplied to the expansion machine (60) from the refrigerant and the evaporator (17). Internal heat exchange for exchanging heat between the refrigerant and the refrigerant (50) (20) Force S is provided.
[0011] 一作用  [0011] One action
上記第 1の発明では、冷凍装置(10)の冷媒回路(15)で冷媒が循環して冷凍サイク ルが行われる。冷媒回路(15)内を循環する冷媒は、圧縮機 (50)で圧縮されて超臨 界状態となった後に放熱器 (16)で放熱し、続 ヽて膨張機 (60)で膨張してから蒸発器 (17)で吸熱して蒸発し、その後に圧縮機 (50)へ吸入されて再び圧縮される。膨張機 (60)は圧縮機 (50)に連結されており、膨張機 (60)で冷媒力 回収された動力が圧 縮機 (50)の駆動に利用される。上記冷凍装置(10)では、圧縮機 (50)の回転速度に 対する膨張機 (60)の回転速度の比が固定されている。例えば、この回転速度の比は 、圧縮機 (50)と膨張機 (60)が 1本の軸で直結されてれば「1」となり、減速機を介して 連結されていれば減速機の減速比に等しくなる。  In the first aspect, the refrigerant circulates in the refrigerant circuit (15) of the refrigeration apparatus (10) to perform a refrigeration cycle. The refrigerant circulating in the refrigerant circuit (15) is compressed by the compressor (50) to be in a supercritical state, then radiated by the radiator (16), and subsequently expanded by the expander (60). The heat is absorbed by the evaporator (17) to evaporate, and then sucked into the compressor (50) and compressed again. The expander (60) is connected to the compressor (50), and the power recovered by the refrigerant power in the expander (60) is used to drive the compressor (50). In the refrigeration system (10), the ratio of the rotation speed of the expander (60) to the rotation speed of the compressor (50) is fixed. For example, the ratio of the rotational speeds is “1” when the compressor (50) and the expander (60) are directly connected by one shaft, and when the compressor (50) and the expander (60) are connected via the speed reducer, the speed of the speed reducer is reduced. Equal to the ratio.
[0012] 上記冷凍装置(10)を設計するに際し、圧縮機 (50)において流体室が吸入側から 遮断された直後における該流体室の容積 V、即ち圧縮機 (50)の吸入容積は、冷凍  [0012] In designing the refrigeration apparatus (10), the volume V of the fluid chamber immediately after the fluid chamber in the compressor (50) is shut off from the suction side, that is, the suction volume of the compressor (50),
1  1
能力に対する能力の要求値に応じて設定できる。また、冷凍装置(10)の用途が決ま れば、その用途で想定される運転条件に基づ!/、て冷凍サイクルの低圧圧力である基 準低圧と放熱器(16)の出口における冷媒温度である基準冷媒温度とを設定できるが 、それだけでは冷凍サイクルの高圧圧力を設定できない。一方、冷凍サイクルの低圧 圧力と放熱器(16)の出口における冷媒温度が設定されれば、その運転条件での運 転試験やシミュレーションを行うことで、その運転条件で成績係数 (COP)が最高とな る冷凍サイクルの高圧圧力を決めることが可能である。 It can be set according to the required value of ability for ability. Once the use of the refrigeration system (10) is determined, the reference low pressure, which is the low pressure of the refrigeration cycle, and the refrigerant temperature at the outlet of the radiator (16) are determined based on the operating conditions assumed for the use. The reference refrigerant temperature can be set However, this alone cannot set the high pressure of the refrigeration cycle. On the other hand, if the low pressure of the refrigeration cycle and the refrigerant temperature at the outlet of the radiator (16) are set, running tests and simulations under the operating conditions will result in the highest COP under the operating conditions. It is possible to determine the high pressure of the refrigeration cycle.
[0013] そこで、この発明では、冷凍サイクルの低圧圧力が基準低圧となって放熱器(16)の 出口における冷媒温度が基準冷媒温度となる基準運転状態において、冷凍サイクル の成績係数が最高となる冷凍サイクルの高圧圧力を基準高圧としている。そして、こ の冷凍装置(10)における膨張機 (60)の仕様は、基準低圧、基準冷媒温度、及び基 準高圧と、冷媒回路(15)に充填された冷媒の物性とに基づいて設定される。具体的 には、膨張機 (60)において流体室が流入側から遮断された直後(即ち流体室内で 冷媒の膨張が開始される直前)における該流体室の容積 Vと、膨張機 (60)において [0013] Therefore, according to the present invention, the coefficient of performance of the refrigeration cycle is maximized in the reference operation state in which the low pressure of the refrigeration cycle becomes the reference low pressure and the refrigerant temperature at the outlet of the radiator (16) becomes the reference refrigerant temperature. The high pressure of the refrigeration cycle is set as the reference high pressure. The specifications of the expander (60) in the refrigeration system (10) are set based on the reference low pressure, the reference refrigerant temperature, the reference high pressure, and the physical properties of the refrigerant charged in the refrigerant circuit (15). You. Specifically, the volume V of the fluid chamber immediately after the fluid chamber is shut off from the inflow side in the expander (60) (that is, immediately before the expansion of the refrigerant in the fluid chamber is started), and the volume of the fluid chamber in the expander (60).
2  2
流体室が流出側に連通する直前 (即ち流体室内で冷媒の膨張が終了した直後)に おける該流体室の容積 Vとが、上述した基準高圧等に基づいて設定される。  The volume V of the fluid chamber immediately before the fluid chamber communicates with the outflow side (that is, immediately after the expansion of the refrigerant in the fluid chamber ends) is set based on the above-described reference high pressure and the like.
3  Three
[0014] 上記第 2の発明では、冷媒回路(15)にレシーバ(18)が設けられる。レシーバ(18) の内部には、冷媒回路(15)に充填された冷媒の一部が液冷媒の状態で貯留される 。レシーバ(18)内の液冷媒の量が増減すると、それに伴って冷媒回路(15)内を循環 する冷媒量が変化する。レシーバ(18)は、蒸発器 (17)の出口側と圧縮機 (50)の吸 入側との間に設置される。この冷媒回路(15)では、蒸発器 (17)力 流出した冷媒が レシーバ(18)へ導入され、レシーバ(18)内の冷媒が圧縮機 (50)へ吸入される。レシ ーバ(18)内には液冷媒が存在しているため、圧縮機 (50)へ吸入されるレシーバ(18 )内の冷媒は、飽和状態となっている。  [0014] In the second aspect, the receiver (18) is provided in the refrigerant circuit (15). A part of the refrigerant filled in the refrigerant circuit (15) is stored in the receiver (18) in a state of a liquid refrigerant. When the amount of liquid refrigerant in the receiver (18) increases or decreases, the amount of refrigerant circulating in the refrigerant circuit (15) changes accordingly. The receiver (18) is installed between the outlet side of the evaporator (17) and the suction side of the compressor (50). In the refrigerant circuit (15), the refrigerant flowing out of the evaporator (17) is introduced into the receiver (18), and the refrigerant in the receiver (18) is sucked into the compressor (50). Since the liquid refrigerant exists in the receiver (18), the refrigerant in the receiver (18) sucked into the compressor (50) is saturated.
[0015] 上記第 3の発明では、冷媒回路(15)に内部熱交換器 (20)が設けられる。内部熱交  [0015] In the third invention, the refrigerant circuit (15) is provided with the internal heat exchanger (20). Internal heat exchange
(20)では、放熱器 (16)から膨張機 (60)へ向カゝぅ冷媒が蒸発器 (17)から圧縮機 (50)へ向力う冷媒と熱交換して冷却される。膨張機 (60)へ流入する冷媒は、内部熱 交 (20)で冷却されることによって、そのェンタルビが低下する。それに伴い、膨 張機 (60)カゝら蒸発器(17)へ送られる冷媒のェンタルピも低下する。  In (20), the refrigerant flowing from the radiator (16) to the expander (60) exchanges heat with the refrigerant flowing from the evaporator (17) to the compressor (50) to be cooled. The refrigerant flowing into the expander (60) is cooled by the internal heat exchange (20), so that its enthalpy decreases. Accordingly, the enthalpy of the refrigerant sent to the expander (60) and the evaporator (17) also decreases.
発明の効果  The invention's effect
[0016] 本発明では、冷凍サイクルの低圧圧力(基準低圧)と放熱器(16)の出口における冷 媒温度 (基準冷媒温度)とが一定の条件下では成績係数 (COP)が最高となる冷凍 サイクルの高圧圧力(基準高圧)が一義的に決まると!、う上記冷凍装置(10)の特性 に着目し、この特性を利用して仕様が決定された膨張機 (60)を該冷凍装置(10)に 設けている。従って、本発明によれば、冷凍装置(10)の使用条件に適合した仕様の 膨張機 (60)を用いることができ、膨張機 (60)で冷媒カも確実に動力を回収して冷凍 装置(10)の成績係数を高めることが可能となる。 In the present invention, the low pressure (reference low pressure) of the refrigeration cycle and the cooling at the outlet of the radiator (16) When the medium temperature (reference refrigerant temperature) is constant, the high pressure (reference high pressure) of the refrigeration cycle that maximizes the coefficient of performance (COP) is uniquely determined! Attention has been paid, and an expander (60) whose specifications have been determined utilizing this characteristic is provided in the refrigeration system (10). Therefore, according to the present invention, it is possible to use an expander (60) having a specification adapted to the use conditions of the refrigeration apparatus (10), and the refrigerant power is surely recovered by the expander (60) so that the refrigeration apparatus can be used. The coefficient of performance of (10) can be increased.
[0017] 上記第 2の発明では、蒸発器(17)力 流出した冷媒をレシーバ(18)へ導入し、圧 縮機 (50)がレシーバ(18)力 冷媒を吸入する構成としている。このため、蒸発器(17 )から流出する冷媒が過熱状態となる運転状態であっても、圧縮機 (50)はレシーバ( 18)内の飽和状態の冷媒を吸入することになる。従って、この発明によれば、圧縮機( 50)が吸入する冷媒の状態を冷凍装置(10)の設計時に想定した状態と一致させるこ とができ、冷凍装置(10)での冷凍サイクルを安定ィ匕させることができる。  [0017] In the second invention, the refrigerant that has flowed out of the evaporator (17) is introduced into the receiver (18), and the compressor (50) sucks the refrigerant that has flowed into the receiver (18). Therefore, even in an operation state in which the refrigerant flowing out of the evaporator (17) is in an overheated state, the compressor (50) sucks the saturated refrigerant in the receiver (18). Therefore, according to the present invention, the state of the refrigerant sucked by the compressor (50) can be made to match the state assumed at the time of designing the refrigeration apparatus (10), and the refrigeration cycle in the refrigeration apparatus (10) can be stabilized. I can make it ridiculous.
[0018] 上記第 3の発明では、冷媒回路 (15)に内部熱交換器 (20)を設けて膨張機 (60)へ 流入する冷媒を冷却し、膨張機 (60)から蒸発器 (17)へ送られる冷媒のェンタルピを 低下させている。このため、蒸発器(17)の出入口における冷媒のェンタルピ差を拡 大することができ、蒸発器 (17)で対象物を冷却する場合の冷却能力を増大させるこ とがでさる。  [0018] In the third aspect, the refrigerant circuit (15) is provided with the internal heat exchanger (20) to cool the refrigerant flowing into the expander (60), and the evaporator (17) is provided from the expander (60). The enthalpy of the refrigerant sent to the furnace has been reduced. For this reason, the difference in the enthalpy of the refrigerant at the entrance and exit of the evaporator (17) can be increased, and the cooling capacity when the object is cooled by the evaporator (17) can be increased.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は、実施形態 1における空調機の冷媒回路を示す概略構成図である。  FIG. 1 is a schematic configuration diagram illustrating a refrigerant circuit of an air conditioner according to a first embodiment.
[図 2]図 2は、実施形態 1における圧縮'膨張ユニットの概略断面図である。  FIG. 2 is a schematic sectional view of a compression / expansion unit according to the first embodiment.
[図 3]図 3は、実施形態 1における膨張機の要部拡大図である。  FIG. 3 is an enlarged view of a main part of the expander according to the first embodiment.
[図 4]図 4は、実施形態 1の膨張機におけるシャフトの回転角 90° 毎の各ロータリ機 構部の状態を示す断面図である。  FIG. 4 is a cross-sectional view showing a state of each rotary mechanism at every 90 ° rotation angle of a shaft in the expander of the first embodiment.
[図 5]図 5は、冷媒回路での冷凍サイクルを示すモリエル線図(圧力ーェンタルピ線図 )である。  FIG. 5 is a Mollier diagram (pressure-enthalpy diagram) showing a refrigeration cycle in the refrigerant circuit.
[図 6]図 6は、超臨界サイクルにおいて低圧圧力と放熱器出口での冷媒温度とを固定 した場合の高圧圧力と COPの関係図である。  [FIG. 6] FIG. 6 is a graph showing the relationship between high pressure and COP when the low pressure and the refrigerant temperature at the radiator outlet are fixed in the supercritical cycle.
[図 7]図 7は、実施形態 2における空調機の冷媒回路を示す概略構成図である。 [図 8]図 8は、実施形態 3における空調機の冷媒回路を示す概略構成図である。 FIG. 7 is a schematic configuration diagram illustrating a refrigerant circuit of an air conditioner according to a second embodiment. FIG. 8 is a schematic configuration diagram illustrating a refrigerant circuit of an air conditioner according to a third embodiment.
[図 9]図 9は、実施形態 3の変形例における空調機の冷媒回路を示す概略構成図で ある。  FIG. 9 is a schematic configuration diagram showing a refrigerant circuit of an air conditioner according to a modification of the third embodiment.
[図 10]図 10は、実施形態 4における膨張機の構成と動作を示す概略断面図である。  FIG. 10 is a schematic sectional view showing the configuration and operation of an expander according to a fourth embodiment.
[図 11]図 11は、超臨界サイクルの特性を示すモリエル線図(圧力ーェンタルピ線図) である。  [FIG. 11] FIG. 11 is a Mollier diagram (pressure-enthalpy diagram) showing characteristics of a supercritical cycle.
符号の説明  Explanation of symbols
15 冷媒回路  15 Refrigerant circuit
16 放熱器  16 Heatsink
17 蒸発器  17 Evaporator
18 レシーノ  18 Resino
20 内部熱交換器  20 Internal heat exchanger
50 圧縮機  50 compressor
53 圧縮室  53 Compression chamber
60 膨張機  60 expander
72 第 1流体室  72 First fluid chamber
73 第 1高圧室  73 1st high pressure chamber
74 第 1低圧室  74 1st low pressure chamber
82 第 2流体室  82 2nd fluid chamber
83 第 2高圧室  83 2nd high pressure chamber
84 第 2低圧室  84 2nd low pressure chamber
95 第 1室  95 Room 1
96 第 2室  96 Room 2
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0022] 《発明の実施形態 1》 << Embodiment 1 of the Invention >>
本発明の実施形態 1について説明する。本実施形態の空調機(10)は、本発明に 係る冷凍装置によって構成されて ヽる。 [0023] 図 1に示すように、上記空調機(10)は、冷媒回路(15)を備えている。この冷媒回路 (15)には、二酸化炭素 (CO )が冷媒として充填されている。また、冷媒回路(15)に Embodiment 1 of the present invention will be described. The air conditioner (10) of the present embodiment is configured by the refrigeration apparatus according to the present invention. As shown in FIG. 1, the air conditioner (10) includes a refrigerant circuit (15). The refrigerant circuit (15) is filled with carbon dioxide (CO 2) as a refrigerant. In addition, the refrigerant circuit (15)
2  2
は、放熱器 (16)と蒸発器 (17)と圧縮'膨張ユニット (30)とが設けられている。放熱器( 16)は、その入口側が圧縮'膨張ユニット (30)の吐出管 (36)に接続され、その出口側 が圧縮'膨張ユニット (30)の流入ポート (34)に接続されている。蒸発器(17)は、その 入口側が圧縮'膨張ユニット (30)の流出ポート (35)に接続され、その出口側が圧縮- 膨張ユニット (30)の吸入ポート (32)に接続されて!ヽる。放熱器 (16)と蒸発器 (17)と は、それぞれ冷媒回路(15)の冷媒を空気と熱交換させる。  The radiator includes a radiator (16), an evaporator (17), and a compression / expansion unit (30). The radiator (16) has an inlet connected to the discharge pipe (36) of the compression / expansion unit (30), and an outlet connected to the inflow port (34) of the compression / expansion unit (30). The inlet side of the evaporator (17) is connected to the outlet port (35) of the compression / expansion unit (30), and the outlet side is connected to the suction port (32) of the compression-expansion unit (30). . The radiator (16) and the evaporator (17) exchange heat of the refrigerant in the refrigerant circuit (15) with air.
[0024] 図 2に示すように、圧縮'膨張ユニット(30)は、縦長で円筒形の密閉容器であるケー シング (31)を備えている。このケーシング (31)の内部には、下から上に向かって順に 、圧縮機 (50)と、電動機 (45)と、膨張機 (60)とが配置されて 、る。  As shown in FIG. 2, the compression / expansion unit (30) includes a casing (31) which is a vertically long and cylindrical closed container. Inside the casing (31), a compressor (50), an electric motor (45), and an expander (60) are arranged in order from bottom to top.
[0025] 上記ケーシング (31)には、吐出管(36)が取り付けられている。この吐出管(36)は、 電動機 (45)と膨張機 (60)の間に配置され、ケーシング (31)の内部空間に連通して いる。  [0025] A discharge pipe (36) is attached to the casing (31). The discharge pipe (36) is arranged between the electric motor (45) and the expander (60), and communicates with the internal space of the casing (31).
[0026] 上記電動機 (45)は、ケーシング (31)の長手方向の中央部に配置されている。この 電動機 (45)は、ステータ (46)とロータ (47)とにより構成されて!、る。ステータ (46)は、 上記ケーシング (31)に固定されている。ロータ(47)は、ステータ(46)の内側に配置さ れて 、る。また、ロータ(47)には、該ロータ (47)と同軸にシャフト (40)の主軸部(44) が貫通している。  [0026] The electric motor (45) is arranged at the center in the longitudinal direction of the casing (31). This motor (45) is composed of a stator (46) and a rotor (47)! RU The stator (46) is fixed to the casing (31). The rotor (47) is disposed inside the stator (46). The main shaft (44) of the shaft (40) penetrates through the rotor (47) coaxially with the rotor (47).
[0027] 上記シャフト (40)は、回転軸を構成している。このシャフト (40)では、その下端側に 2つの下側偏心部(58,59)が形成され、その上端側に 2つの大径偏心部 (41,42)が形 成されている。  [0027] The shaft (40) forms a rotating shaft. In the shaft (40), two lower eccentric portions (58, 59) are formed at the lower end thereof, and two large-diameter eccentric portions (41, 42) are formed at the upper end thereof.
[0028] 2つの下側偏心部(58,59)は、主軸部 (44)よりも大径に形成されており、下側のもの が第 1下側偏心部 (58)を、上側のものが第 2下側偏心部 (59)をそれぞれ構成して!/、 る。第 1下側偏心部 (58)と第 2下側偏心部 (59)とでは、主軸部 (44)の軸心に対する 偏心方向が逆になつている。  [0028] The two lower eccentric portions (58, 59) are formed to have a larger diameter than the main shaft portion (44). Constitute the second lower eccentric part (59), respectively. In the first lower eccentric portion (58) and the second lower eccentric portion (59), the eccentric directions of the main shaft portion (44) with respect to the axis are reversed.
[0029] 2つの大径偏心部 (41,42)は、主軸部 (44)よりも大径に形成されており、下側のもの が第 1大径偏心部 (41)を構成し、上側のものが第 2大径偏心部 (42)を構成して!/、る 。第 1大径偏心部 (41)と第 2大径偏心部 (42)とは、何れも同じ方向へ偏心している。 第 2大径偏心部 (42)の外径は、第 1大径偏心部 (41)の外径よりも大きくなつて 、る。 また、主軸部 (44)の軸心に対する偏心量は、第 2大径偏心部 (42)の方が第 1大径偏 心部 (41)よりも大きくなつている。 [0029] The two large-diameter eccentric portions (41, 42) are formed to be larger in diameter than the main shaft portion (44), and the lower one constitutes a first large-diameter eccentric portion (41), Constitutes the second large-diameter eccentric part (42)! . The first large-diameter eccentric portion (41) and the second large-diameter eccentric portion (42) are both eccentric in the same direction. The outer diameter of the second large-diameter eccentric portion (42) is larger than the outer diameter of the first large-diameter eccentric portion (41). The amount of eccentricity of the main shaft portion (44) with respect to the axis is larger in the second large-diameter eccentric portion (42) than in the first large-diameter eccentric portion (41).
[0030] 圧縮機 (50)は、揺動ピストン型のロータリ圧縮機を構成して ヽる。この圧縮機 (50) は、シリンダ (51,52)とピストン (57)を 2つずつ備えている。圧縮機 (50)では、下から 上へ向力つて順に、リアヘッド (55)と、第 1シリンダ (51)と、中間プレート(56)と、第 2 シリンダ (52)と、フロントヘッド (54)とが積層された状態となっている。  [0030] The compressor (50) constitutes a swinging piston type rotary compressor. This compressor (50) has two cylinders (51, 52) and two pistons (57). In the compressor (50), the rear head (55), the first cylinder (51), the intermediate plate (56), the second cylinder (52), the front head (54) Are stacked.
[0031] 第 1及び第 2シリンダ (51,52)の内部には、円筒状のピストン (57)が 1つずつ配置さ れている。図示しないが、ピストン (57)の側面には平板状のブレードが突設されてお り、このブレードは揺動ブッシュを介してシリンダ (51,52)に支持されている。第 1シリン ダ (51)内のピストン (57)は、シャフト (40)の第 1下側偏心部(58)と係合する。一方、 第 2シリンダ (52)内のピストン (57)は、シャフト (40)の第 2下側偏心部(59)と係合する 。各ピストン (57,57)は、その内周面が下側偏心部(58,59)の外周面と摺接し、その外 周面がシリンダ (51,52)の内周面と摺接する。そして、ピストン (57,57)の外周面とシリ ンダ (51,52)の内周面との間に圧縮室 (53)が形成される。  [0031] Inside the first and second cylinders (51, 52), one cylindrical piston (57) is arranged. Although not shown, a flat blade is protruded from a side surface of the piston (57), and this blade is supported by the cylinders (51, 52) via a swinging bush. The piston (57) in the first cylinder (51) engages with the first lower eccentric part (58) of the shaft (40). On the other hand, the piston (57) in the second cylinder (52) engages with the second lower eccentric part (59) of the shaft (40). The inner peripheral surface of each piston (57, 57) is in sliding contact with the outer peripheral surface of the lower eccentric portion (58, 59), and the outer peripheral surface is in sliding contact with the inner peripheral surface of the cylinder (51, 52). Then, a compression chamber (53) is formed between the outer peripheral surface of the piston (57, 57) and the inner peripheral surface of the cylinder (51, 52).
[0032] 第 1及び第 2シリンダ (51,52)には、それぞれ吸入ポート(33)が 1つずつ形成されて いる。各吸入ポート(33)は、シリンダ (51,52)を半径方向に貫通し、その終端がシリン ダ(51,52)の内周面に開口している。また、各吸入ポート(33)は、配管によってケー シング (31)の外部へ延長されて!、る。  [0032] Each of the first and second cylinders (51, 52) is provided with one suction port (33). Each suction port (33) penetrates the cylinder (51, 52) in the radial direction, and the terminal end is open to the inner peripheral surface of the cylinder (51, 52). Each suction port (33) is extended to the outside of the casing (31) by piping.
[0033] フロントヘッド(54)及びリアヘッド(55)には、それぞれ吐出ポートが 1つずつ形成さ れている。フロントヘッド(54)の吐出ポートは、第 2シリンダ(52)内の圧縮室(53)をケ 一シング (31)の内部空間と連通させる。リアヘッド (55)の吐出ポートは、第 1シリンダ( 51)内の圧縮室 (53)をケーシング (31)の内部空間と連通させる。また、各吐出ポート は、その終端にリード弁力もなる吐出弁が設けられており、この吐出弁によって開閉さ れる。尚、図 2において、吐出ポート及び吐出弁の図示は省略する。そして、圧縮機( 50)からケーシング (31)の内部空間へ吐出されたガス冷媒は、吐出管(36)を通って 圧縮 ·膨張ユニット (30)から送り出される。 [0034] 上記膨張機 (60)は、 V、わゆる揺動ピストン型の流体機械で構成されて!、る。この膨 張機 (60)には、対になったシリンダ (71,81)及びピストン(75,85)が二組設けられてい る。また、膨張機(60)には、フロントヘッド (61)と、中間プレート(63)と、リアヘッド (62 )とが設けられている。 [0033] Each of the front head (54) and the rear head (55) is formed with one discharge port. The discharge port of the front head (54) connects the compression chamber (53) in the second cylinder (52) with the internal space of the casing (31). The discharge port of the rear head (55) makes the compression chamber (53) in the first cylinder (51) communicate with the internal space of the casing (31). Each discharge port is provided with a discharge valve having a reed valve force at the end thereof, and is opened and closed by the discharge valve. In FIG. 2, the illustration of the discharge port and the discharge valve is omitted. The gas refrigerant discharged from the compressor (50) into the internal space of the casing (31) is sent out of the compression / expansion unit (30) through the discharge pipe (36). [0034] The expander (60) is composed of a V, a so-called oscillating piston type fluid machine! This expander (60) is provided with two pairs of cylinders (71, 81) and pistons (75, 85). The expander (60) includes a front head (61), an intermediate plate (63), and a rear head (62).
[0035] 上記膨張機 (60)では、下から上へ向力つて順に、フロントヘッド (61)、第 1シリンダ( 71)、中間プレート (63)、第 2シリンダ (81)、リアヘッド (62)が積層された状態となって いる。この状態において、第 1シリンダ(71)は、その下側端面がフロントヘッド (61)に より閉塞され、その上側端面が中間プレート (63)により閉塞されている。一方、第 2シ リンダ (81)は、その下側端面が中間プレート (63)により閉塞され、その上側端面がリ アヘッド (62)により閉塞されている。また、第 2シリンダ (81)の内径は、第 1シリンダ( 71)の内径よりも大きくなつている。上記シャフト(40)は、積層された状態のフロントへ ッド (61)、第 1シリンダ (71)、中間プレート(63)、第 2シリンダ (81)、及びリアヘッド (62 )を貫通している。  In the expander (60), the front head (61), the first cylinder (71), the intermediate plate (63), the second cylinder (81), the rear head (62) Are stacked. In this state, the lower end surface of the first cylinder (71) is closed by the front head (61), and the upper end surface is closed by the intermediate plate (63). On the other hand, the second cylinder (81) has a lower end face closed by an intermediate plate (63), and an upper end face closed by a rear head (62). The inner diameter of the second cylinder (81) is larger than the inner diameter of the first cylinder (71). The shaft (40) passes through the stacked front head (61), the first cylinder (71), the intermediate plate (63), the second cylinder (81), and the rear head (62). .
[0036] 図 3,図 4に示すように、第 1シリンダ(71)内には第 1ピストン (75)力 第 2シリンダ( 81)内には第 2ピストン (85)がそれぞれ設けられている。第 1及び第 2ピストン (75,85) は、何れも円環状あるいは円筒状に形成されている。第 1ピストン (75)の外径と第 2ピ ストン (85)の外径とは、互いに等しくなつている。そして、第 1ピストン (75)には第 1大 径偏心部 (41)が、第 2ピストン (85)には第 2大径偏心部 (42)がそれぞれ貫通して ヽ る。第 1シリンダ (71)内には、その内周面と第 1ピストン (75)の外周面との間に第 1流 体室 (72)が形成される。第 2シリンダ (81)内には、その内周面と第 2ピストン (85)の外 周面との間に第 2流体室 (82)が形成される。  As shown in FIGS. 3 and 4, a first piston (75) is provided in the first cylinder (71), and a second piston (85) is provided in the second cylinder (81). . Each of the first and second pistons (75, 85) is formed in an annular or cylindrical shape. The outer diameter of the first piston (75) and the outer diameter of the second piston (85) are equal to each other. A first large-diameter eccentric portion (41) penetrates the first piston (75), and a second large-diameter eccentric portion (42) penetrates the second piston (85). In the first cylinder (71), a first fluid chamber (72) is formed between the inner peripheral surface of the first cylinder (71) and the outer peripheral surface of the first piston (75). In the second cylinder (81), a second fluid chamber (82) is formed between the inner peripheral surface of the second cylinder (81) and the outer peripheral surface of the second piston (85).
[0037] 上記第 1及び第 2ピストン(75,85)のそれぞれには、ブレード(76,86)が 1つずつ一 体に設けられている。ブレード(76,86)は、ピストン(75,85)の半径方向へ延びる板状 に形成されており、ピストン (75,85)の外周面カゝら外側へ突出している。  [0037] Each of the first and second pistons (75, 85) is provided with a single blade (76, 86). The blade (76, 86) is formed in a plate shape extending in the radial direction of the piston (75, 85), and protrudes outward from the outer peripheral surface of the piston (75, 85).
[0038] 上記各シリンダ(71,81)には、一対のブッシュ(77,87)がー組ずつ設けられている。  [0038] Each cylinder (71, 81) is provided with a pair of bushes (77, 87).
各ブッシュ(77,87)は、内側面が平面となって外側面が円弧面となるように形成された 小片である。一対のブッシュ(77,87)は、ブレード(76,86)を挟み込んだ状態で設置さ れている。各ブッシュ(77,87)は、その内側面がブレード(76,86)と、その外側面がシリ ンダ(71,81)と摺動する。そして、ピストン(75,85)と一体のブレード(76,86)は、ブッシ ュ(77,87)を介してシリンダ (71,81)に支持され、シリンダ (71,81)に対して回動自在で 且つ進退自在となっている。尚、上記第 1シリンダ (71)と第 2シリンダ (81)とは、それ ぞれの周方向におけるブッシュ(77,87)の位置が一致する姿勢で配置されている。 Each of the bushes (77, 87) is a small piece formed so that the inner surface is a flat surface and the outer surface is an arc surface. The pair of bushes (77,87) are installed with the blade (76,86) sandwiched therebetween. Each bush (77,87) has a blade (76,86) on the inner surface and a series Slides with the cylinders (71, 81). The blade (76, 86) integral with the piston (75, 85) is supported by the cylinder (71, 81) via the bush (77, 87), and rotates with respect to the cylinder (71, 81). It is free and can move forward and backward. The first cylinder (71) and the second cylinder (81) are arranged in such a posture that the positions of the bushes (77, 87) in the respective circumferential directions match.
[0039] 第 1シリンダ(71)内の第 1流体室(72)は、第 1ピストン (75)と一体の第 1ブレード (76 )によって仕切られており、図 4における第 1ブレード (76)の左側が高圧側の第 1高圧 室 (73)となり、その右側が低圧側の第 1低圧室 (74)となっている。第 2シリンダ (81) 内の第 2流体室 (82)は、第 2ピストン (85)と一体の第 2ブレード (86)によって仕切られ ており、図 4における第 2ブレード (86)の左側が高圧側の第 2高圧室 (83)となり、その 右側が低圧側の第 2低圧室 (84)となって 、る。  The first fluid chamber (72) in the first cylinder (71) is partitioned by a first blade (76) integral with the first piston (75), and the first blade (76) in FIG. The left side is a first high pressure chamber (73) on the high pressure side, and the right side is a first low pressure chamber (74) on the low pressure side. The second fluid chamber (82) in the second cylinder (81) is partitioned by a second blade (86) integral with the second piston (85), and the left side of the second blade (86) in FIG. The second high-pressure chamber (83) on the high-pressure side, and the right side thereof becomes the second low-pressure chamber (84) on the low-pressure side.
[0040] 上記第 1シリンダ(71)には、流入ポート(34)が形成されている。流入ポート (34)は、 第 1シリンダ(71)の内周面のうち、図 3,図 4におけるブッシュ(77)のやや左側の箇所 に開口している。流入ポート(34)は、第 1高圧室(73)と連通可能となっている。一方、 上記第 2シリンダ (81)には、流出ポート (35)が形成されている。流出ポート (35)は、 第 2シリンダ (81)の内周面のうち、図 3,図 4におけるブッシュ(87)のやや右側の箇所 に開口して 、る。流出ポート(35)は、第 2低圧室 (84)と連通可能となって 、る。  [0040] The first cylinder (71) is formed with an inflow port (34). The inflow port (34) is open in the inner peripheral surface of the first cylinder (71) at a position slightly to the left of the bush (77) in FIGS. The inflow port (34) can communicate with the first high-pressure chamber (73). On the other hand, an outflow port (35) is formed in the second cylinder (81). The outflow port (35) is open at a location on the inner peripheral surface of the second cylinder (81) slightly to the right of the bush (87) in FIGS. The outflow port (35) can communicate with the second low pressure chamber (84).
[0041] 上記中間プレート (63)には、連通路 (64)が形成されている。この連通路 (64)は、中 間プレート(63)を厚み方向へ貫通している。中間プレート(63)における第 1シリンダ( 71)側の面では、第 1ブレード (76)の右側の箇所に連通路 (64)の一端が開口してい る。中間プレート(63)における第 2シリンダ (81)側の面では、第 2ブレード (86)の左側 の箇所に連通路 (64)の他端が開口している。そして、図 3に示すように、連通路 (64) は、中間プレート (63)の厚み方向に対して斜めに延びており、第 1低圧室(74)と第 2 高圧室 (83)とを互 、に連通させて 、る。  [0041] A communication passage (64) is formed in the intermediate plate (63). The communication passage (64) penetrates the intermediate plate (63) in the thickness direction. On the surface of the intermediate plate (63) on the side of the first cylinder (71), one end of the communication passage (64) is open at a location on the right side of the first blade (76). On the surface of the intermediate plate (63) on the side of the second cylinder (81), the other end of the communication path (64) is open at a position on the left side of the second blade (86). As shown in FIG. 3, the communication path (64) extends obliquely with respect to the thickness direction of the intermediate plate (63), and connects the first low-pressure chamber (74) and the second high-pressure chamber (83). Let them communicate with each other.
[0042] 以上のように構成された上記膨張機 (60)では、第 1シリンダ (71)と、そこに設けられ たブッシュ(77)と、第 1ピストン (75)と、第 1ブレード (76)とが第 1ロータリ機構部(70) を構成している。また、第 2シリンダ (81)と、そこに設けられたブッシュ (87)と、第 2ビス トン (85)と、第 2ブレード (86)とが第 2ロータリ機構部(80)を構成している。また、この 膨張機 (60)では、第 1ロータリ機構部 (70)の押しのけ容積 (即ち第 1流体室 (72)の最 大容積)に比べて、第 2ロータリ機構部 (80)の押しのけ容積 (即ち第 2流体室 (82)の 最大容積)の方が大きくなつて 、る。 [0042] In the expander (60) configured as described above, the first cylinder (71), the bush (77) provided therein, the first piston (75), and the first blade (76) ) Constitute the first rotary mechanism (70). Also, the second cylinder (81), the bush (87) provided therein, the second biston (85), and the second blade (86) constitute a second rotary mechanism (80). I have. In this expander (60), the displacement of the first rotary mechanism (70) (that is, the maximum displacement of the first fluid chamber (72)) is obtained. The displacement of the second rotary mechanism (80) (that is, the maximum volume of the second fluid chamber (82)) is larger than that of the second rotary mechanism (80).
[0043] 上述のように、上記膨張機 (60)では、第 1ブレード (76)が第 1シリンダ (71)の外側 へ最も退くタイミングと、第 2ブレード (86)が第 2シリンダ (81)の外側へ最も退くタイミ ングとが同期している。つまり、第 1ロータリ機構部(70)において第 1低圧室(74)の容 積が減少してゆく過程と、第 2ロータリ機構部 (80)において第 2高圧室 (83)の容積が 増加してゆく過程とが同期している(図 4参照)。また、上述のように、第 1ロータリ機構 部(70)の第 1低圧室 (74)と、第 2ロータリ機構部 (80)の第 2高圧室 (83)とは、連通路 (64)を介して互いに連通している。そして、第 1低圧室 (74)と連通路 (64)と第 2高圧 室 (83)とによって 1つの閉空間が形成され、この閉空間が膨張室 (66)を構成する。  As described above, in the expander (60), the timing at which the first blade (76) retreats most to the outside of the first cylinder (71), and the second blade (86) is moved to the second cylinder (81) The timing that retreats farthest out is synchronized. That is, the volume of the first low-pressure chamber (74) decreases in the first rotary mechanism (70), and the volume of the second high-pressure chamber (83) increases in the second rotary mechanism (80). The process is synchronized (see Figure 4). Further, as described above, the first low-pressure chamber (74) of the first rotary mechanism (70) and the second high-pressure chamber (83) of the second rotary mechanism (80) communicate with the communication path (64). Are in communication with one another. Then, one closed space is formed by the first low-pressure chamber (74), the communication path (64), and the second high-pressure chamber (83), and this closed space constitutes the expansion chamber (66).
[0044] 運転動作  [0044] Driving operation
上記空調機(10)では、冷媒回路(15)で冷媒を循環させることで冷凍サイクルが行 われる。冷房運転時には、放熱器(16)へ送られた室外空気に対して冷媒が放熱し、 蒸発器(17)へ送られた室内空気力 冷媒が吸熱する。これによつて室内空気が冷却 される。一方、暖房運転時には、放熱器(16)へ送られた室内空気に対して冷媒が放 熱し、蒸発器(17)へ送られた室外空気から冷媒が吸熱する。これによつて室内空気 が加熱される。  In the air conditioner (10), a refrigeration cycle is performed by circulating the refrigerant in the refrigerant circuit (15). During the cooling operation, the refrigerant radiates heat to the outdoor air sent to the radiator (16), and the indoor aerodynamic refrigerant sent to the evaporator (17) absorbs heat. This cools the room air. On the other hand, during the heating operation, the refrigerant releases heat to the indoor air sent to the radiator (16), and absorbs heat from the outdoor air sent to the evaporator (17). This heats the room air.
[0045] 〈冷媒回路での冷凍サイクル〉  <Refrigeration cycle in refrigerant circuit>
上記冷媒回路(15)での冷凍サイクルについて、図 5のモリエル線図(圧力 ェンタ ルビ線図)を参照しながら説明する。  The refrigeration cycle in the refrigerant circuit (15) will be described with reference to a Mollier diagram (pressure enthalby diagram) in FIG.
[0046] 圧縮機 (50)へは、同図の点 Aに示す状態の冷媒が吸入される。圧縮機 (50)では、 点 Aの状態の冷媒が圧縮されて点 Bの状態となる。点 Bの状態では、冷媒の圧力が その臨界圧力 Pよりも高くなつている。点 Bの状態となって圧縮機 (50)力も吐出され  [0046] The refrigerant in the state shown at point A in the figure is sucked into the compressor (50). In the compressor (50), the refrigerant in the state at the point A is compressed to be in the state at the point B. In the state at point B, the pressure of the refrigerant is higher than its critical pressure P. At point B, compressor (50) power is also discharged
C  C
た冷媒は、放熱器(16)へと送られる。放熱器(16)では、点 Bの状態の冷媒が空気へ 放熱し、圧力一定のままェンタルビが低下して点 Cの状態となる。点 Bの状態から点 Cの状態になるまでの間は、冷媒の温度が次第に低下してゆく。  The cooled refrigerant is sent to the radiator (16). In the radiator (16), the refrigerant in the state at the point B radiates heat to the air, and the enthalpy decreases to the state at the point C while the pressure is kept constant. From the state of point B to the state of point C, the temperature of the refrigerant gradually decreases.
[0047] 点 Cの状態となって放熱器 (16)力 流出した冷媒は、膨張機 (60)へ導入される。膨 張機 (60)では、点 Cの状態の冷媒が断熱膨張し、この冷媒力 の動力回収が行われ る。この膨張機 (60)において、冷媒は、概ね等エントロピ線に沿って点 Cの状態から 点 Dの状態へ変化する。点 Dの状態となって膨張機 (60)力 流出した冷媒は、蒸発 器(17)へと送られる。蒸発器(17)では、点 Dの状態の冷媒が空気力 吸熱し、圧力 一定のままェンタルビが増加して点 Aの状態となる。点 Dの状態から点 Aの状態にな るまでの間は、冷媒の温度が一定となる。点 Aの状態となって蒸発器(17)力 流出し た冷媒は、圧縮機 (50)へ吸入されて再び圧縮される。 [0047] The refrigerant that has flowed out at the point C in the state of the radiator (16) is introduced into the expander (60). In the expander (60), the refrigerant in the state at the point C undergoes adiabatic expansion, and power is recovered by this refrigerant power. The In the expander (60), the refrigerant changes from the state at the point C to a state at the point D substantially along the isentropic line. The refrigerant flowing out of the expander (60) in the state at the point D is sent to the evaporator (17). In the evaporator (17), the refrigerant in the state at the point D absorbs aerodynamic force, and the enthalbi increases with the pressure kept constant, and the state at the point A is reached. From the state of point D to the state of point A, the temperature of the refrigerant is constant. The refrigerant flowing out of the evaporator (17) in the state at the point A is sucked into the compressor (50) and is compressed again.
[0048] 〈膨張機の動作〉  <Operation of Expander>
膨張機 (60)の動作にっ 、て、図 4を参照しながら説明する。  The operation of the expander (60) will be described with reference to FIG.
[0049] 先ず、第 1ロータリ機構部(70)の第 1高圧室 (73)へ超臨界状態の高圧冷媒が流入 する過程について説明する。回転角が 0° の状態力もシャフト (40)が僅かに回転す ると、第 1ピストン (75)と第 1シリンダ (71)の接触位置が流入ポート (34)の開口部を通 過し、流入ポート (34)から第 1高圧室 (73)へ高圧冷媒が流入し始める。その後、シャ フト (40)の回転角が 90° ,180° ,270° と次第に大きくなるにつれて、第 1高圧室( 73)へ高圧冷媒が流入してゆく。この第 1高圧室 (73)への高圧冷媒の流入は、シャフ ト (40)の回転角が 360° に達するまで続く。  First, a process in which a supercritical high-pressure refrigerant flows into the first high-pressure chamber (73) of the first rotary mechanism (70) will be described. When the shaft (40) rotates slightly even with the state force at a rotation angle of 0 °, the contact position between the first piston (75) and the first cylinder (71) passes through the opening of the inflow port (34), High-pressure refrigerant starts flowing into the first high-pressure chamber (73) from the inflow port (34). Thereafter, as the rotation angle of the shaft (40) gradually increases to 90 °, 180 °, and 270 °, the high-pressure refrigerant flows into the first high-pressure chamber (73). The flow of the high-pressure refrigerant into the first high-pressure chamber (73) continues until the rotation angle of the shaft (40) reaches 360 °.
[0050] 次に、膨張機 (60)において冷媒が膨張する過程について説明する。回転角が 0° の状態力 シャフト (40)が僅かに回転すると、第 1低圧室 (74)と第 2高圧室 (83)が連 通路 (64)を介して互いに連通し、第 1低圧室 (74)から第 2高圧室 (83)へと冷媒が流 入し始める。その後、シャフト (40)の回転角が 90° ,180° ,270° と次第に大きくな るにつれ、第 1低圧室 (74)の容積が次第に減少すると同時に第 2高圧室 (83)の容積 が次第に増加し、結果として膨張室 (66)の容積が次第に増カロしてゆく。この膨張室( 66)の容積増加は、シャフト (40)の回転角が 360° に達する直前まで続く。膨張室( 66)内の冷媒は、膨張室 (66)の容積が増加する過程で圧力降下しながら膨張する。 そして、第 1高圧室 (73)と第 1低圧室 (74)の内圧差、及び 第 2高圧室 (83)と第 2低 圧室(84)の内圧差によってトルクが発生し、このトルクによってシャフト(40)が回転駆 動される。このように、第 1低圧室 (74)内の冷媒は、連通路 (64)を通って第 2高圧室( 83)へ膨張しながら流入してゆく。  Next, a process of expanding the refrigerant in the expander (60) will be described. When the shaft (40) rotates slightly, the first low-pressure chamber (74) and the second high-pressure chamber (83) communicate with each other via the communication passage (64), and the first low-pressure chamber The refrigerant starts to flow from (74) into the second high-pressure chamber (83). Thereafter, as the rotation angle of the shaft (40) gradually increases to 90 °, 180 °, and 270 °, the volume of the first low-pressure chamber (74) gradually decreases while the volume of the second high-pressure chamber (83) gradually decreases. As a result, the volume of the expansion chamber (66) gradually increases. This increase in the volume of the expansion chamber (66) continues until just before the rotation angle of the shaft (40) reaches 360 °. The refrigerant in the expansion chamber (66) expands while reducing the pressure in the process of increasing the volume of the expansion chamber (66). Then, a torque is generated by an internal pressure difference between the first high-pressure chamber (73) and the first low-pressure chamber (74) and an internal pressure difference between the second high-pressure chamber (83) and the second low-pressure chamber (84). The shaft (40) is driven to rotate. As described above, the refrigerant in the first low-pressure chamber (74) flows through the communication path (64) into the second high-pressure chamber (83) while expanding.
[0051] 最後に、第 2ロータリ機構部 (80)の第 2低圧室 (84)力 冷媒が流出してゆく過程に ついて説明する。第 2低圧室 (84)は、シャフト (40)の回転角が 0° の時点から流出ポ ート(35)に連通し始める。つまり、第 2低圧室 (84)から流出ポート (35)へと冷媒が流 出し始める。その後、シャフト (40)の回転角が 90° ,180° ,270° と次第に大きくな つてゆき、その回転角が 360° に達するまでの間に亘つて、第 2低圧室 (84)から膨 張後の低圧冷媒が流出してゆく。 [0051] Finally, the second low-pressure chamber (84) of the second rotary mechanism (80) is driven by the refrigerant flowing out. explain about. The second low pressure chamber (84) starts to communicate with the outflow port (35) when the rotation angle of the shaft (40) is 0 °. That is, the refrigerant starts flowing out of the second low-pressure chamber (84) to the outflow port (35). Thereafter, the rotation angle of the shaft (40) gradually increases to 90 °, 180 °, and 270 °, and the shaft (40) expands from the second low-pressure chamber (84) until the rotation angle reaches 360 °. Later low-pressure refrigerant flows out.
[0052] 膨張機の仕様  [0052] Specifications of the expander
上述のように、上記膨張機 (60)では、第 1ロータリ機構部(70)の押しのけ容積に比 ベて、第 2ロータリ機構部 (80)の押しのけ容積の方が大きくなつている。第 1ロータリ 機構部(70)の押しのけ容積は、第 1流体室 (72)の最大容積、即ち流入ポート (34)か ら遮断された直後における第 1流体室 (72)の容積である。第 2ロータリ機構部 (80)の 押しのけ容積は、第 2流体室 (82)の最大容積、即ち流出ポート(35)に連通する直前 における第 2流体室 (82)の容積である。  As described above, in the expander (60), the displacement of the second rotary mechanism (80) is larger than the displacement of the first rotary mechanism (70). The displacement volume of the first rotary mechanism (70) is the maximum volume of the first fluid chamber (72), that is, the volume of the first fluid chamber (72) immediately after being shut off from the inflow port (34). The displacement volume of the second rotary mechanism (80) is the maximum volume of the second fluid chamber (82), that is, the volume of the second fluid chamber (82) immediately before communicating with the outflow port (35).
[0053] ここでは、上記膨張機 (60)にお 、て各ロータリ機構部(70,80)の押しのけ容積がど のように設定されて!ヽるかを説明する。  Here, how the displacement volume of each rotary mechanism (70, 80) is set in the expander (60) will be described.
[0054] 上記空調機(10)では、放熱器(16)及び蒸発器(17)において冷媒が室内空気又は 室外空気と熱交換する。そこで、室内空気や室外空気の状態を考慮して、設計基準 となる基準運転条件での冷凍サイクルの低圧圧力(基準低圧 P )  In the air conditioner (10), the refrigerant exchanges heat with indoor air or outdoor air in the radiator (16) and the evaporator (17). Therefore, taking into account the conditions of indoor air and outdoor air, the low pressure of the refrigeration cycle under the standard operating conditions, which is the design standard (standard low pressure P)
しと放熱器 (16)の出 口における冷媒温度 (基準冷媒温度 T )とが設定される。また、空調機(10)に要求さ  The refrigerant temperature (reference refrigerant temperature T) at the outlet of the radiator (16) is set. Also required for air conditioners (10)
2  2
れる空調能力を想定すれば、その空調能力を得るために必要な冷媒回路(15)での 冷媒循環量 (冷媒流量)が決まり、それに応じて圧縮機の吸入容積 Vが設定される。  Assuming the required air conditioning capacity, the amount of refrigerant circulation (refrigerant flow rate) in the refrigerant circuit (15) required to obtain the air conditioning capacity is determined, and the suction volume V of the compressor is set accordingly.
1  1
また、膨張機 (60)が 1本のシャフト (40)で圧縮機 (50)と連結されているため、膨張機 (60)と圧縮機 (50)はそれぞれの回転速度が同じになる。つまり、膨張機 (60)の回転 速度に対する圧縮機 (50)の回転速度の比 rは「1」となる。  Further, since the expander (60) is connected to the compressor (50) by one shaft (40), the rotational speeds of the expander (60) and the compressor (50) are the same. That is, the ratio r of the rotation speed of the compressor (50) to the rotation speed of the expander (60) is “1”.
[0055] 上述のように、高圧圧力が冷媒の臨界圧力以上となる冷凍サイクル (いわゆる超臨 界サイクル)では、室内空気や室外空気の状態を考慮するだけでは冷凍サイクルの 高圧圧力を設定できない。一方、図 6に示すように、超臨界サイクルでは、冷凍サイク ルの低圧圧力と放熱器(16)の出口における冷媒温度を固定すると、冷凍サイクルの 高圧圧力に応じて冷凍サイクルの COP (成績係数)が変化し、この高圧圧力が特定 の値となった場合に冷凍サイクルの COPが最高となる。 [0055] As described above, in a refrigeration cycle in which the high pressure is equal to or higher than the critical pressure of the refrigerant (so-called supercritical cycle), the high pressure of the refrigeration cycle cannot be set only by considering the state of the indoor air and the outdoor air. On the other hand, as shown in Fig. 6, in the supercritical cycle, when the low pressure of the refrigeration cycle and the refrigerant temperature at the outlet of the radiator (16) are fixed, the COP (coefficient of performance) of the refrigeration cycle depends on the high pressure of the refrigeration cycle. ) Changes and this high pressure is identified , The COP of the refrigeration cycle becomes the highest.
[0056] 尚、同図に示すグラフの縦軸は、放熱器(16)で対象物を加熱する場合の COPで あって、 A h /( A h -A h )で表される値である。図 5に示すように、 A h は放熱 Note that the vertical axis of the graph shown in the figure is the COP when the object is heated by the radiator (16), and is a value represented by A h / (A h -A h). . As shown in Figure 5, A h
BC BA CD BC  BC BA CD BC
器(16)において冷媒が対象物へ放熱する熱量を、 A h は圧縮機で冷媒を圧縮す  Ah is the amount of heat dissipated by the refrigerant to the object in the compressor (16), and A h is
BA  BA
るために必要な動力を、 A h は膨張機で冷媒力 回収される動力を、それぞれ冷  Ah is the power required to recover the refrigerant power by the expander, and Ah is the power required to recover the refrigerant power.
CD  CD
媒 lkg当たりの値として表したものである。  It is expressed as a value per 1 kg of the medium.
[0057] 本実施形態の膨張機 (60)では、 "冷凍サイクルの低圧圧力と放熱器(16)の出口に おける冷媒温度を固定すると COPが最高となる高圧圧力が一義的に決まる"という 超臨界サイクルの特性に着目し、この特性を利用して各ロータリ機構部(70,80)の押 しのけ容積を設定している。  [0057] In the expander (60) of the present embodiment, the fixed pressure at the low pressure of the refrigeration cycle and the refrigerant temperature at the outlet of the radiator (16) uniquely determines the high pressure at which the COP becomes the highest. Focusing on the characteristics of the critical cycle, this characteristic is used to set the displacement of each rotary mechanism (70, 80).
[0058] この点について詳しく説明する。上記圧縮機 (50)が飽和ガス冷媒を吸入すると仮 定すると、圧縮機 (50)の吸入冷媒の密度は、基準低圧における飽和ガス冷媒の密 度 ^となる。上記圧縮機 (50)が 1回転する毎に吐出される冷媒量は、基準低圧にお ける飽和ガス冷媒の密度 P に圧縮機の吸入容積 Vを乗じた値 ·ν )となる。上記  [0058] This point will be described in detail. Assuming that the compressor (50) sucks the saturated gas refrigerant, the density of the suction refrigerant of the compressor (50) becomes the density ^ of the saturated gas refrigerant at the reference low pressure. The amount of refrigerant discharged each time the compressor (50) makes one revolution is a value (ν) obtained by multiplying the density P of the saturated gas refrigerant at the reference low pressure by the suction volume V of the compressor. the above
1 1 1 1  1 1 1 1
基準高圧及び基準冷媒温度における冷媒の密度、即ち膨張機 (60)へ導入される冷 媒の密度を ρ とする。膨張機 (60)へ導入される冷媒量は、圧縮機 (50)力 吐出され  Let ρ be the density of the refrigerant at the reference high pressure and the reference refrigerant temperature, that is, the density of the refrigerant introduced into the expander (60). The amount of refrigerant introduced into the expander (60) is
2  2
る冷媒量と等しいのが理想である。このため、第 1ロータリ機構部(70)の押しのけ容 積、即ち第 1流体室(72)の最大容積 Vは、 V = ρ · ν -r/ に設定される。  Ideally, it is equal to the refrigerant amount. Therefore, the displacement volume of the first rotary mechanism (70), that is, the maximum volume V of the first fluid chamber (72) is set to V = ρ · ν−r /.
2 2 1 1 2  2 2 1 1 2
[0059] 膨張機 (60)で冷媒が断熱膨張すると仮定すると、膨張機 (60)の出口における冷媒 の密度 p が決まる。膨張機 (60)力 流出する冷媒量は、膨張機 (60)へ導入される  [0059] Assuming that the refrigerant expands adiabatically in the expander (60), the density p of the refrigerant at the outlet of the expander (60) is determined. Expander (60) power The amount of refrigerant flowing out is introduced into the expander (60)
3  Three
冷媒量と常に等しくなる。このため、第 2ロータリ機構部 (80)の押しのけ容積、即ち第 2流体室 (82)の最大容積 Vは、 V = p · ν / に設定される。  It is always equal to the amount of refrigerant. Therefore, the displacement volume of the second rotary mechanism (80), that is, the maximum volume V of the second fluid chamber (82) is set to V = p · ν /.
3 3 2 2 3  3 3 2 2 3
[0060] 具体例を示す。設計基準となる基準運転条件での冷媒蒸発温度を 0°Cに、放熱器  [0060] A specific example will be described. Raise the refrigerant evaporation temperature to 0 ° C under standard operating conditions,
(16)出口での冷媒温度を 35°Cにそれぞれ設定した場合について説明する。この場 合、基準冷媒温度は、 35°Cに設定される。一方、基準低圧は、冷媒である二酸化炭 素(CO )の蒸発温度が 0°Cとなる圧力 3.5MPaに設定される。基準低圧 3.5MPaに (16) The case where the refrigerant temperature at the outlet is set to 35 ° C will be described. In this case, the reference refrigerant temperature is set to 35 ° C. On the other hand, the reference low pressure is set to 3.5 MPa at which the evaporation temperature of carbon dioxide (CO 2) as the refrigerant becomes 0 ° C. Standard low pressure 3.5MPa
2 2
おける飽和ガス冷媒の密度 P は、 97.32kg/m3である。また、基準低圧が 3.5MPaで The density P of the saturated gas refrigerant is 97.32 kg / m 3 . The reference low pressure is 3.5MPa
1  1
基準冷媒温度が 35°Cの運転条件において、冷凍サイクルの COPが最高となる高圧 圧力、即ち基準高圧は 9MPaとなる(図 6を参照)。基準高圧 9MPaで基準冷媒温度 35°Cの状態における冷媒の密度 p は、 662.5kg/m3である。また、基準高圧 9MPaで High pressure at which the refrigeration cycle has the highest COP under operating conditions where the reference refrigerant temperature is 35 ° C The pressure, ie the reference high pressure, is 9MPa (see Figure 6). The density p of the refrigerant at a reference high pressure of 9 MPa and a reference refrigerant temperature of 35 ° C. is 662.5 kg / m 3 . In addition, the standard high pressure 9MPa
2  2
基準冷媒温度 35°Cの状態から基準低圧 3.5MPaまで断熱膨張した冷媒の密度 p  Density of refrigerant adiabatically expanded from standard refrigerant temperature of 35 ° C to standard low pressure of 3.5 MPa
3 は、 220kg/m3である。従って、第 1ロータリ機構部(70)の押しのけ容積は V = 3 is 220 kg / m 3 . Therefore, the displacement of the first rotary mechanism (70) is V =
2  2
(97.32/662.5)v =0.15vに設定され、第 2ロータリ機構部(80)の押しのけ容積は、 v  (97.32 / 662.5) v = 0.15v, and the displacement of the second rotary mechanism (80) is v
1 1 3 1 1 3
= (662.5/220)v =0.44vに設定される。 = (662.5 / 220) v is set to 0.44v.
2 1  twenty one
[0061] 一実施形態 1の効果  [0061] Effects of Embodiment 1
本実施形態では、冷凍サイクルの低圧圧力(基準低圧)と放熱器(16)の出口にお ける冷媒温度 (基準冷媒温度)とが一定の条件下では COPが最高となる冷凍サイク ルの高圧圧力(基準高圧)が一義的に決まるという超臨界サイクルの特性に着目し、 この特性を利用して仕様が決定された膨張機 (60)を冷凍装置としての空調機(10) に設けている。従って、本実施形態によれば、空調機(10)の運転条件において最適 な仕様の膨張機 (60)を用いることができ、膨張機 (60)で冷媒カも回収される動力を 増大させて空調機(10)の COPを高めることが可能となる。  In this embodiment, the high-pressure pressure of the refrigeration cycle at which the COP is the highest under the condition that the low pressure of the refrigeration cycle (reference low pressure) and the refrigerant temperature at the outlet of the radiator (16) (reference refrigerant temperature) are constant. Focusing on the characteristics of the supercritical cycle, in which (reference high pressure) is uniquely determined, an expander (60) whose specifications are determined using this characteristic is installed in the air conditioner (10) as a refrigeration system. Therefore, according to the present embodiment, it is possible to use the expander (60) having the optimum specifications under the operating conditions of the air conditioner (10), and to increase the power for recovering the refrigerant gas in the expander (60). The COP of the air conditioner (10) can be increased.
[0062] 《発明の実施形態 2》  << Embodiment 2 of the Invention >>
本発明の実施形態 2について説明する。ここでは、本実施形態の空調機(10)につ いて、上記実施形態 1と異なる点を説明する。  Embodiment 2 of the present invention will be described. Here, the points of the air conditioner (10) of the present embodiment that are different from those of the first embodiment will be described.
[0063] 図 7に示すように、上記空調機(10)の冷媒回路(15)には、レシーバ(18)が設けら れている。レシーバ(18)は、円筒形の密閉容器状に形成されており、蒸発器(17)の 出口側と圧縮機 (50)の吸入側との間に設置される。レシーバ(18)の内部には、冷媒 回路(15)に充填された冷媒の一部が液冷媒の状態で貯留される。レシーバ(18)内 の液冷媒の量が増減すると、それに伴って冷媒回路(15)内を循環する冷媒量が変 化する。  [0063] As shown in Fig. 7, a receiver (18) is provided in the refrigerant circuit (15) of the air conditioner (10). The receiver (18) is formed in a cylindrical closed container shape, and is installed between the outlet side of the evaporator (17) and the suction side of the compressor (50). A part of the refrigerant filled in the refrigerant circuit (15) is stored in the receiver (18) in a state of a liquid refrigerant. When the amount of liquid refrigerant in the receiver (18) increases or decreases, the amount of refrigerant circulating in the refrigerant circuit (15) changes accordingly.
[0064] 本実施形態の冷媒回路(15)では、蒸発器(17)力 流出した冷媒がレシーバ(18) へ導入され、レシーバ(18)内の冷媒が圧縮機 (50)へ吸入される。レシーバ(18)内に は液冷媒が存在しているため、圧縮機 (50)へ吸入されるレシーバ(18)内の冷媒は、 飽和状態となっている。つまり、蒸発器(17)の出口において冷媒が過熱状態となる 運転状態においても、圧縮機 (50)が吸入する冷媒は飽和状態に保たれる。 [0065] 上記実施形態 1の説明において述べたように、膨張機 (60)における各ロータリ機構 部(70,80)の押しのけ容積は、圧縮機 (50)の吸入冷媒が飽和ガス冷媒であることを 前提に設定されている。このため、レシーバ(18)を設けることで運転条件に拘わらず 圧縮機 (50)の吸入冷媒を飽和状態に保つようにすれば、冷媒回路(15)における冷 凍サイクルの条件を設計時に想定した運転状態に近づけることができ、冷媒回路(15 )での冷凍サイクルを安定ィ匕させることが可能となる。 [0064] In the refrigerant circuit (15) of the present embodiment, the refrigerant that has flowed out of the evaporator (17) is introduced into the receiver (18), and the refrigerant in the receiver (18) is sucked into the compressor (50). Since the liquid refrigerant exists in the receiver (18), the refrigerant in the receiver (18) sucked into the compressor (50) is saturated. That is, even in an operation state in which the refrigerant is overheated at the outlet of the evaporator (17), the refrigerant sucked by the compressor (50) is kept in a saturated state. [0065] As described in the description of the first embodiment, the displacement of each rotary mechanism (70, 80) in the expander (60) is such that the refrigerant sucked into the compressor (50) is a saturated gas refrigerant. It is set on the assumption. Therefore, if the intake refrigerant of the compressor (50) is maintained in a saturated state regardless of the operating conditions by providing the receiver (18), the condition of the refrigeration cycle in the refrigerant circuit (15) was assumed at the time of design. The operation state can be approximated, and the refrigeration cycle in the refrigerant circuit (15) can be stabilized.
[0066] 《発明の実施形態 3》  << Embodiment 3 of the Invention >>
本発明の実施形態 3について説明する。ここでは、本実施形態の空調機(10)につ いて、上記実施形態 2と異なる点を説明する。  Embodiment 3 of the present invention will be described. Here, an air conditioner (10) of the present embodiment will be described while focusing on differences from the second embodiment.
[0067] 図 8に示すように、上記空調機(10)の冷媒回路(15)には、内部熱交換器 (20)が設 けられている。内部熱交翻 (20)には、第 1流路 (21)と第 2流路 (22)とが設けられて いる。第 1流路 (21)は、その入口側が放熱器(16)に、その出口側が膨張機 (60)の流 入ポート (34)にそれぞれ接続されている。第 2流路 (22)は、その入口側が蒸発器(17 )に、その出口側がレシーバ(18)を介して圧縮機 (50)の吸入ポート (32)にそれぞれ 接続されている。  As shown in FIG. 8, an internal heat exchanger (20) is provided in a refrigerant circuit (15) of the air conditioner (10). The internal heat exchange (20) is provided with a first flow path (21) and a second flow path (22). The first flow path (21) has its inlet side connected to the radiator (16) and its outlet side connected to the inlet port (34) of the expander (60). The second flow path (22) has an inlet connected to the evaporator (17) and an outlet connected to the suction port (32) of the compressor (50) via the receiver (18).
[0068] 内部熱交翻 (20)では、放熱器 (16)力も膨張機 (60)へ向力 冷媒が、蒸発器 (17 )からレシーバ(18)へ向力ぅ冷媒との熱交換によって冷却される。膨張機 (60)へ流入 する冷媒は、内部熱交 (20)で冷却されることによって、そのェンタルビが低下す る。それに伴って、膨張機 (60)力も蒸発器(17)へ送られる冷媒のェンタルピも低下 する。このため、蒸発器(17)の出入口における冷媒のェンタルピ差を拡大することが でき、蒸発器(17)において冷媒が空気力も吸熱する熱量を増大させることができる。 従って、本実施形態によれば、内部熱交 (20)を設けることによって空調機(10) の冷房能力を高めることが可能となる。  [0068] In the internal heat exchange (20), the radiator (16) also exerts a force on the expander (60). The refrigerant is directed from the evaporator (17) to the receiver (18). Is done. The refrigerant flowing into the expander (60) is cooled by the internal heat exchange (20), so that its enthalpy decreases. Accordingly, the power of the expander (60) and the enthalpy of the refrigerant sent to the evaporator (17) also decrease. For this reason, the difference in enthalpy of the refrigerant at the entrance and exit of the evaporator (17) can be increased, and the amount of heat in the evaporator (17) at which the refrigerant also absorbs air power can be increased. Therefore, according to the present embodiment, it is possible to increase the cooling capacity of the air conditioner (10) by providing the internal heat exchange (20).
[0069] 一実施形態 3の変形例  [0069] Modification of Embodiment 3
本実施形態の冷媒回路(15)では、図 9に示すように、内部熱交換器 (20)の第 2流 路 (22)をレシーバ(18)と圧縮機 (50)の間に接続してもよい。具体的に、本変形例に おける内部熱交換器 (20)の第 2流路 (22)は、その入口側がレシーバ(18)を介して 蒸発器 (17)に、その出口側が圧縮機の吸入ポート (32)にそれぞれ接続される。本変 形例の内部熱交 (20)においても、放熱器 (16)力 膨張機 (60)へ向力う冷媒が 蒸発器 (17)から圧縮機 (50)へ向力ぅ冷媒との熱交換によって冷却され、蒸発器 (17) の出入口における冷媒のェンタルピ差が拡大する。 In the refrigerant circuit (15) of the present embodiment, as shown in FIG. 9, the second flow path (22) of the internal heat exchanger (20) is connected between the receiver (18) and the compressor (50). Is also good. Specifically, the second flow path (22) of the internal heat exchanger (20) in this modified example has an inlet side connected to an evaporator (17) via a receiver (18) and an outlet side connected to a compressor suction port. Connected to ports (32) respectively. Real change Also in the internal heat exchange (20) of the example, the radiator (16) forces the refrigerant flowing to the expander (60) from the evaporator (17) to the compressor (50) に よ っ て heat exchange with the refrigerant. The refrigerant is cooled, and the enthalpy difference of the refrigerant at the entrance and exit of the evaporator (17) increases.
[0070] 《発明の実施形態 4》  << Embodiment 4 of the Invention >>
本発明の実施形態 4について説明する。本実施形態は、上記実施形態 1において 膨張機 (60)の構成を変更したものである。  Embodiment 4 of the present invention will be described. In this embodiment, the configuration of the expander (60) in the first embodiment is changed.
[0071] 図 10に示すように、本実施形態の膨張機 (60)は、スクロール型の流体機械によつ て構成されている。この膨張機 (60)は、可動スクロール (91)と固定スクロール (93)と を備えている。可動スクロール (91)は、可動側ラップ (92)を備えている。可動側ラッ プ (92)は、上端力インボリユート曲線を描く渦巻壁状に形成されている。可動スクロー ル (91)は、シャフト (40)に係合されており、自転運動を規制された状態で公転運動 だけを行う。固定スクロール (93)は、固定側ラップ (94)を備えている。可動側ラップ( 92)は、可動側ラップ (92)に対応した渦巻壁状に形成されており、その両側面が公転 運動する固定側ラップ (94)の包絡面を構成している。また、固定スクロール (93)には 、その中央部に流入ポート (34)が開口し、その周縁部に流出ポート (35)が開口して いる。  As shown in FIG. 10, the expander (60) of the present embodiment is configured by a scroll-type fluid machine. The expander (60) includes a movable scroll (91) and a fixed scroll (93). The movable scroll (91) has a movable wrap (92). The movable wrap (92) is formed in a spiral wall shape that draws an upper end force involute curve. The movable scroll (91) is engaged with the shaft (40) and performs only a revolving motion while the rotation is restricted. The fixed scroll (93) has a fixed side wrap (94). The movable wrap (92) is formed in a spiral wall shape corresponding to the movable wrap (92), and both side surfaces thereof constitute an envelope surface of the fixed wrap (94) revolving. Further, the fixed scroll (93) has an inflow port (34) opened at the center thereof, and an outflow port (35) opened at the peripheral edge thereof.
[0072] 上記膨張機 (60)では、可動スクロール (91)の可動側ラップ (92)と、固定スクロール  [0072] In the expander (60), the movable scroll (91) has a movable wrap (92) and a fixed scroll.
(93)の固定側ラップ (94)とが互いに嚙み合わされている。そして、可動側ラップ (92) と固定側ラップ (94)の間には、共に流体室である第 1室 (95)と第 2室 (96)とが対にな つて形成される。同図の (A)— (D)に順次示すように、可動スクロール (91)が移動する と、第 1室 (95)及び第 2室 (96)の容積が変化する。  The fixed side wrap (94) of (93) is engaged with each other. A first chamber (95) and a second chamber (96), both of which are fluid chambers, are formed between the movable wrap (92) and the fixed wrap (94). As shown in (A)-(D) in the figure, when the movable scroll (91) moves, the volumes of the first chamber (95) and the second chamber (96) change.
[0073] 図 10(A)は、第 1室 (95)及び第 2室 (96)が流入ポート (34)力も遮断された直後の状 態を示している。この状態では、第 1室 (95)及び第 2室 (96)の各容積が最小となって いる。本実施形態の膨張機 (60)では、この状態における第 1室 (95)の容積と第 2室( 96)の容積との和が Vとなる。一方、図 10(D)は、第 1室 (95)及び第 2室 (96)が流出  FIG. 10 (A) shows a state immediately after the first chamber (95) and the second chamber (96) have also cut off the inflow port (34) force. In this state, the volumes of the first chamber (95) and the second chamber (96) are minimized. In the expander (60) of the present embodiment, the sum of the volume of the first chamber (95) and the volume of the second chamber (96) in this state is V. On the other hand, in Figure 10 (D), the first room (95) and the second room (96)
2  2
ポート (35)に連通する直前の状態を示している。この状態では、、第 1室 (95)及び第 2室 (96)の容積が最大となっている。本実施形態の膨張機 (60)では、この状態にお ける第 1室 (95)の容積と第 2室 (96)の容積との和が Vとなる。 [0074] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。 This shows the state immediately before communication with the port (35). In this state, the volumes of the first chamber (95) and the second chamber (96) are maximum. In the expander (60) of this embodiment, the sum of the volume of the first chamber (95) and the volume of the second chamber (96) in this state is V. [0074] The above embodiments are essentially preferred examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0075] 以上説明したように、本発明は、膨張機を備えると共に高圧圧力が冷媒の臨界圧 力以上に設定された冷凍サイクルを行う冷凍装置につ 、て有用である。 As described above, the present invention is useful for a refrigeration apparatus that includes an expander and performs a refrigeration cycle in which the high pressure is set to be equal to or higher than the critical pressure of the refrigerant.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機 (50)と放熱器 (16)と膨張機 (60)と蒸発器 (17)とが接続された冷媒回路 (15 )を備え、該冷媒回路(15)で冷媒を循環させて高圧圧力が冷媒の臨界圧力以上とな る冷凍サイクルを行う冷凍装置であって、  [1] A refrigerant circuit (15) to which a compressor (50), a radiator (16), an expander (60), and an evaporator (17) are connected is provided, and the refrigerant is circulated in the refrigerant circuit (15). A refrigeration system that performs a refrigeration cycle in which the high pressure is equal to or higher than the critical pressure of the refrigerant.
上記圧縮機 (50)と膨張機 (60)は、何れも流体室の容積が変化する容積型流体機 械で構成されると共に、一方の回転速度に対する他方の回転速度の比が一定となる 状態で互いに連結される一方、  Each of the compressor (50) and the expander (60) is constituted by a positive displacement fluid machine in which the volume of the fluid chamber changes, and the ratio of one revolution speed to the other revolution speed is constant. While connected to each other by
設計基準となる基準運転条件での冷凍サイクルの低圧圧力と放熱器 (16)の出口に おける冷媒温度をそれぞれ基準低圧と基準冷媒温度とし、  The low-pressure pressure of the refrigeration cycle and the refrigerant temperature at the outlet of the radiator (16) under the standard operating conditions that are the design standards are defined as the standard low pressure and the standard refrigerant temperature,
上記基準運転状態において冷凍サイクルの成績係数が最高となる冷凍サイクルの 高圧圧力を基準高圧とし、  The high-pressure pressure of the refrigeration cycle with the highest coefficient of performance of the refrigeration cycle in the above-mentioned standard operation state is defined as the reference high pressure,
上記基準低圧における飽和ガス冷媒の密度を P とし、  Let P be the density of the saturated gas refrigerant at the reference low pressure,
上記基準高圧及び基準冷媒温度における冷媒の密度を p とし、  Let p be the density of the refrigerant at the above reference high pressure and reference refrigerant temperature,
2  2
上記基準高圧及び基準冷媒温度の冷媒を上記基準低圧まで断熱膨張させたもの の密度を /0  The density of the refrigerant obtained by adiabatically expanding the refrigerant at the reference high pressure and reference refrigerant temperature to the reference low pressure is / 0
3とし、  3 and
上記圧縮機 (50)にお 、て流体室が吸入側から遮断された直後における該流体室 の容積を Vとし、  In the compressor (50), V is the volume of the fluid chamber immediately after the fluid chamber is shut off from the suction side,
1  1
上記圧縮機 (50)の回転速度の上記膨張機 (60)の回転速度に対する比を rとした場 合に、  When the ratio of the rotation speed of the compressor (50) to the rotation speed of the expander (60) is r,
上記膨張機 (60)において流体室が流入側から遮断された直後における該流体室 の容積 Vが V = p · ν -r/ となり、  Immediately after the fluid chamber is shut off from the inflow side in the expander (60), the volume V of the fluid chamber becomes V = p · ν-r /,
2 2 1 1 2  2 2 1 1 2
上記膨張機 (60)において流体室が流出側に連通する直前における該流体室の容 積 Vが V = p · ν / となっている冷凍装置。  A refrigeration apparatus in which the volume V of the fluid chamber immediately before the fluid chamber communicates with the outflow side in the expander (60) is V = p · ν /.
3 3 2 2 3  3 3 2 2 3
[2] 請求項 1に記載の冷凍装置において、  [2] The refrigeration apparatus according to claim 1,
冷媒回路(15)では、蒸発器 (17)の出口側と圧縮機 (50)の吸入側との間にレシ一 バ(18)が設けられて 、る冷凍装置。  In the refrigerant circuit (15), a refrigeration system having a receiver (18) provided between the outlet side of the evaporator (17) and the suction side of the compressor (50).
[3] 請求項 1に記載の冷凍装置において、 [3] The refrigeration apparatus according to claim 1,
冷媒回路 (15)には、放熱器 (16)から膨張機 (60)へ向力う冷媒と蒸発器 (17)力 圧 縮機 (50)へ向力う冷媒とを熱交換させる内部熱交 (20)が設けられて 、る冷凍装 In the refrigerant circuit (15), refrigerant flowing from the radiator (16) to the expander (60) and the evaporator (17) An internal heat exchanger (20) for exchanging heat with the refrigerant directed to the compressor (50) is provided.
PCT/JP2005/004085 2004-03-18 2005-03-09 Refrigeration system WO2005090875A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2005224499A AU2005224499A1 (en) 2004-03-18 2005-03-09 Refrigeration system
US10/593,038 US20090007590A1 (en) 2004-03-18 2005-03-09 Refrigeration System
EP05720357A EP1739369A1 (en) 2004-03-18 2005-03-09 Refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-077904 2004-03-18
JP2004077904A JP2005265278A (en) 2004-03-18 2004-03-18 Refrigeration device

Publications (1)

Publication Number Publication Date
WO2005090875A1 true WO2005090875A1 (en) 2005-09-29

Family

ID=34993796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004085 WO2005090875A1 (en) 2004-03-18 2005-03-09 Refrigeration system

Country Status (7)

Country Link
US (1) US20090007590A1 (en)
EP (1) EP1739369A1 (en)
JP (1) JP2005265278A (en)
KR (1) KR20060131996A (en)
CN (1) CN1934397A (en)
AU (1) AU2005224499A1 (en)
WO (1) WO2005090875A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043481A1 (en) * 2007-03-01 2010-02-25 Panasonic Corporation Two-stage rotary expander, expander-compressor unit, and refrigeration cycle apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132053A1 (en) * 2005-06-08 2006-12-14 Matsushita Electric Industrial Co., Ltd. Multi stage rotary expander and refrigeration cycle with the same
JP4744331B2 (en) * 2006-03-10 2011-08-10 パナソニック株式会社 Heat pump equipment
US8186179B2 (en) * 2006-05-17 2012-05-29 Panasonic Corporation Expander-compressor unit
WO2008026428A1 (en) * 2006-08-29 2008-03-06 Panasonic Corporation Multi-stage rotary fluid machine and refrigeration cycle device
CN101583777B (en) * 2007-01-15 2012-05-30 松下电器产业株式会社 Expander-integrated compressor
JP4423348B2 (en) * 2007-11-21 2010-03-03 パナソニック株式会社 Expander integrated compressor
EP2224094A4 (en) * 2007-11-21 2012-08-29 Panasonic Corp Compressor integral with expander
US8192185B2 (en) * 2007-11-21 2012-06-05 Panasonic Corporation Expander-compressor unit
JP5239824B2 (en) * 2008-02-29 2013-07-17 ダイキン工業株式会社 Refrigeration equipment
US8408024B2 (en) * 2008-05-23 2013-04-02 Panasonic Corporation Fluid machine and refrigeration cycle apparatus
JP2011214779A (en) * 2010-03-31 2011-10-27 Daikin Industries Ltd Refrigerating device
US20110289961A1 (en) * 2010-05-29 2011-12-01 Occhipinti Gasper C Enhanced liquid pressure cycle having an ejector
CN105041383B (en) * 2014-07-24 2018-04-10 摩尔动力(北京)技术股份有限公司 Controlled valve displacement type becomes boundary's hydraulic mechanism
CN109247254A (en) * 2018-10-27 2019-01-22 贵州从江七香润泽农业发展有限公司 A kind of Congjiang perfume (or spice) pig cultivation adjustable crib of temperature

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211250A (en) * 1998-01-21 1999-08-06 Denso Corp Supercritical freezing cycle
JPH11294876A (en) * 1998-04-16 1999-10-29 Toyota Autom Loom Works Ltd Control method of cooler
JP2000234814A (en) * 1999-02-17 2000-08-29 Aisin Seiki Co Ltd Vapor compressed refrigerating device
JP2002022298A (en) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd Refrigeration cycle device and method for controlling the same
JP2003172244A (en) * 2001-12-05 2003-06-20 Daikin Ind Ltd Rotary expander, fluid machinery, and refrigerating device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209998A (en) * 1978-12-21 1980-07-01 Dunham-Bush, Inc. Air source heat pump with displacement doubling through multiple slide rotary screw compressor/expander unit
US4984432A (en) * 1989-10-20 1991-01-15 Corey John A Ericsson cycle machine
US5136854A (en) * 1991-01-25 1992-08-11 Abdelmalek Fawzy T Centrifugal gas compressor - expander for refrigeration
US5214932A (en) * 1991-01-25 1993-06-01 Abdelmalek Fawzy T Hermetically sealed electric driven gas compressor - expander for refrigeration
US5327745A (en) * 1993-09-28 1994-07-12 The United States Of America As Represented By The Secretary Of The Navy Malone-Brayton cycle engine/heat pump
US5467613A (en) * 1994-04-05 1995-11-21 Carrier Corporation Two phase flow turbine
US5901579A (en) * 1998-04-03 1999-05-11 Praxair Technology, Inc. Cryogenic air separation system with integrated machine compression
JP3897681B2 (en) * 2002-10-31 2007-03-28 松下電器産業株式会社 Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
US6898941B2 (en) * 2003-06-16 2005-05-31 Carrier Corporation Supercritical pressure regulation of vapor compression system by regulation of expansion machine flowrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211250A (en) * 1998-01-21 1999-08-06 Denso Corp Supercritical freezing cycle
JPH11294876A (en) * 1998-04-16 1999-10-29 Toyota Autom Loom Works Ltd Control method of cooler
JP2000234814A (en) * 1999-02-17 2000-08-29 Aisin Seiki Co Ltd Vapor compressed refrigerating device
JP2002022298A (en) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd Refrigeration cycle device and method for controlling the same
JP2003172244A (en) * 2001-12-05 2003-06-20 Daikin Ind Ltd Rotary expander, fluid machinery, and refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043481A1 (en) * 2007-03-01 2010-02-25 Panasonic Corporation Two-stage rotary expander, expander-compressor unit, and refrigeration cycle apparatus
US8690555B2 (en) * 2007-03-01 2014-04-08 Panasonic Corporation Two-stage rotary expander, expander-compressor unit, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
KR20060131996A (en) 2006-12-20
CN1934397A (en) 2007-03-21
EP1739369A1 (en) 2007-01-03
JP2005265278A (en) 2005-09-29
US20090007590A1 (en) 2009-01-08
AU2005224499A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
WO2005090875A1 (en) Refrigeration system
JP3674625B2 (en) Rotary expander and fluid machine
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
WO2013030896A1 (en) Refrigeration cycle device
WO2006013959A1 (en) Displacement type expansion machine and fluid machine
JP4039024B2 (en) Refrigeration equipment
WO2006013961A1 (en) Expansion machine
WO2011117924A1 (en) Refrigeration cycle apparatus and method for operating same
JP4701875B2 (en) Rotary expander
JP2004137979A (en) Expansion machine
JP2006023004A (en) Refrigeration unit
JP2004197640A (en) Positive displacement expander and fluid machinery
JP4622193B2 (en) Refrigeration equipment
JP4599764B2 (en) Scroll type fluid machine and refrigeration system
JP2007154726A (en) Hermetic compressor and refrigeration cycle device
JP4635382B2 (en) Scroll type expander and refrigeration system
JP4462023B2 (en) Rotary expander
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
JP4581795B2 (en) Refrigeration equipment
JP4617822B2 (en) Rotary expander
JP4618266B2 (en) Refrigeration equipment
JP2009133319A (en) Displacement type expansion machine and fluid machine
JP2013019336A (en) Expander and refrigerating device
WO2009113261A1 (en) Expander
KR20110080481A (en) Cooling system of air conditioner for vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10593038

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580008658.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005224499

Country of ref document: AU

Ref document number: 1020067021492

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005224499

Country of ref document: AU

Date of ref document: 20050309

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005224499

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067021492

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005720357

Country of ref document: EP