JP2000199068A - Electroless plating method utilizing magnetism - Google Patents

Electroless plating method utilizing magnetism

Info

Publication number
JP2000199068A
JP2000199068A JP10373561A JP37356198A JP2000199068A JP 2000199068 A JP2000199068 A JP 2000199068A JP 10373561 A JP10373561 A JP 10373561A JP 37356198 A JP37356198 A JP 37356198A JP 2000199068 A JP2000199068 A JP 2000199068A
Authority
JP
Japan
Prior art keywords
plating
electroless plating
magnetic field
film
plating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10373561A
Other languages
Japanese (ja)
Inventor
Ryoichi Aogaki
良一 青柿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP10373561A priority Critical patent/JP2000199068A/en
Publication of JP2000199068A publication Critical patent/JP2000199068A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily execute the control of plating conditions such as a plating rate, plating film thickness, the smoothening and homogenizing of the surface of a plating film or the like without requiring large electrolyzing equipment. SOLUTION: By bringing fine circulating currents (i) generated on the plating face 2A of the material 2 to be film-formed to interact with the magnetic fields B applied from the outside, local Lorentz force is generated in the vicinity of the material 2 to be film-formed, by the Lorentz force F, the convection of an electroless plating soln. 3 is made, and, by controlling the magnetic field intensity, plating reaction is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、磁気利用
無電解めっき法に関するものである。さらに詳しくは、
この出願の発明は、機械部品、電気電子部品、装飾品等
の高度なめっきに有用な、磁気利用無電解めっき法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless plating method utilizing magnetism. For more information,
The invention of this application relates to an electroless plating method using magnetism, which is useful for advanced plating of mechanical parts, electric / electronic parts, decorative articles and the like.

【0002】[0002]

【従来の技術とその課題】従来より、機械部品、電気電
子部品、装飾品などにおいては、導電性や強度の確保お
よび防錆などを目的として、固体材料表面に皮膜を形成
するめっき法が用いられている。このめっき法のうち、
湿式めっき法としては電解めっき法と無電解めっき法が
知られており、後者の無電解めっき法は、精密なめっき
が低コストで可能になるものとして注目されてもいる。
2. Description of the Related Art Conventionally, a plating method for forming a film on a solid material surface has been used for mechanical parts, electric / electronic parts, decorative articles, etc. for the purpose of securing conductivity and strength and preventing rust. Have been. Of this plating method,
As the wet plating method, an electrolytic plating method and an electroless plating method are known, and the latter electroless plating method is attracting attention as a method that enables precise plating at low cost.

【0003】無電解めっき法は、めっき皮膜用の金属イ
オン錯体と還元剤とが共存した無電解めっき溶液内に、
めっきを施すべき固体材料を挿入し、還元剤により金属
イオンを金属へと還元することにより、めっき皮膜を形
成するものである。この無電解めっき法により、大型な
設備を必要とせず、複雑な形状面であっても容易にかつ
低コストでめっき皮膜を形成することが可能になってい
る。
In the electroless plating method, a metal ion complex for a plating film and a reducing agent coexist in an electroless plating solution.
A plating material is formed by inserting a solid material to be plated and reducing metal ions to metal by a reducing agent. This electroless plating method makes it possible to form a plating film easily and at low cost even on a complicated shape surface without requiring a large-sized facility.

【0004】しかしながら、無電解めっき法において
も、未だ解決されていない問題点として、めっき条件の
制御が困難であるという問題点があった。より具体的に
は、従来までの無電解めっき法においては、無電解めっ
き溶液組成と温度によってめっき条件がほぼ決定されて
しまい、めっき速度、めっき膜厚、めっき膜表面の平滑
化と均質化とを制御することが難しかった。
[0004] However, even in the electroless plating method, there has been a problem that it is difficult to control plating conditions as an unsolved problem. More specifically, in the conventional electroless plating method, the plating conditions are almost determined by the composition and temperature of the electroless plating solution, and the plating speed, plating film thickness, and smoothing and homogenization of the plating film surface are reduced. It was difficult to control.

【0005】そこでこの出願の発明は、以上の通りの従
来技術の欠点を鑑みてなされたものであり、めっき速
度、めっき膜厚、めっき膜表面の平滑化と均質化などの
めっき条件の制御を、大型設備を必要とせずに容易に行
うことを可能とする、新しい無電解めっき法を提供する
ことを課題としている。
The invention of this application has been made in view of the above-mentioned drawbacks of the prior art, and controls plating conditions such as plating speed, plating film thickness, and smoothing and homogenizing the plating film surface. Another object of the present invention is to provide a new electroless plating method which can be easily performed without requiring large-scale equipment.

【0006】[0006]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、第1には、磁場を印加し
ての無電解めっき法であって、磁場の強度を変化させ
て、無電解めっき反応を制御することを特徴とする磁気
利用無電解めっき法を提供する。また、第2には、被め
っき表面に対して垂直方向の磁場を印加する前記のめっ
き法を、第3には、液体ヘリウムレス超伝導マグネット
により磁場を印加するめっき法をも提供する。
Means for Solving the Problems The present invention solves the above-mentioned problems. First, the invention is an electroless plating method in which a magnetic field is applied. And a method of controlling electroless plating using magnetism, characterized by controlling an electroless plating reaction. Secondly, the present invention provides a plating method for applying a magnetic field in a direction perpendicular to the surface to be plated, and thirdly, a plating method for applying a magnetic field using a liquid helium-less superconducting magnet.

【0007】すなわち、この発明においては、この発明
の発明者が見出した、マイクロ電磁流体効果を理論的な
背景として、外部より高磁場をめっき系に印加すること
により、無電解めっき法におけるめっき条件を制御する
ことに大きな特徴がある。めっき速度の向上、めっき膜
厚の制御、めっき膜の平滑化と均質化といっためっき条
件の制御を容易に可能としている。
That is, in the present invention, a plating field in an electroless plating method is applied by applying a high magnetic field from the outside to a plating system with the micro-electromagnetic fluid effect as a theoretical background. There is a great feature in controlling It enables easy control of plating conditions such as improvement of plating speed, control of plating film thickness, and smoothing and homogenization of plating film.

【0008】[0008]

【発明の実施の形態】この出願の発明は、以上のとおり
の特徴を有するものであるが、以下にその実施の形態に
ついて説明する。まずこの発明の磁気利用無電解めっき
法については、例えば図1に示したものをひとつの態様
として示すことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and the embodiments will be described below. First, as for the electroless plating method using magnetism of the present invention, for example, the one shown in FIG. 1 can be shown as one embodiment.

【0009】すなわち、この図1に例示したように、無
電解めっき溶液(3)が内部に存在する容器(1)の周
囲に、マグネット(4)を配置し、被膜形成材料(2)
を無電解めっき溶液(3)内に配置した状態で、マグネ
ット(4)により磁場Bを印加する。磁場Bは、たとえ
ば被膜形成材料(2)の被めっき表面に対して垂直な方
向に印加するのが適当である。マイクロ電磁流体効果が
より促進されるからでもある。
That is, as illustrated in FIG. 1, a magnet (4) is arranged around a container (1) in which an electroless plating solution (3) is present, and a film forming material (2) is formed.
Is placed in the electroless plating solution (3), and a magnetic field B is applied by the magnet (4). The magnetic field B is suitably applied, for example, in a direction perpendicular to the surface of the film forming material (2) to be plated. This is because the micro-electromagnetic fluid effect is further promoted.

【0010】そして、この発明においては、その無電解
めっき過程において、めっき面上に生じる微小な循環電
流を、外部より印加した強力な磁場と相互作用させるこ
とで、新たに局所的なローレンツ力を生み出し、無電解
めっき溶液の微小な対流をめっき面上に作り出して、め
っき反応を制御する。さらに、この発明においては、磁
場を作るマグネットとして、液体ヘリウムレス超伝導マ
グネットなどを用いることができ、このようなマグネッ
トを用いることにより、より強力な磁場を生成すること
ができる。
[0010] In the present invention, in the electroless plating process, a minute circulating current generated on the plating surface interacts with a strong magnetic field applied from the outside to newly generate a local Lorentz force. It produces and creates a small convection of the electroless plating solution on the plating surface to control the plating reaction. Furthermore, in the present invention, a liquid helium-less superconducting magnet or the like can be used as a magnet for generating a magnetic field, and a stronger magnetic field can be generated by using such a magnet.

【0011】またさらに、この発明においては、単に金
属薄膜の生成のみならず、他の種類の薄膜、例えば有機
薄膜や半導体薄膜などの製造過程にも応用することがで
きる。マイクロ電磁流体効果は、次の第1段階から第3
段階の3つの段階により、ローレンツ力を発生させる。
前記図1の被膜形成材料(2)付近の拡大図である図2
を用いて詳しく説明する。 <第1段階>例えば図2に例示したように、被膜形成材
料(2)と無電解めっき溶液(3)との界面において
は、化学的非平衡状態のとき、被膜形成材料(2)上の
被めっき面(2A)の幾つかの点において、還元剤の酸
化と金属イオンの還元反応が同時に起こり、酸化点βと
還元点αとの間で循環電流iが流れる。
Further, the present invention can be applied not only to the production of a metal thin film but also to the production process of other types of thin films, for example, organic thin films and semiconductor thin films. The micro-magneto-fluid effect is from the first stage to the third
The Lorentz force is generated in three stages.
FIG. 2 is an enlarged view of the vicinity of the film forming material (2) in FIG.
This will be described in detail with reference to FIG. <First Step> For example, as illustrated in FIG. 2, at the interface between the film-forming material (2) and the electroless plating solution (3), when there is a chemical non-equilibrium state, At some points on the surface to be plated (2A), the oxidation of the reducing agent and the reduction reaction of the metal ions occur simultaneously, and a circulating current i flows between the oxidation point β and the reduction point α.

【0012】すなわち、その無電解めっき過程において
は、被めっき面(2A)において、異なる活性点で還元
剤の酸化と金属イオンの還元反応が起こるために、これ
らの活性点間で局所的な循環電流iが流れることにな
る。この酸化点βと還元点αとの距離はμmオーダであ
り、循環電流iは、無電解めっき溶液(3)と被膜形成
材料(2)との断面内を循環する。 <第2段階>循環電流iが流れている状態において、被
膜材料側から無電解めっき溶液(3)側の向きに、マグ
ネット(4)を用いて磁場Bを印加する、磁場Bが加わ
ると、その被膜材料付近の無電解めっき溶液中にローレ
ンツ力F=iXBが、磁場Bと循環電流iの向きに対し
て垂直に発生する。このローレンツ力Fにより、無電解
めっき溶液中に局所的な微小対流が生じる。この微小対
流はめっき過程に大きな影響を及ぼし、めっき速度や析
出形態などを大きく左右する。 <第3段階>磁場強度を変化させることにより、ローレ
ンツ力Fの大きさも変化し、結果的に、無電解めっき溶
液(3)中の微小対流も変化する。この微小対流はめっ
き条件に大きく作用するので、結果的にめっき条件を制
御することができる。
That is, in the electroless plating process, the oxidation of the reducing agent and the reduction reaction of metal ions occur at different active points on the surface to be plated (2A). The current i flows. The distance between the oxidation point β and the reduction point α is on the order of μm, and the circulating current i circulates in the cross section of the electroless plating solution (3) and the film forming material (2). <Second stage> In a state where the circulating current i is flowing, a magnetic field B is applied using a magnet (4) from the coating material side to the electroless plating solution (3) side. A Lorentz force F = iXB is generated in the electroless plating solution near the coating material in a direction perpendicular to the direction of the magnetic field B and the circulating current i. Due to this Lorentz force F, local micro convection occurs in the electroless plating solution. The minute convection greatly affects the plating process, and greatly affects the plating speed, the form of deposition, and the like. <Third Step> By changing the magnetic field strength, the magnitude of the Lorentz force F also changes, and consequently, the minute convection in the electroless plating solution (3) also changes. Since this minute convection greatly affects the plating conditions, the plating conditions can be controlled as a result.

【0013】以下、実施例を示し、さらに詳しくこの発
明について説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0014】[0014]

【実施例】(実施例1)この発明の磁気利用無電解めっ
き法により、実際に、銅板サンプル(純度99.9%)
の表面に、銀めっきを施した。この実施例においては、
マグネットとして液体ヘリウムレス超伝導マグネットを
用いた。
EXAMPLES (Example 1) A copper plate sample (purity 99.9%) was actually obtained by the electroless plating method using magnetism of the present invention.
Was plated with silver. In this example,
A liquid helium-less superconducting magnet was used as the magnet.

【0015】銅板サンプルの表面に対して垂直方向の磁
場を印加し、めっき液(AgNO350g/L、KI
500g/L)に30分間サンプルを浸漬してめっきを
行った。その結果、めっき量は磁束密度の増加にともな
って増加し、2T(テスラ)の場合の重量変化量(めっ
き量に相当)が0.1gであったのに対し、5Tの場合
には、0.13gにまで増大することが確認された。 (実施例2)サンプルとして純度99.9%のPt板を
用い、銅めっきを行った。めっき液の組成は、次のとお
りとした。
A magnetic field in a direction perpendicular to the surface of the copper plate sample is applied to the plating solution (AgNO 3 50 g / L, KI
(500 g / L) for 30 minutes to perform plating. As a result, the plating amount increased with an increase in the magnetic flux density, and the weight change (corresponding to the plating amount) in the case of 2T (tesla) was 0.1 g, whereas in the case of 5T, the plating amount was 0 g. It was confirmed to increase to .13 g. (Example 2) Copper plating was performed using a Pt plate having a purity of 99.9% as a sample. The composition of the plating solution was as follows.

【0016】 A:B(volume)=5:1 めっき速度は、低磁場側においては磁束密度の増加とと
もに増大し、3T(テスラ)付近で最大(5mg/cm
2 ・h)となり、その後は逆に抑制されることが確認さ
れた。
[0016] A: B (volume) = 5: 1 The plating rate increases with an increase in the magnetic flux density on the low magnetic field side, and reaches a maximum (5 mg / cm) near 3 T (tesla).
2 · h), and thereafter, it was confirmed that it was suppressed conversely.

【0017】また、磁場中でのめっきにおいては、結晶
粒径が磁場を印加しない場合に比べて細かくなってお
り、析出形態への磁場効果の存在も確認された。
Further, in the plating in a magnetic field, the crystal grain size was finer than in the case where no magnetic field was applied, and the existence of a magnetic field effect on the precipitation form was also confirmed.

【0018】[0018]

【発明の効果】以上詳しく説明したように、この発明の
方法により、大型電解設備を必要とせずに、めっき速
度、めっき膜厚、めっき膜表面の平滑化と均質化などの
めっき条件の制御を、容易に行うことができる。
As described in detail above, according to the method of the present invention, it is possible to control plating speed, plating film thickness, plating conditions such as plating film surface smoothing and homogenization without requiring a large-scale electrolytic facility. Can be done easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法を示した概略図である。FIG. 1 is a schematic diagram illustrating the method of the present invention.

【図2】この発明の方法の作用を示した拡大図である。FIG. 2 is an enlarged view showing the operation of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 容器 2 被膜形成材料 2A 被めっき面 3 無電解めっき溶液 4 マグネット B 磁場 F ローレンツ力 α 還元点 β 酸化点 i 循環電流 DESCRIPTION OF SYMBOLS 1 Container 2 Coating material 2A Plated surface 3 Electroless plating solution 4 Magnet B Magnetic field F Lorentz force α Reduction point β Oxidation point i Circulating current

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁場を印加しての無電解めっき法であっ
て、磁場の強度を変化させて、無電解めっき反応を制御
することを特徴とする磁気利用無電解めっき法。
1. An electroless plating method using a magnetic field, wherein a magnetic field is applied, wherein the intensity of the magnetic field is changed to control an electroless plating reaction.
【請求項2】 被めっき表面に対して垂直方向の磁場を
印加する請求項1のめっき法。
2. The plating method according to claim 1, wherein a magnetic field in a direction perpendicular to the surface to be plated is applied.
【請求項3】 液体ヘリウムレス超伝導マグネットによ
り磁場を印加する請求項1または2のめっき法。
3. The plating method according to claim 1, wherein a magnetic field is applied by a liquid helium-less superconducting magnet.
JP10373561A 1998-12-28 1998-12-28 Electroless plating method utilizing magnetism Pending JP2000199068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10373561A JP2000199068A (en) 1998-12-28 1998-12-28 Electroless plating method utilizing magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10373561A JP2000199068A (en) 1998-12-28 1998-12-28 Electroless plating method utilizing magnetism

Publications (1)

Publication Number Publication Date
JP2000199068A true JP2000199068A (en) 2000-07-18

Family

ID=18502377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10373561A Pending JP2000199068A (en) 1998-12-28 1998-12-28 Electroless plating method utilizing magnetism

Country Status (1)

Country Link
JP (1) JP2000199068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015362A1 (en) * 2008-07-21 2010-01-21 Samsung Electronics Co., Ltd. Method of electroless plating
CN102732863A (en) * 2012-03-16 2012-10-17 福州大学 Method for preparing magnetic-field-assisted graphite carbon material chemical plating magnetic metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015362A1 (en) * 2008-07-21 2010-01-21 Samsung Electronics Co., Ltd. Method of electroless plating
CN102732863A (en) * 2012-03-16 2012-10-17 福州大学 Method for preparing magnetic-field-assisted graphite carbon material chemical plating magnetic metal

Similar Documents

Publication Publication Date Title
Popov et al. Galvanostatic Pulse and Pulse Reverse Plating of Nickel‐Iron Alloys from Electrolytes Containing Organic Compounds on a Rotating Disk Electrode
Uhlemann et al. Structured electrodeposition in magnetic gradient fields
Tschulik et al. Studies on the patterning effect of copper deposits in magnetic gradient fields
JP3049315B1 (en) Method for controlling crystal orientation of electrodeposited or electroless deposited film by magnetic field
Mohan et al. Role of magnetic forces in pulse electrochemical deposition of NinanoAl2O3 composites
CN104025724A (en) Method of forming a conductive image on a non-conductive surface
KR20090067143A (en) Electroplating method
Takano et al. Nickel deposition behavior on n-type silicon wafer for fabrication of minute nickel dots
Koza et al. Electrocrystallisation of metallic films under the influence of an external homogeneous magnetic field—Early stages of the layer growth
Xu et al. Copper thin coating deposition on natural pollen particles
Rosso et al. Shape evolution of metals electrodeposited from binary electrolytes
JP2000199068A (en) Electroless plating method utilizing magnetism
JP2003510465A (en) Electrodeposition method of metal multilayer
CN107385486A (en) The method of pulse plating gold and the gold plate of formation
Fernández et al. Inhomogeneous electrodeposition of copper in a magnetic field
Chouarbi et al. SmCo micromolding in an aqueous electrolyte
Mardani et al. The effect of surfactant on the structure, composition and magnetic properties of electrodeposited CoNiFe/Cu microwire
Vorobjova et al. Highly ordered porous alumina membranes for Ni–Fe nanowires fabrication
JP2001023932A (en) Manufacture of semiconductor element and manufacturing apparatus
Bracker et al. Electroplating powder for cold spray applications
KR20020066178A (en) A plating device and a method for manufacturing of semiconductor device
DE102006018052B3 (en) Device for galvanic coating of non-magnetic silicon substrate wafer for microelectronics, has permanent- and/or electromagnets with magnetic stray field strengths arranged on a back side of the silicon surface/on the substrate holder
JP2002088482A (en) Dispersant magnetic field plating method, and dispersant magnetic field eutectoid plating method
JP2000199081A (en) Wet chemical etching method utilizing magnetism
JPS6134180A (en) Electroless plating method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129