JP2000195501A - Organic electrolyte battery and manufacture of the same - Google Patents

Organic electrolyte battery and manufacture of the same

Info

Publication number
JP2000195501A
JP2000195501A JP10368907A JP36890798A JP2000195501A JP 2000195501 A JP2000195501 A JP 2000195501A JP 10368907 A JP10368907 A JP 10368907A JP 36890798 A JP36890798 A JP 36890798A JP 2000195501 A JP2000195501 A JP 2000195501A
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
thickness
paste
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10368907A
Other languages
Japanese (ja)
Inventor
Noriki Muraoka
憲樹 村岡
Kazunari Kinoshita
一成 木下
Tsumoru Ohata
積 大畠
Yasushige Shimizu
恭重 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10368907A priority Critical patent/JP2000195501A/en
Priority to EP99103670A priority patent/EP1014466B1/en
Priority to DE69911901T priority patent/DE69911901T2/en
Priority to CA002263080A priority patent/CA2263080C/en
Priority to KR1019990008265A priority patent/KR100299991B1/en
Priority to CNB991045343A priority patent/CN1159786C/en
Publication of JP2000195501A publication Critical patent/JP2000195501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To prevent a positive-electrode current collector from peeling off a positive-electrode mix layer by arranging the current collector in a proper position to the mix layer, and to increase the utilization factor of an active material to improve discharging characteristics of an organic electrolyte battery in the shape of sheet or film composed of a positive electrode including a polymer for absorbing/holding an organic electrolyte, a separator and a negative electrode all unitedly laminated. SOLUTION: A positive electrode 1, oppositely arranged over both sides of a sheet-shaped negative electrode 2 via a film-shaped separator 3, is formed in the way that its porous current collector 1a is buried into the positive electrode mix layer 1b with the opposite sides from negative electrode of both current collector 1a and mix layer 1b making the same surface, or buried therein at the distance of 2/3-4/5 of the mix layer thickness from the negative electrode 2 with the rest of the positive electrode mix layer 1b existing on the outside of the current collector 1a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔性の正極集電
体および負極集電体にそれぞれ有機電解液を吸収保持す
るポリマーを含んだ合剤を塗着した正極および負極を用
い、負極の両面に有機電解液を吸収保持するポリマーか
らなる多孔性のフィルム状セパレータを介して正極を対
向させ、これらを積層一体化したシート状あるいはフィ
ルム状の有機電解質電池に関する。
The present invention relates to a positive electrode and a negative electrode each having a porous positive electrode current collector and a negative electrode current collector coated with a mixture containing a polymer that absorbs and retains an organic electrolyte solution. The present invention relates to a sheet-like or film-like organic electrolyte battery in which positive electrodes are opposed to each other via a porous film-like separator made of a polymer capable of absorbing and holding an organic electrolyte, and these are laminated and integrated.

【0002】[0002]

【従来の技術】近年の携帯電子機器の小型、軽量、薄型
化に対応して、電源となる電池にも小型、軽量、薄型化
が強く求められている。このような要望に対して、電池
の薄型化を追求する方法の一つとして、ポリマー材料に
有機電解液を吸収保持させたゲル状のセパレータを用い
る有機電解質電池が注目されている。例えば、米国特許
第4.830.939号明細書、同第5.478.66
8号明細書などで開示されている前記のセパレータと電
極とが一体化されている電池では、電解質と電極との良
好な接触が実現できる。
2. Description of the Related Art In response to the recent trend toward smaller, lighter and thinner portable electronic devices, there has been a strong demand for smaller, lighter and thinner batteries as power supplies. In response to such a demand, an organic electrolyte battery using a gel separator in which a polymer material absorbs and holds an organic electrolyte is attracting attention as one of the methods for pursuing a thin battery. For example, U.S. Pat. Nos. 4,83,939 and 5,478,66.
In the battery in which the separator and the electrode are integrated as disclosed in the specification of Japanese Patent No. 8 and the like, good contact between the electrolyte and the electrode can be realized.

【0003】このため、柔軟で薄い樹脂フィルム主体の
ラミネートシートを外装体に使用することができ、薄型
化した電池を得ることができる。しかし、正極、セパレ
ータ、負極を単純に積み重ねた構成では、正負の電極中
の集電体が電池重量全体に占める相対的な割合が大きく
なって、電池として重量当りのエネルギー密度が低下し
てしまうという問題点がある。
[0003] For this reason, a flexible and thin resin film-based laminate sheet can be used for the outer package, and a thin battery can be obtained. However, in a configuration in which the positive electrode, the separator, and the negative electrode are simply stacked, the relative proportion of the current collector in the positive and negative electrodes to the entire battery weight increases, and the energy density per unit weight of the battery decreases. There is a problem.

【0004】この問題点に対応して、多孔性集電体の両
側に合剤層を形成した負極の両面に、前記のフィルム状
セパレータを介してそれぞれ正極を対向させ、これらを
積層一体化する構成が、特願平10−36992号、特
開平10−189053号で提案された。
To cope with this problem, the positive electrode is opposed to both sides of the negative electrode having the mixture layer formed on both sides of the porous current collector through the above-mentioned film separator, and these are laminated and integrated. The configuration has been proposed in Japanese Patent Application No. 10-36992 and Japanese Patent Application Laid-Open No. 10-189053.

【0005】特願平10−36992号では、シート状
負極の両面に前記のフィルム状セパレータを介して正極
を配した有機電解質電池の構成を開示している。
Japanese Patent Application No. 10-36992 discloses a configuration of an organic electrolyte battery in which a positive electrode is disposed on both sides of a sheet-like negative electrode with the above-mentioned film-like separator interposed therebetween.

【0006】これを図5によって説明する。図5は、正
極板1と負極板2とをセパレータ3を介して積層一体化
した積層電極4を示す。正極板1は、多孔性のアルミニ
ウム集電体1aの片面に、正極合剤層1bを塗布乾燥し
て作成する。また、負極板2は、多孔性の銅集電体2a
の両面に負極合剤層2bを塗布乾燥して作成する。セパ
レータ3は、有機電解液を吸収保持することができるポ
リマー、例えばフッ化ビニリデンと6フッ化プロピレン
の共重合体(P(VDF―HFP))からなる。
This will be described with reference to FIG. FIG. 5 shows a laminated electrode 4 in which a positive electrode plate 1 and a negative electrode plate 2 are laminated and integrated via a separator 3. The positive electrode plate 1 is formed by applying and drying a positive electrode mixture layer 1b on one surface of a porous aluminum current collector 1a. The negative electrode plate 2 is made of a porous copper current collector 2a.
The negative electrode mixture layer 2b is applied to both sides of the substrate and dried to prepare the mixture. The separator 3 is made of a polymer capable of absorbing and holding an organic electrolyte, for example, a copolymer of vinylidene fluoride and propylene hexafluoride (P (VDF-HFP)).

【0007】そして負極板2両側の負極合剤層2bに、
それぞれセパレータ3を介して正極板1の正極合剤層1
bを対向させて積層した後、熱融着により一体化して積
層電極4を構成している。この構成によれば、正極、セ
パレータ、負極を単に積層したものに比べて、負極の反
応部分が表裏の両面となることから、電池としての反応
面積が2倍となり、単位面積当たりの電流密度を下げる
ことができて、大電流での充放電が可能になる。
The negative electrode mixture layers 2b on both sides of the negative electrode plate 2
Positive electrode mixture layer 1 of positive electrode plate 1 via separator 3
After the layers b are opposed to each other, they are integrated by thermal fusion to form the laminated electrode 4. According to this configuration, the reaction area of the negative electrode is on both the front and back sides as compared with the case where the positive electrode, the separator, and the negative electrode are simply laminated, so that the reaction area of the battery is doubled, and the current density per unit area is reduced. It is possible to charge and discharge with a large current.

【0008】[0008]

【発明が解決しようとする課題】上記の構成では、負極
の両面にセパレータを介して正極を配するため、正極は
片面のみが負極と対向することになる。ポリマーに有機
電解液を吸収保持させたフィルム状セパレータを用いた
有機電解質電池は、活物質の利用率を高めるために、起
電反応時のイオンの移動を阻害しないことが必要であ
る。そこで、起電反応に寄与しない正極集電体を、負極
と対向する面の反対側に位置するように正極の外端面に
配する、すなわち正極合剤層の片面に正極集電体を貼り
合わせた構造とすることが好ましい。
In the above arrangement, the positive electrode is disposed on both sides of the negative electrode via the separator, so that only one side of the positive electrode faces the negative electrode. In an organic electrolyte battery using a film-shaped separator in which a polymer absorbs and holds an organic electrolyte, it is necessary that the movement of ions during the electromotive reaction be not hindered in order to increase the utilization rate of the active material. Therefore, the positive electrode current collector that does not contribute to the electromotive reaction is arranged on the outer end surface of the positive electrode so as to be located on the opposite side of the surface facing the negative electrode, that is, the positive electrode current collector is bonded to one surface of the positive electrode mixture layer It is preferable to use a bent structure.

【0009】しかしこの構造の場合、完成された電池は
充放電に伴う活物質、特に正極活物質の膨張、収縮によ
って、正極集電体と正極合剤層との接合強度が低下して
しまい、集電体が部分的に合剤から剥離してしまう。こ
の活物質の膨張、収縮による集電体と合剤との接合強度
の低下は、電池に共通してみられる現象である。そして
貼り合わせ構造を採用した電池では、正極合剤層と集電
体との接合が一面のみであるため膨張、収縮による応力
が集電体の片面に集中し、集電体が合剤層の片面から剥
離する現象を生じてしまう。剥離が発生すると、合剤層
と集電体との電気的な接続状態が悪化して集電不良に至
る。このように、貼り合わせ構造は、活物質の利用率を
改善するが、充放電に伴って集電不良を生じるという、
電池としては極めて大きな問題点を有していた。
However, in the case of this structure, the completed battery has a reduced bonding strength between the positive electrode current collector and the positive electrode mixture layer due to expansion and contraction of the active material, particularly the positive electrode active material, upon charging and discharging. The current collector partially peels off from the mixture. This decrease in the bonding strength between the current collector and the mixture due to expansion and contraction of the active material is a phenomenon commonly observed in batteries. In a battery employing a bonded structure, since the positive electrode mixture layer and the current collector are joined on only one surface, stress due to expansion and contraction is concentrated on one side of the current collector, and the current collector is The phenomenon of peeling off from one side occurs. When peeling occurs, the electrical connection between the mixture layer and the current collector deteriorates, resulting in poor current collection. As described above, the bonding structure improves the utilization rate of the active material, but causes a current collection failure with charge and discharge.
The battery had an extremely large problem.

【0010】特開平10−189053号では、正極の
厚みの中央部分に集電体を配しているので、正極活物質
の膨張、収縮による集電体の正極合剤層からの剥離は生
じない。しかし集電体から外側部分の厚み半分相当の合
剤は、充放電反応に関与する度合いが低く、用いた正極
活物質量に見合うほど活物質利用率は高まらない。
In Japanese Patent Application Laid-Open No. 10-189053, since the current collector is provided at the center of the thickness of the positive electrode, the current collector does not peel off from the positive electrode mixture layer due to expansion and contraction of the positive electrode active material. . However, a mixture equivalent to half the thickness of the outer portion from the current collector has a low degree of involvement in the charge / discharge reaction, and the active material utilization does not increase as much as the used amount of the positive electrode active material.

【0011】本発明が主たる目的とするところは、正極
合剤層に対する正極集電体の配置構成を改良すること
で、活物質の膨張、収縮による集電体の合剤層からの剥
離をなくして、集電不良、特に正極での集電不良を生じ
ない有機電解質電池を提供することにある。また別な目
的は、正極活物質の利用率を改善して優れた放電特性の
有機電解質電池を提供することである。
The main object of the present invention is to improve the arrangement of the positive electrode current collector with respect to the positive electrode mixture layer so that the current collector does not peel off from the mixture layer due to expansion and contraction of the active material. Another object of the present invention is to provide an organic electrolyte battery which does not cause poor current collection, particularly poor current collection at the positive electrode. Another object is to provide an organic electrolyte battery having excellent discharge characteristics by improving the utilization rate of the positive electrode active material.

【0012】[0012]

【課題を解決するための手段】前記の目的を達成するた
め、本発明の有機電解質電池は、多孔性の集電体の両側
に前記のポリマーを含む合剤層を形成したシート状負極
の両面に、ポリマーからなる多孔性のフィルム状セパレ
ータを介して、多孔性の集電体に前記のポリマーを含む
シート状合剤層を形成した正極を対向させ、積層一体化
したものであって、正極の多孔性集電体は、負極との対
向面とは反対側の合剤面に面一状態で配されるか、また
は対向面を起点としてそこから正極合剤層の全体厚みの
2/3〜4/5の位置に埋設され、集電体の外側に残余
の1/3〜1/5の厚みの正極合剤層が配されたもので
ある。すなわち正極の集電体を、負極とは対向しない正
極合剤の外側部分に浅く埋め込まれた状態で配置したこ
とを特徴とするものである。
In order to achieve the above object, an organic electrolyte battery of the present invention comprises a porous negative electrode and a sheet-like negative electrode in which a mixture layer containing the polymer is formed on both sides of a porous current collector. A positive electrode in which a sheet-shaped mixture layer containing the polymer is formed opposite to a porous current collector through a porous film-shaped separator made of a polymer, and the positive electrode is laminated and integrated. Is disposed flush with the surface of the mixture opposite to the surface facing the negative electrode, or 2/3 of the total thickness of the positive electrode mixture layer starting from the facing surface. The positive electrode mixture layer having a thickness of 1/3 to 1/5 remaining outside the current collector is buried at a position of about 4/5. That is, the current collector of the positive electrode is arranged so as to be shallowly buried in the outer portion of the positive electrode mixture not facing the negative electrode.

【0013】このような正極は、電池構成の際に負極に
対向する正極集電体の一面に塗着された正極合剤ペース
トの厚みと、他面に塗着された同ペーストの厚みとの比
率が9:1〜7:3の範囲となるようにペーストを集電
体の両面に塗着し、ついで乾燥、加圧することで達成で
きる。
[0013] Such a positive electrode has a thickness between the thickness of the positive electrode mixture paste applied to one surface of the positive electrode current collector facing the negative electrode and the thickness of the same paste applied to the other surface when the battery is constructed. This can be achieved by applying the paste on both sides of the current collector so that the ratio is in the range of 9: 1 to 7: 3, and then drying and pressing.

【0014】このような電池構成および製造法によれ
ば、正極合剤層は、その厚みの大半が集電体の片面側、
すなわち負極と対向する側に位置するため、活物質の利
用率は高まる。また、正極集電体は軽量なアルミニウム
またはアルミニウムコーティング材を素材としたパンチ
ングメタルあるいはラスメタルから構成するのが重量効
率の上から好ましく、多孔性の孔部によって集電体近傍
での起電反応に伴うイオンの移動を容易とし、集電体よ
りも外側に位置する合剤も起電反応に関与させることが
可能となり、負極での反応面積の倍加とあいまって良好
な放電特性が得られる。
According to such a battery configuration and manufacturing method, most of the thickness of the positive electrode mixture layer is one side of the current collector,
That is, since it is located on the side facing the negative electrode, the utilization rate of the active material is increased. In addition, the positive electrode current collector is preferably composed of a punched metal or a lath metal made of lightweight aluminum or aluminum coating material from the viewpoint of weight efficiency, and the porous hole prevents the electromotive reaction near the current collector from occurring. This facilitates the transfer of ions and allows the mixture located outside the current collector to also participate in the electromotive reaction, so that good discharge characteristics can be obtained in combination with the doubling of the reaction area at the negative electrode.

【0015】さらに多孔性の集電体は、合剤中に埋め込
まれているので、集電体が合剤から簡単に剥離して集電
不良が生じるということもない。
Further, since the porous current collector is buried in the mixture, there is no possibility that the current collector is easily peeled off from the mixture to cause poor current collection.

【0016】[0016]

【発明の実施の形態】以下、添付図面を用いて本発明の
好ましい実施形態を説明する。なお、図5に示した構成
と共通する要素については、同一符号をつけて示す。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. Elements common to the configuration shown in FIG. 5 are denoted by the same reference numerals.

【0017】この実施形態での有機電解質電池の構成を
図1に示す。この電池は、2枚の正極板1を負極板2の
両面にセパレータ3を介して積層一体化した積層電極4
として構成されている。正極板1は、ラス加工を施した
アルミニウム箔からなる多孔性の集電体1aに正極合剤
ペーストを塗布し、これを乾燥して正極合剤層1bが形
成されている。正極集電体1aは、ここではラス加工し
たアルミニウム箔を用いたが、フィルム状生地にアルミ
ニウムコーティングを施したものを素材とし、これにパ
ンチングあるいはラス加工を加えた、パンチングメタル
あるいはラスメタルなどでも良い。集電体1aは合剤と
の密着、導通をよくするため、その表面に、例えばアセ
チレンブラックあるいはケッチェンブラックからなる炭
素微粉末と結着剤であるポリフッ化ビニリデンとの混合
物よりなる導電性炭素膜が設けられている。またその多
孔度合いを決める開孔率は50〜60%が好ましく、そ
の厚さは25〜60μmがペーストの塗着と集電機能の
上から好ましい。
FIG. 1 shows the configuration of the organic electrolyte battery according to this embodiment. This battery has a laminated electrode 4 in which two positive plates 1 are laminated and integrated on both surfaces of a negative plate 2 with a separator 3 interposed therebetween.
Is configured as The positive electrode plate 1 is formed by applying a positive electrode mixture paste to a porous current collector 1a made of a lath-processed aluminum foil and drying the paste to form a positive electrode mixture layer 1b. Although the positive electrode current collector 1a used a lath-processed aluminum foil here, a material obtained by applying an aluminum coating to a film-like material and punching or lathing the material may be used. . In order to improve the adhesion and conduction with the mixture, the current collector 1a is provided on its surface with a conductive carbon made of a mixture of fine carbon powder of, for example, acetylene black or Ketjen black and polyvinylidene fluoride as a binder. A membrane is provided. The porosity that determines the degree of porosity is preferably 50 to 60%, and the thickness is preferably 25 to 60 μm from the viewpoint of paste application and current collecting function.

【0018】正極合剤層1bは、正極活物質、導電剤お
よびポリマー溶液からなるペーストを集電体に塗着した
後、ペースト中の溶媒を乾燥、除去することで形成し
た。
The positive electrode mixture layer 1b was formed by applying a paste comprising a positive electrode active material, a conductive agent and a polymer solution to a current collector, and then drying and removing the solvent in the paste.

【0019】この正極板1における集電体1aの正極合
剤層1bに対する配置関係は、集電体1aが正極板の厚
みの中心から外側(積層電極として外側)に偏った位置
に配されている。具体的には、図1に示すように負極と
対向する面を起点とし、そこから集電体の一端部に至る
までの正極合剤の厚み(t1)と、集電体の他端部から
負極と対向する面とは反対側の面に至るまでの正極合剤
の厚み(t2)との和を正極合剤層の全体厚み(T)と
したとき、この全体厚み(T)に対して負極対向面から
2/3〜4/5の位置に集電体の一面が存在するように
埋設する。この集電体の外側には残余の1/3〜1/5
の正極合剤層が配されている。
The arrangement of the current collector 1a in the positive electrode plate 1 with respect to the positive electrode mixture layer 1b is such that the current collector 1a is arranged at a position deviated outward from the center of the thickness of the positive electrode plate (outward as a laminated electrode). I have. Specifically, as shown in FIG. 1, the thickness (t1) of the positive electrode mixture from the surface facing the negative electrode to the one end of the current collector from the starting point and the other end of the current collector When the sum of the thickness (t2) of the positive electrode mixture up to the surface opposite to the surface facing the negative electrode is defined as the total thickness (T) of the positive electrode mixture layer, the total thickness (T) is The current collector is buried so that one surface of the current collector exists at a position 2/3 to 4/5 from the negative electrode facing surface. Outside the current collector, the remaining 1/3 to 1/5
Of the positive electrode mixture layer is disposed.

【0020】さらに本発明の好ましい実施形態は、負極
と対向する面とは反対側の正極合剤面に正極集電体1a
の一面が一致した状態で埋め込まれた、いわゆる面一状
態で集電体を配することである。この構成であれば、図
2に示すように正極合剤が正極集電体1aの片面と集電
体にあけた孔部1cとに存在し、孔部1c内の合剤がこ
れに連なった片面の合剤と一体となって集電体1aを釘
止め状態に固定する。しかも孔部1c内の合剤に膨張が
生じても、その力は却って集電体1aを孔部で強く固定
するように作用して、集電体1aの合剤からの剥離は抑
えられるとともに、集電体の他面上に合剤は存在しない
ため、全ての合剤を起電反応に関与させることができ、
活物質の利用率が高まる。
Further, in a preferred embodiment of the present invention, the positive electrode current collector 1a is provided on the positive electrode mixture surface opposite to the surface facing the negative electrode.
That is, the current collector is embedded in a state in which the surfaces of the current collectors are aligned with each other. With this configuration, as shown in FIG. 2, the positive electrode mixture was present on one surface of the positive electrode current collector 1a and the hole 1c formed in the current collector, and the mixture in the hole 1c continued to this. The current collector 1a is fixed in a nailed state integrally with the mixture on one side. In addition, even if the mixture in the hole 1c expands, the force acts to firmly fix the current collector 1a in the hole, thereby preventing the current collector 1a from being separated from the mixture. Since there is no mixture on the other side of the current collector, all the mixture can be involved in the electromotive reaction,
The utilization rate of the active material increases.

【0021】このような正極は、次のようにして作成で
きる。図3は、正極合剤ペーストを正極集電体に塗着す
るための塗着装置の構成を示す模式図である。この塗着
装置は、ペーストを吐出するためのスリットギャップ1
2を有するダイノズル11と、このノズルとの間に集電
体1aが通過する間隙をおいて対向配置されたスムージ
ングノズル15から構成されている。ダイノズル11の
ギャップ12からペーストが吐出されている間隙に、ア
ルミニウムのラスメタルからなる集電体1aを下方より
上方へ通過させることで、集電体にペーストが塗着され
る。図3において、ダイノズル11は、スリットギャッ
プ12を構成する上リップ13と下リップ14を備えて
いて、下リップ14には上リップ13に比べて間隙側に
突出した突出部14aが設けられている。この突出部1
4aは、スリットギャップ12から吐出されるペースト
をその上に溜めて、下方へこぼれ落ちることなく前方へ
吐出させるためのものである。
Such a positive electrode can be prepared as follows. FIG. 3 is a schematic diagram showing a configuration of an application device for applying the positive electrode mixture paste to the positive electrode current collector. This coating apparatus has a slit gap 1 for discharging paste.
1 and a smoothing nozzle 15 opposed to the nozzle with a gap through which the current collector 1a passes. The paste is applied to the current collector by passing the current collector 1a made of aluminum lath metal upward from below in the gap where the paste is discharged from the gap 12 of the die nozzle 11. In FIG. 3, the die nozzle 11 includes an upper lip 13 and a lower lip 14 that form a slit gap 12, and the lower lip 14 is provided with a protruding portion 14 a that protrudes toward the gap as compared with the upper lip 13. . This protrusion 1
4a is for storing the paste discharged from the slit gap 12 thereon and discharging it forward without spilling down.

【0022】スムージングノズル15は、ペーストを吐
出するためのスリットギャップがなく、ペースト塗着時
に間隙を下方より上方へ向け通過する帯状の集電体1a
を案内するものである。具体的には、上方へ向け移動す
る集電体をそのリップ部に沿わせて位置規制して、ペー
スト塗着時に集電体の振れを防止するとともに、フープ
状に巻かれていた集電体の巻きぐせを緩和する。
The smoothing nozzle 15 has no slit gap for discharging the paste, and has a band-shaped current collector 1a that passes upward from the gap during paste application.
Is to guide. Specifically, the current collector moving upward is regulated along the lip thereof to prevent the current collector from swaying when applying the paste, and the current collector wound in a hoop shape. Alleviate the curl.

【0023】ペーストの塗着は、前記のようにノズル間
の間隙に、集電体1aを下方より上方へ通過させること
でなされる。ペーストは、ダイノズル11からのみ吐出
されるので、集電体のスリットギャップ12に対向した
面に吹き付けられる。孔部のない箔やシート状の集電体
を用いた場合は、当然ながらその片面のみにペーストが
塗着される。しかしここでは孔部のあるラスメタルを集
電体に用いているので、ダイノズル11のスリットギャ
ップ12から吐出されたペーストは、集電体の孔部に入
り込む。加えて集電体が移動状態にあるときには、集電
体とスムージングノズル15のリップ部15aとの間に
微少な隙間が生じていて、この隙間にペーストが入り込
み、ノズルのリップ部で案内されて移動してゆく間に平
滑化されてスムージングノズルに対向した集電体の他面
にもペーストが塗着される。
As described above, the paste is applied by passing the current collector 1a upward from below in the gap between the nozzles. Since the paste is discharged only from the die nozzle 11, the paste is sprayed on the surface of the current collector facing the slit gap 12. When a foil or sheet-like current collector having no holes is used, the paste is naturally applied to only one side thereof. However, since the lath metal having a hole is used for the current collector, the paste discharged from the slit gap 12 of the die nozzle 11 enters the hole of the current collector. In addition, when the current collector is in a moving state, a minute gap is formed between the current collector and the lip portion 15a of the smoothing nozzle 15, and the paste enters into this gap and is guided by the lip portion of the nozzle. The paste is also applied to the other surface of the current collector facing the smoothing nozzle while being smoothed while moving.

【0024】なお、集電体とスムージングノズルのリッ
プ部との間の隙間は、集電体の移動速度、ペースト塗着
時に集電体に加えられる張力等に応じて異なる。
The gap between the current collector and the lip portion of the smoothing nozzle differs depending on the moving speed of the current collector, the tension applied to the current collector during paste application, and the like.

【0025】従って、多孔性の集電体を用いた場合に
は、スリットギャップからのペーストの吐出量、ダイノ
ズルとスムージングノズルとの間の間隙量、集電体の移
動速度と方向、加えられる張力等の条件を適宜調整する
ことで、集電体の両面に同時に異なる厚さでペーストを
塗着することができる。この方法は、集電体の片面ずつ
に異なる厚さでペーストを塗着する場合に比べて、塗工
工程の簡素化と高速化がはかれる。
Therefore, when a porous current collector is used, the amount of paste discharged from the slit gap, the amount of gap between the die nozzle and the smoothing nozzle, the moving speed and direction of the current collector, the applied tension By appropriately adjusting the conditions such as the above, the paste can be simultaneously applied to both surfaces of the current collector with different thicknesses. This method simplifies and speeds up the application process as compared with the case where the paste is applied to each side of the current collector with a different thickness.

【0026】本実施形態における正極は、電池構成時に
負極に対向する正極集電体の一面側のペースト塗着厚さ
を、他面のそれよりも厚くしている。この状態は、負極
に対向する正極集電体の一面側をスリットギャップ12
に向け、ここにペーストを吐出することで達成できる。
またその好ましい状態では、正極集電体の負極と対向す
る一面側に塗着されるペーストの塗着厚み(d1)と、
他面に塗着される同ペーストの塗着厚み(d2)との比
率d1:d2が、9:1〜7:3の範囲になるように、
塗着条件が設定される。
In the positive electrode according to the present embodiment, the paste coating thickness on one side of the positive electrode current collector facing the negative electrode when the battery is constructed is made larger than that on the other side. In this state, one surface of the positive electrode current collector facing the negative electrode
This can be achieved by discharging the paste here.
In a preferable state, a coating thickness (d1) of a paste applied to one surface of the positive electrode current collector facing the negative electrode;
The ratio d1: d2 with the coating thickness (d2) of the paste applied to the other surface is in the range of 9: 1 to 7: 3,
The coating conditions are set.

【0027】ペーストの塗着が終えた正極における正極
合剤層の厚みおよび集電体に対する合剤層の比率は、乾
燥時にペースト中の有機溶媒が揮発除去されるため薄
く、小さくなり、さらに合剤層が集電体共々加圧される
ために、ペースト塗着直後の厚みとは大幅に異なる。し
かし成分が均一に分散したペーストを用いていて、塗着
された部位によって乾燥による体積収縮の程度に差はな
い。このため、完全に乾燥された状態にあれば、集電体
の表裏両面に塗着された合剤層どうしの厚みの比率は、
ペースト塗着時のそれと大差はない。また、合剤層と集
電体とはその加圧による圧縮度合いが異なることから、
加圧の前後で正極の厚み全体に占める合剤層と集電体と
の厚みの比率は異なったものとなる。
The thickness of the positive electrode mixture layer and the ratio of the mixture layer to the current collector in the positive electrode after application of the paste are thin and small because the organic solvent in the paste is volatilized and removed during drying. Since the agent layer is pressed together with the current collector, the thickness is significantly different from the thickness immediately after application of the paste. However, a paste in which the components are uniformly dispersed is used, and there is no difference in the degree of volume shrinkage due to drying depending on the portion to which the paste is applied. For this reason, if it is in a completely dried state, the ratio of the thickness of the mixture layer applied to both the front and back surfaces of the current collector is:
There is not much difference from that at the time of paste application. In addition, since the mixture layer and the current collector have different degrees of compression by pressurization,
The ratio of the thickness of the mixture layer to the thickness of the current collector occupying the entire thickness of the positive electrode before and after pressing is different.

【0028】従って、完全乾燥され、加圧を施された理
想的状態の正極では、ペースト塗着時のペーストどうし
の厚み比率と、加圧処理後の正極合剤層どうしの厚み比
率は、ほぼ一致する。
Therefore, in the completely dried and pressurized positive electrode in an ideal state, the thickness ratio between the pastes when the paste is applied and the thickness ratio between the positive electrode mixture layers after the pressure treatment are almost equal. Matches.

【0029】このように正極を理想的状態にするには、
ペーストの塗着が終えた後、長時間にわたって正極を乾
燥させ、有機溶媒を揮発除去する必要がある。しかし実
際の製造過程での長時間にわたる乾燥は、設備の大型化
と所要時間の増大を招き、コスト面から好ましくない。
そこで、適度に乾燥された状態で加圧処理が施される。
この状態では、集電体の負極対向面に塗着されたペース
トは、他面に塗着されたそれよりも厚く、乾燥の程度が
低い。このため、正極合剤層どうしの厚み比率はペース
ト塗着時の比率から変化する。従って、図4に示すよう
にペースト塗着時の集電体片面の正極合剤層の厚さ(d
1)と、他面のそれ(d2)との比率d1:d2を9:
1〜7:3の範囲に保って塗着したにもかかわらず、乾
燥、加圧後の実際の正極は、図2に示すように集電体の
一面が負極対向面とは反対面に面一状態に埋設された状
態か、あるいは図1に示すように集電体の負極対向面の
正極合剤層の厚さ(t1)と他面側のそれ(t2)との
比率が異なった状態となり、集電体は正極の負極対向面
から合剤の全体厚みの2/3〜4/5内側に入った位置
に配され、残余の1/3〜1/5の厚みの合剤層が集電
体の外側に配されて集電体は埋設された構造となる。
In order to make the positive electrode ideal as described above,
After the application of the paste is completed, it is necessary to dry the positive electrode for a long time to volatilize and remove the organic solvent. However, drying for a long time in the actual manufacturing process leads to an increase in the size of the equipment and an increase in the required time, which is not preferable in terms of cost.
Therefore, a pressure treatment is performed in an appropriately dried state.
In this state, the paste applied to the negative electrode facing surface of the current collector is thicker than that applied to the other surface, and the degree of drying is lower. Therefore, the thickness ratio between the positive electrode mixture layers changes from the ratio at the time of paste application. Therefore, as shown in FIG. 4, the thickness (d
The ratio d1: d2 of 1) to that of the other surface (d2) is 9:
Despite being coated in the range of 1 to 7: 3, the actual positive electrode after drying and pressing has a current collector faced on the opposite side to the negative electrode facing face as shown in FIG. Either the state of being buried in one state or the state where the ratio of the thickness (t1) of the positive electrode mixture layer on the negative electrode facing surface of the current collector to that of the other surface (t2) is different as shown in FIG. And the current collector is disposed at a position which is 2/3 to 4/5 of the total thickness of the mixture from the negative electrode facing surface of the positive electrode, and the remaining 1/3 to 1/5 thickness of the mixture layer is The current collector is disposed outside the current collector and has a buried structure.

【0030】負極2は、多孔性集電体2aの両面に負極
合剤層2bを形成している。集電体2aは銅箔またはニ
ッケル箔を素材としたラスメタルあるいはパンチングメ
タルよりなり、正極集電体と同様にその表面には導電性
炭素膜が施されている。そしてこの上に負極合剤ペース
トを塗布し、これを乾燥して加圧することで形成され
る。
The negative electrode 2 has a negative electrode mixture layer 2b formed on both surfaces of a porous current collector 2a. The current collector 2a is made of a lath metal or a punching metal made of a copper foil or a nickel foil, and has a surface coated with a conductive carbon film similarly to the positive electrode current collector. Then, a negative electrode mixture paste is applied thereon, and the paste is formed by drying and pressing.

【0031】セパレータ3は、電解液を吸収保持するポ
リマー、例えばフッ化ビニリデンと6フッ化プロピレン
の共重合体(P(VDF―HFP))と、これに多孔性
をもたせるための可塑剤とからフィルム状に構成されて
いる。
The separator 3 is composed of a polymer that absorbs and retains the electrolyte, for example, a copolymer of vinylidene fluoride and propylene hexafluoride (P (VDF-HFP)) and a plasticizer for imparting porosity thereto. It is configured as a film.

【0032】負極2の両側の負極合剤層2bに、それぞ
れセパレータ3を介して正極1の厚みの厚い正極合剤層
1bを対向させて積層した後、熱融着により一体化して
積層電極4を構成し、ポリマー部分から可塑剤を溶媒で
抽出除去して多孔性化する。この積層電極4を樹脂フィ
ルム主体のラミネートシート製袋状外装体に挿入後、所
定量の有機電解液を注入し、電極部分に含浸させて袋の
開口部分を熱溶着することで有機電解液電池が得られ
る。
The positive electrode mixture layer 1b having a large thickness of the positive electrode 1 is laminated on the negative electrode mixture layer 2b on both sides of the negative electrode 2 with a separator 3 interposed therebetween. The plasticizer is extracted and removed from the polymer portion with a solvent to make the polymer portion porous. After inserting the laminated electrode 4 into a bag-shaped outer package made of a laminate sheet mainly composed of a resin film, a predetermined amount of an organic electrolyte is injected, the electrode is impregnated, and the opening of the bag is heat-sealed to form an organic electrolyte battery. Is obtained.

【0033】正極合剤に含まれる正極活物質としては、
LiCoO2、LiNiO2、LiMn24など充放電に
よりリチウムイオンを可逆的に出し入れできるリチウム
含有酸化物が用いられる。同様に負極合剤層の負極活物
質としては、充放電によりリチウムイオンを可逆的に出
し入れできる炭素材料、なかでも炭素質メソフェーズ粒
体を炭素化および黒鉛化して得られた球状黒鉛が好適に
用いられる。
As the positive electrode active material contained in the positive electrode mixture,
Lithium-containing oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 , which can reversibly insert and remove lithium ions by charge and discharge, are used. Similarly, as the negative electrode active material of the negative electrode mixture layer, a carbon material capable of reversibly taking lithium ions in and out by charging and discharging, among which spheroidal graphite obtained by carbonizing and graphitizing carbonaceous mesophase particles are preferably used. Can be

【0034】また、多孔性ポリマーに吸収保持される有
機電解液には、LiClO4、LiBF4、LiPF6
LiCF3SO3などの溶質とエチレンカーボネート、プ
ロピレンカーボネート、エチルメチルカーボネートなど
の有機溶媒との組み合わせなど、公知の有機電解質電池
に用いるものとして知られているもののなかから適宜選
択して用いることができる。
The organic electrolyte absorbed and retained by the porous polymer includes LiClO 4 , LiBF 4 , LiPF 6 ,
A combination of a solute such as LiCF 3 SO 3 and an organic solvent such as ethylene carbonate, propylene carbonate, and ethyl methyl carbonate can be appropriately selected and used from those known for use in known organic electrolyte batteries. .

【0035】[0035]

【実施例】本発明の一実施例を図面を用いて詳細に説明
する。
An embodiment of the present invention will be described in detail with reference to the drawings.

【0036】(実施例1)次に示す方法で有機電解質電
池を作成した。
(Example 1) An organic electrolyte battery was prepared by the following method.

【0037】正極合剤ペーストは、フッ化ビニリデンと
6フッ化プロピレンとの共重合体P(VDF−HFP)
70gをアセトン1000gに溶解した溶液とコバルト
酸リチウムLiCoO21000g、アセチレンブラッ
ク50gおよび可塑剤としてのジブチルフタレート(D
BP)100gを混合して調製した。このときペースト
中に占める溶媒のアセトンは、約45重量%となる。
The positive electrode mixture paste is a copolymer P (VDF-HFP) of vinylidene fluoride and propylene hexafluoride.
A solution of 70 g in 1000 g of acetone, 1000 g of lithium cobaltate LiCoO 2 , 50 g of acetylene black and dibutyl phthalate (D
(BP) 100 g. At this time, acetone as a solvent in the paste is about 45% by weight.

【0038】この正極合剤が塗着される正極集電体に
は、表面に導電性炭素膜が施されたアルミニウムのラス
メタルを用いた。なお、正極集電体の表面に塗着する導
電性炭素塗料は、アセチレンブラック30gと、ポリフ
ッ化ビニリデンのN―メチルピロリドン溶液(12重量
%)を分散混合することで調整した。この混合物を厚さ
40μmのアルミニウムのラスメタルに塗着した後、8
0℃以上の温度でN―メチルピロリドンを乾燥除去する
ことで、導電性炭素膜を形成した。
As the positive electrode current collector to which the positive electrode mixture was applied, a lath metal of aluminum having a surface coated with a conductive carbon film was used. The conductive carbon paint applied to the surface of the positive electrode current collector was prepared by dispersing and mixing 30 g of acetylene black and an N-methylpyrrolidone solution of polyvinylidene fluoride (12% by weight). This mixture was applied to a 40 μm thick aluminum lath metal,
By drying and removing N-methylpyrrolidone at a temperature of 0 ° C. or higher, a conductive carbon film was formed.

【0039】次にこの導電性炭素膜を形成した正極集電
体に、図3に示す装置を用いて正極合剤ペーストを塗着
した。
Next, a positive electrode mixture paste was applied to the positive electrode current collector having the conductive carbon film formed thereon using the apparatus shown in FIG.

【0040】この実施例では、ダイノズル11の上リッ
プ13とスムージングノズル15との間に、集電体が通
過する570μmの間隙(ノズルギャップ)が設けられ
ている。また下リップ14は、その突出部14aが上リ
ップ13に対して間隙側に200μmだけ突出した状態
で配置されている。正極合剤ペーストの塗着は、スリッ
トギャップ12からペーストを吐出させ、下方から上方
へ移動する集電体に吹き付けて行った。スリットギャッ
プ12からのペーストの吐出量、その速度、集電体の移
動速度およびその張力を調整し、集電体のダイノズル1
1に対向する面にペーストを450μmの厚みで塗着
し、スムージングノズル15と対向する面には50μm
の厚みで塗着した。
In this embodiment, a gap (nozzle gap) of 570 μm through which the current collector passes is provided between the upper lip 13 of the die nozzle 11 and the smoothing nozzle 15. Further, the lower lip 14 is arranged in a state in which the protruding portion 14a protrudes from the upper lip 13 toward the gap by 200 μm. The positive electrode mixture paste was applied by discharging the paste from the slit gap 12 and spraying the paste on the current collector moving upward from below. The discharge amount of the paste from the slit gap 12, its speed, the moving speed of the current collector and its tension are adjusted, and the die nozzle 1 of the current collector is adjusted.
1. A paste having a thickness of 450 μm is applied to the surface facing 1 and 50 μm to the surface facing the smoothing nozzle 15.
With a thickness of

【0041】ダイノズル11に対向する面を電池構成時
に負極に対向する面とすることで、負極に対向する面に
塗着されたペーストの厚みと、他面に塗着されたペース
トの厚みとの比率は9:1に保たれる。
By making the surface facing the die nozzle 11 the surface facing the negative electrode when the battery is constructed, the thickness of the paste applied to the surface facing the negative electrode and the thickness of the paste applied to the other surface can be reduced. The ratio is kept at 9: 1.

【0042】このペースト塗着直後の正極の全体厚み
は、ペースト部分の厚み500μmに集電体の厚み40
μmを加えた540μmである。前記塗着装置のノズル
ギャップは570μmに設定されていて、得られる正極
の全体厚みとノズルギャップとの間に30μmの差があ
るが、これはペースト塗着時に集電体がノズルギャップ
を通過するために必要な間隙である。ペーストが塗着さ
れた正極は、その後ペースト中の溶媒を揮発除去させる
乾燥工程を経ることで、ペースト塗着直後の540μm
から250μm程度まで薄くなる。さらに加圧工程を経
ることで、その厚みは150μm程度になる。これを切
断することで、30mm×60mmの大きさのシート状
正極が得られる。
The total thickness of the positive electrode immediately after application of the paste is such that the thickness of the current collector is reduced to 500 μm at the paste portion.
540 μm with μm added. The nozzle gap of the coating device is set to 570 μm, and there is a difference of 30 μm between the total thickness of the obtained positive electrode and the nozzle gap. This is because the current collector passes through the nozzle gap during paste coating. It is necessary for the gap. The positive electrode to which the paste has been applied passes through a drying step for volatilizing and removing the solvent in the paste.
To about 250 μm. Further, through a pressing step, the thickness becomes about 150 μm. By cutting this, a sheet-like positive electrode having a size of 30 mm × 60 mm is obtained.

【0043】負極は、負極合剤ペーストとしてP(VD
F−HFP)40gをアセトン300gに溶解した溶液
に、炭素質メソフェーズ粒体を炭素化および黒鉛化して
得られた平均粒径6μmの球状黒鉛(大阪ガス製)25
0g、気相成長炭素繊維を黒鉛化した繊維(大阪ガス
製)60g、DBP60gを混合して調整したものを用
意した。集電体には銅のラスメタルを用意して、その表
面に前記正極と同様に導電性炭素膜を形成した。この銅
のラスメタルの両面に負極合剤ペーストを同一厚さで塗
着、乾燥後、ロールプレスにより加圧した。こうして厚
さ約300μm、大きさが30mm×60mmの負極シ
ートを得た。
For the negative electrode, P (VD
F-HFP) in a solution of 40 g of acetone in 300 g of acetone, carbonized mesophase granules were carbonized and graphitized, and spherical graphite having an average particle size of 6 μm (manufactured by Osaka Gas) 25
A mixture prepared by mixing 0 g, 60 g of graphitized vapor-grown carbon fiber (manufactured by Osaka Gas), and 60 g of DBP was prepared. A copper lath metal was prepared as a current collector, and a conductive carbon film was formed on the surface of the current collector in the same manner as the positive electrode. A negative electrode mixture paste was applied to both surfaces of the copper lath metal at the same thickness, dried, and then pressed by a roll press. Thus, a negative electrode sheet having a thickness of about 300 μm and a size of 30 mm × 60 mm was obtained.

【0044】セパレータは次のようにして作成した。P
(VDF−HFP)30gをアセトン300gに溶解
し、これにDBP30gを添加して混合溶液を得た。こ
の溶液をガラス板上に塗布した後、乾燥工程でアセトン
を揮発除去して厚さ約20μmのフィルムとし、これを
30mm×60mmの大きさに切断した。
The separator was prepared as follows. P
30 g of (VDF-HFP) was dissolved in 300 g of acetone, and 30 g of DBP was added thereto to obtain a mixed solution. After applying this solution on a glass plate, acetone was volatilized and removed in a drying step to form a film having a thickness of about 20 μm, which was cut into a size of 30 mm × 60 mm.

【0045】前記シート状負極の両面に、それぞれフィ
ルム状セパレータを介してシート状正極の厚みの厚い合
剤層を対向積層し、120℃に加熱された二本の加圧ロ
ーラ間を通過させて加熱加圧することにより、融着一体
化して積層電極を作成した。この積層電極をジエチルエ
ーテル中に浸漬することで、ポリマー部分からDBPを
抽出した後、50℃で真空乾燥した。DBPの抽出除去
により、ポリマー部分は多孔性となる。この積層電極
を、樹脂フィルム主体のラミネートシートで作られた袋
状外装体中に挿入した。ついで電解液として、エチレン
カーボネートとエチルメチルカーボネートとの体積比
1:3の混合溶媒に6フッ化リン酸リチウム(LiPF
6)を1.5モル/lの割合で溶解したもの3.5gを注
入した。注液後0.5気圧の減圧下で電解液の浸透を行
い、その後大気圧に戻して外装体開口部を熱シールによ
り封止した。さらに45℃で20分加熱して電極部分へ
の電解液の回りをよくして充放電を施し、電池を放電可
能な状態とした。この電池を実施例1の電池とする。
On both surfaces of the sheet-shaped negative electrode, a mixture layer having a large thickness of the sheet-shaped positive electrode was laminated opposite to each other via a film-shaped separator, and the mixture was passed between two pressure rollers heated to 120 ° C. By applying heat and pressure, a fusion electrode was integrated to form a laminated electrode. The DBP was extracted from the polymer portion by immersing this laminated electrode in diethyl ether, and then vacuum dried at 50 ° C. Upon extraction and removal of the DBP, the polymer portion becomes porous. This laminated electrode was inserted into a bag-shaped outer package made of a laminate sheet mainly composed of a resin film. Then, as an electrolytic solution, lithium hexafluorophosphate (LiPF) was mixed in a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 3.
3.5 g of 6 ) dissolved at a rate of 1.5 mol / l was injected. After the injection, the electrolyte solution was permeated under a reduced pressure of 0.5 atm, then returned to the atmospheric pressure, and the opening of the exterior body was sealed with a heat seal. Further, the battery was heated at 45 ° C. for 20 minutes to improve the circulation of the electrolytic solution to the electrode portion and charge / discharge was performed, so that the battery was put in a dischargeable state. This battery is referred to as the battery of Example 1.

【0046】(実施例2)正極合剤ペーストの塗着に当
たって、図3に示す塗着装置のノズルギャップ、集電体
の移動速度、張力等を調整し、ダイノズル11に対向す
る集電体の一面に400μmの厚みでペーストを塗着
し、他面には100μmの厚みでペーストを塗着した。
ここで電池構成時に負極と対向する面に塗着されたペー
ストの厚みと、他面に塗着されたペーストの厚みとの比
率は8:2に保たれて塗着されたことになる。
Example 2 In applying the positive electrode mixture paste, the nozzle gap, the moving speed and the tension of the current collector of the coating device shown in FIG. The paste was applied on one side with a thickness of 400 μm, and the paste was applied on the other side with a thickness of 100 μm.
Here, when the battery was constructed, the ratio of the thickness of the paste applied to the surface facing the negative electrode to the thickness of the paste applied to the other surface was maintained at 8: 2, and the application was performed.

【0047】この正極を用い、その他の構成および製造
過程は実施例1と同様にして電池を構成した。得られた
電池を実施例2の電池とする。
Using this positive electrode, a battery was formed in the same manner as in Example 1 except for the other structures and manufacturing steps. The obtained battery is referred to as a battery of Example 2.

【0048】(実施例3)同様にノズルギャップ等を調
整して、正極合剤ペーストをノズル11に対向する集電
体の一面に350μmの厚みで塗着し、他面には150
μmの厚みで塗着した。ここで電池構成時に負極と対向
する面に塗着されたペーストの厚みと、他面に塗着され
たペーストの厚みとの比率は7:3に保たれて塗着され
たことになる。
(Embodiment 3) Similarly, by adjusting the nozzle gap and the like, the positive electrode mixture paste is applied to one surface of the current collector facing the nozzle 11 with a thickness of 350 μm, and
It was applied with a thickness of μm. Here, when the battery was configured, the ratio of the thickness of the paste applied to the surface facing the negative electrode to the thickness of the paste applied to the other surface was maintained at 7: 3, and the application was performed.

【0049】この正極を用い、その他の構成および製造
過程は実施例1と同様にして電池を構成した。得られた
電池を実施例3の電池とする。
Using this positive electrode, a battery was formed in the same manner as in Example 1 except for the other structures and manufacturing steps. The obtained battery is referred to as a battery of Example 3.

【0050】(比較例1)正極合剤ペーストの塗着に当
たって、ペースト塗着装置のノズルギャップその他を調
整し、ノズル11に対向する集電体の一面に300μm
の厚みでペーストを塗着し、他面には200μmの厚み
で塗着した。ここで電池構成時に負極と対向する面に塗
着されたペーストの厚みと、他面に塗着されたペースト
の厚みとの比率は6:4に保たれて塗着されたことにな
る。この正極を用い、その他の構成および製造過程は実
施例1と同様にして電池を構成した。得られた電池を比
較例1の電池とする。
(Comparative Example 1) At the time of coating the positive electrode mixture paste, the nozzle gap and the like of the paste coating device were adjusted, and 300 μm was applied to one surface of the current collector facing the nozzle 11.
And the other surface was coated with a thickness of 200 μm. Here, when the battery was constructed, the ratio of the thickness of the paste applied to the surface facing the negative electrode to the thickness of the paste applied to the other surface was maintained at 6: 4, and the application was performed. Using this positive electrode, a battery was configured in the same manner as in Example 1 except for the other configuration and the manufacturing process. The obtained battery is referred to as a battery of Comparative Example 1.

【0051】(比較例2)正極合剤ペーストをノズル1
1に対向する集電体の一面に500μmの厚みで塗着
し、他面にはペーストを塗着しなかった。ここで電池構
成時に負極と対向する面に塗着されたペーストの厚み
と、他面にそれとの比率は10:0に保たれている。な
おこの正極は、ペーストの塗着に当たって、集電体の片
面、すなわちスムージングノズル15と対向する面に樹
脂フィルムを貼付して多孔部分を塞ぎ、塗着終了後樹脂
フィルムをはがすことで作成した。この正極を用い、そ
の他の構成および製造過程は実施例1と同様にして電池
を構成した。得られた電池を比較例2の電池とする。
(Comparative Example 2) The positive electrode mixture paste was
One side of the current collector facing No. 1 was coated with a thickness of 500 μm, and the other side was not coated with the paste. Here, the ratio of the thickness of the paste applied on the surface facing the negative electrode to the other surface at the time of battery construction is maintained at 10: 0. The positive electrode was formed by applying a resin film to one surface of the current collector, that is, a surface facing the smoothing nozzle 15 to cover the porous portion, and peeling the resin film after completion of the application. Using this positive electrode, a battery was configured in the same manner as in Example 1 except for the other configuration and the manufacturing process. The obtained battery is referred to as a battery of Comparative Example 2.

【0052】(比較例3)正極集電体に厚み40μmの
無孔のアルミニウム箔を用い、これに正極合剤ペースト
を塗着した。ペーストの塗着に当たっては、塗着装置を
用いて集電体の左右両面に正極合剤ペーストを吐出させ
ることで行った。ペースト塗着厚みは、電池構成時に負
極と対向する一面のそれが450μm、他面のそれが5
0μmとして、両者の厚み比率は9:1に保った。この
正極を用い、その他の構成および製造過程は実施例1と
同様にして電池を構成した。得られた電池を比較例3の
電池とする。
Comparative Example 3 A non-porous aluminum foil having a thickness of 40 μm was used as a positive electrode current collector, and a positive electrode mixture paste was applied thereto. The paste was applied by discharging the positive electrode mixture paste on the left and right surfaces of the current collector using an application device. The paste coating thickness was 450 μm on one surface facing the negative electrode when the battery was constructed, and 5 μm on the other surface.
The thickness ratio between the two was kept at 9: 1 with 0 μm. Using this positive electrode, a battery was configured in the same manner as in Example 1 except for the other configuration and the manufacturing process. The obtained battery is referred to as a battery of Comparative Example 3.

【0053】得られた実施例1〜3、比較例1〜3の各
電池を100個づつ作成し、個々の電池について放電容
量を測定し、活物質の利用率を算出した。放電容量の測
定は、充電電流40mA(0.2C)で4.1Vまで充
電した後、放電電流400mA(1C)で3.0Vまで
放電して行った。
Each of the obtained batteries of Examples 1 to 3 and Comparative Examples 1 to 3 was prepared by 100, and the discharge capacity of each battery was measured to calculate the utilization rate of the active material. The measurement of the discharge capacity was performed by charging the battery to 4.1 V at a charging current of 40 mA (0.2 C), and then discharging the battery to 3.0 V at a discharging current of 400 mA (1 C).

【0054】また、同様の充放電条件で500回充放電
を繰り返し、その後電池を分解して正極合剤と集電体と
の接合状態を確認し、剥離の発生個数を把握した。
The charge / discharge was repeated 500 times under the same charge / discharge conditions. Thereafter, the battery was disassembled to check the bonding state between the positive electrode mixture and the current collector, and the number of peelings was determined.

【0055】実施例1〜3、比較例1〜3の各電池の平
均放電容量、活物質の利用率および剥離の発生状況を
(表1)に示す。
Table 1 shows the average discharge capacities, the utilization rates of the active materials, and the occurrences of peeling of the batteries of Examples 1 to 3 and Comparative Examples 1 to 3.

【0056】[0056]

【表1】 [Table 1]

【0057】(表1)から明らかなように、実施例1〜
3および比較例1は、正極集電体が正極合剤層の内部に
配された構造であるので、集電体と合剤との密着性は高
い。このため充放電に伴う正極活物質の膨張、収縮によ
って、両者の密着性が大きく損なわれることはなく、集
電体と合剤との剥離の発生頻度は低い。
As apparent from (Table 1), Examples 1 to
3 and Comparative Example 1 have a structure in which the positive electrode current collector is disposed inside the positive electrode mixture layer, and thus have high adhesion between the current collector and the mixture. Therefore, the adhesiveness between the two does not significantly deteriorate due to expansion and contraction of the positive electrode active material due to charge and discharge, and the frequency of peeling between the current collector and the mixture is low.

【0058】比較例2は、多孔性の集電体が正極合剤層
の他面に配された構造であるので、集電体は合剤と接す
る面のみで保持されることから、剥離が最も多く発生し
た。
Comparative Example 2 has a structure in which the porous current collector is disposed on the other surface of the positive electrode mixture layer, so that the current collector is held only on the surface in contact with the mixture, so that the peeling is not performed. Most frequently occurred.

【0059】比較例3は、実施例1と同じ位置に正極集
電体を配している。しかし、孔のない集電体を用いてい
るので、集電体一面の正極合剤層と他面の正極合剤層と
は集電体孔部を通じての密着連結状態は得られない。こ
のため多孔性集電体を用いた実施例1に比べて剥離の頻
度は高い。
In Comparative Example 3, a positive electrode current collector is provided at the same position as in Example 1. However, since a current collector having no holes is used, the positive electrode mixture layer on one surface of the current collector and the positive electrode mixture layer on the other surface cannot be in a tightly connected state through the current collector holes. For this reason, the frequency of peeling is higher than in Example 1 using a porous current collector.

【0060】正極活物質の利用率は、負極に対向した一
面の正極合剤層が、正極合剤層の全体厚みに占める割合
が大きいほど高くできる。このことから比較例1では、
負極と対向しない他面側の合剤層が他に比べて厚く、こ
の部分は集電体によってリチウムイオンの移動が阻害さ
れることが顕著になり、利用率は低下する。また、正極
の全体厚みを同じにし、同一厚み中で同じ位置に正極集
電体を配した場合でも、集電体構造がリチウムイオンの
左右への移動に大きく影響を与え、多孔性集電体を用い
た実施例1は、孔のない集電体を用いた比較例3よりも
高い利用率が得られる。
The utilization rate of the positive electrode active material can be increased as the ratio of the positive electrode mixture layer on one side facing the negative electrode to the entire thickness of the positive electrode mixture layer increases. From this, in Comparative Example 1,
The mixture layer on the other side that does not face the negative electrode is thicker than the others, and in this part, the current collector significantly inhibits the movement of lithium ions, and the utilization rate decreases. Even when the overall thickness of the positive electrode is the same and the positive electrode current collector is disposed at the same position in the same thickness, the current collector structure greatly affects the movement of lithium ions to the left and right, and the porous current collector In Example 1 using, a higher utilization factor is obtained than in Comparative Example 3 using a current collector without holes.

【0061】このように多孔性集電体を用い、これを負
極と対向しない正極合剤面に面一状態で配するか、また
は負極に対向した一面の正極合剤ペーストの厚みと、他
面のペースト厚みとの比率が9:1〜7:3の範囲にな
るようペーストを塗着したシート状正極では、集電体の
正極合剤層からの剥離を抑制できるとともに、起電反応
に関与する正極活物質を増やして、その利用率を向上さ
せることができる。
As described above, the porous current collector is used, and the current collector is disposed on the positive electrode mixture surface not facing the negative electrode, or the thickness of the positive electrode mixture paste on one surface facing the negative electrode is different from that on the other surface. In the sheet-like positive electrode coated with the paste so that the ratio to the paste thickness is in the range of 9: 1 to 7: 3, peeling of the current collector from the positive electrode mixture layer can be suppressed, and the positive electrode participates in the electromotive reaction. By increasing the number of positive electrode active materials to be used, the utilization factor can be improved.

【0062】[0062]

【発明の効果】以上のように、正極合剤に対する正極集
電体の配置構成を改良することで、集電体の正極合剤層
からの剥離に起因した集電不良が生じなく、正極活物質
の利用率を改善した優れた特性の有機電解質電池を提供
することができる。
As described above, by improving the arrangement of the positive electrode current collector with respect to the positive electrode mixture, poor current collection due to peeling of the current collector from the positive electrode mixture layer does not occur and the positive electrode active It is possible to provide an organic electrolyte battery having excellent characteristics in which the utilization rate of a substance is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態での電池構成を示す断面図FIG. 1 is a cross-sectional view illustrating a battery configuration according to an embodiment of the present invention.

【図2】本発明の最良な形態での電池構成を示す断面図FIG. 2 is a sectional view showing a battery configuration according to the best mode of the present invention.

【図3】ペースト塗着装置の構成を示す模式図FIG. 3 is a schematic view showing a configuration of a paste coating device.

【図4】ペースト塗着時の正極を示す断面図FIG. 4 is a cross-sectional view showing a positive electrode during paste application.

【図5】従来の電池の構成を示す断面図FIG. 5 is a cross-sectional view showing a configuration of a conventional battery.

【符号の説明】[Explanation of symbols]

1 正極板 1a 正極集電体 1b 正極合剤層 2 負極板 2a 負極集電体 2b 負極合剤層 3 セパレータ 4 積層電極 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode collector 1b Positive electrode mixture layer 2 Negative electrode plate 2a Negative electrode collector 2b Negative electrode mixture layer 3 Separator 4 Laminated electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大畠 積 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 清水 恭重 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H014 AA04 BB01 BB05 BB08 EE03 EE08 HH01 HH06 5H017 AA03 AS01 AS10 BB06 BB08 BB14 CC01 CC05 EE05 HH01 HH03 HH05 5H029 AJ01 AJ03 AK03 AL07 AM03 AM05 AM16 BJ04 BJ12 CJ02 CJ03 CJ22 DJ07 EJ01 HJ04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor: Osamu Ohata, 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 5H014 AA04 BB01 BB05 BB08 EE03 EE08 HH01 HH06 5H017 AA03 AS01 AS10 BB06 BB08 BB14 CC01 CC05 EE05 HH01 HH03 HH05 5H029 AJ01 AJ03 AK03 AL07 AM03 AM05 AM16 BJ04 BJ12 CJJ CJC

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔性の集電体の両側に有機電解液を吸
収保持するポリマーを含む合剤層を形成したシート状負
極の両面に、有機電解液を吸収保持するポリマーからな
る多孔性のフィルム状セパレータを介して、多孔性の集
電体に前記ポリマーを含むシート状合剤層を形成した正
極を対向させてこれらを積層一体化した有機電解質電池
であって、 正極の多孔性集電体は、負極との対向面とは反対側の合
剤面に面一状態で配されるか、または対向面を起点とし
てそこから正極合剤層の全体厚みの2/3〜4/5の位
置に埋設され、且つこの集電体の外側に残余の1/3〜
1/5の厚みの正極合剤層を配していることを特徴とす
る有機電解質電池。
1. A sheet-shaped negative electrode in which a mixture layer containing a polymer absorbing and retaining an organic electrolyte is formed on both sides of a porous current collector. An organic electrolyte battery in which a positive electrode in which a sheet-shaped mixture layer containing the polymer is formed is opposed to a porous current collector via a film-like separator, and these are laminated and integrated. The body is arranged flush with the surface of the mixture opposite to the surface facing the negative electrode, or 2/3 to 4/5 of the total thickness of the positive electrode mixture layer starting from the facing surface. Buried at the position and outside the current collector,
An organic electrolyte battery comprising a positive electrode mixture layer having a thickness of 1/5.
【請求項2】 正極の多孔性集電体は、アルミニウムま
たはアルミニウムコーティング材を素材としたパンチン
グメタルあるいはラスメタルからなる請求項1記載の有
機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein the porous current collector of the positive electrode is made of punched metal or lath metal made of aluminum or an aluminum coating material.
【請求項3】 多孔性の集電体の両側に有機電解液を吸
収保持するポリマーを含む合剤層を形成したシート状負
極の両面に、有機電解液を吸収保持するポリマーからな
る多孔性のフィルム状セパレータを介して、多孔性の集
電体に前記ポリマーを含むシート状合剤層を形成した正
極を対向させ、これらを積層一体化する有機電解質電池
の製造法であって、 前記正極は、電池構成の際に負極に対向する多孔性集電
体の一面に塗着された正極合剤ペーストの厚みと、他面
に塗着された正極合剤ペーストの厚みとの比率が9:1
〜7:3の範囲となるよう同ペーストを集電体の両面に
塗着し、ついで乾燥、加圧することを特徴とする有機電
解質電池の製造法。
3. A sheet-shaped negative electrode in which a mixture layer containing a polymer absorbing and retaining an organic electrolyte is formed on both sides of a porous current collector, and a porous layer made of a polymer absorbing and retaining an organic electrolyte is formed on both surfaces of the negative electrode. A method for manufacturing an organic electrolyte battery, in which a positive electrode having a sheet-shaped mixture layer containing the polymer formed thereon is opposed to a porous current collector via a film-like separator, and these are laminated and integrated, wherein the positive electrode is The ratio of the thickness of the positive electrode mixture paste applied to one surface of the porous current collector facing the negative electrode to the thickness of the positive electrode mixture paste applied to the other surface in the battery configuration is 9: 1.
7: A method for producing an organic electrolyte battery, comprising applying the paste to both sides of a current collector so as to be in the range of 7: 3, followed by drying and pressing.
【請求項4】 正極の多孔性集電体は、アルミニウムま
たはアルミニウムコーティング材を素材としたパンチン
グメタルあるいはラスメタルからなり、その厚さが25
〜60μmである請求項3記載の有機電解質電池の製造
法。
4. The porous current collector of the positive electrode is made of punched metal or lath metal made of aluminum or aluminum coating material, and has a thickness of 25%.
The method for producing an organic electrolyte battery according to claim 3, wherein the thickness is from 60 to 60 m.
JP10368907A 1998-12-25 1998-12-25 Organic electrolyte battery and manufacture of the same Pending JP2000195501A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10368907A JP2000195501A (en) 1998-12-25 1998-12-25 Organic electrolyte battery and manufacture of the same
EP99103670A EP1014466B1 (en) 1998-12-25 1999-02-25 Solid state polymer batteries and method for manufacturing the same
DE69911901T DE69911901T2 (en) 1998-12-25 1999-02-25 Solid-state battery with polymer electrolytes and method of manufacture
CA002263080A CA2263080C (en) 1998-12-25 1999-02-26 Solid state polymer batteries and method for manufacturing the same
KR1019990008265A KR100299991B1 (en) 1998-12-25 1999-03-12 Solid state polymer batteries and method for manufacturing the same
CNB991045343A CN1159786C (en) 1998-12-25 1999-03-31 Solid polymer cell and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10368907A JP2000195501A (en) 1998-12-25 1998-12-25 Organic electrolyte battery and manufacture of the same

Publications (1)

Publication Number Publication Date
JP2000195501A true JP2000195501A (en) 2000-07-14

Family

ID=18493062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10368907A Pending JP2000195501A (en) 1998-12-25 1998-12-25 Organic electrolyte battery and manufacture of the same

Country Status (6)

Country Link
EP (1) EP1014466B1 (en)
JP (1) JP2000195501A (en)
KR (1) KR100299991B1 (en)
CN (1) CN1159786C (en)
CA (1) CA2263080C (en)
DE (1) DE69911901T2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108646A (en) * 2009-11-16 2011-06-02 Samsung Sdi Co Ltd Electrode assembly, and secondary battery
US20110177378A1 (en) * 2010-01-20 2011-07-21 Man-Seok Han Electrode assemblage and rechargeable battery using the same
JP2013232295A (en) * 2012-04-27 2013-11-14 Furukawa Sky Kk Positive electrode for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using positive electrode for nonaqueous electrolyte secondary battery
KR101357137B1 (en) 2011-11-29 2014-02-03 엘에스엠트론 주식회사 Electrode assembly and electric energy storage device having the same
JP2016514891A (en) * 2013-05-08 2016-05-23 エルジー・ケム・リミテッド ELECTRODE STRUCTURE INCLUDING INSULATION LAYER, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE CONTAINING THE ELECTRODE
JP2019533289A (en) * 2017-04-06 2019-11-14 エルジー・ケム・リミテッド Method for manufacturing lithium secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091573B2 (en) * 2007-07-17 2012-12-05 富士重工業株式会社 Electricity storage device
JP5220510B2 (en) * 2008-08-06 2013-06-26 富士重工業株式会社 Electricity storage device
JP5509715B2 (en) * 2009-08-05 2014-06-04 セイコーエプソン株式会社 Lithium battery electrode and lithium battery
JP6580680B2 (en) 2014-12-08 2019-09-25 エルジー・ケム・リミテッド Secondary battery with improved output characteristics
CN106903748B (en) * 2017-02-24 2018-08-24 广州市丰华生物工程有限公司 A kind of card punch for acquiring Dried blood spots sample

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587253A (en) * 1993-03-05 1996-12-24 Bell Communications Research, Inc. Low resistance rechargeable lithium-ion battery
WO1997008769A1 (en) * 1995-08-25 1997-03-06 Valence Technology, Inc. Current collector having electrode material on two sides for use in a laminate battery and method of making a battery
EP1078410A1 (en) * 1998-05-15 2001-02-28 Valence Technology, Inc. Grid placement in lithium ion bi-cell counter electrodes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108646A (en) * 2009-11-16 2011-06-02 Samsung Sdi Co Ltd Electrode assembly, and secondary battery
US9269984B2 (en) 2009-11-16 2016-02-23 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery using the same
US20110177378A1 (en) * 2010-01-20 2011-07-21 Man-Seok Han Electrode assemblage and rechargeable battery using the same
KR101135492B1 (en) 2010-01-20 2012-04-13 삼성에스디아이 주식회사 Electrode assembly, and rechargeable battery using thereof
US9553302B2 (en) * 2010-01-20 2017-01-24 Samsung Sdi Co., Ltd. Electrode assemblage and rechargeable battery using the same
KR101357137B1 (en) 2011-11-29 2014-02-03 엘에스엠트론 주식회사 Electrode assembly and electric energy storage device having the same
JP2013232295A (en) * 2012-04-27 2013-11-14 Furukawa Sky Kk Positive electrode for nonaqueous electrolyte secondary battery, manufacturing method therefor, and nonaqueous electrolyte secondary battery using positive electrode for nonaqueous electrolyte secondary battery
JP2016514891A (en) * 2013-05-08 2016-05-23 エルジー・ケム・リミテッド ELECTRODE STRUCTURE INCLUDING INSULATION LAYER, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE CONTAINING THE ELECTRODE
JP2019533289A (en) * 2017-04-06 2019-11-14 エルジー・ケム・リミテッド Method for manufacturing lithium secondary battery
JP7039778B2 (en) 2017-04-06 2022-03-23 エルジー エナジー ソリューション リミテッド Manufacturing method of lithium secondary battery

Also Published As

Publication number Publication date
DE69911901D1 (en) 2003-11-13
DE69911901T2 (en) 2004-08-05
EP1014466A1 (en) 2000-06-28
CN1258938A (en) 2000-07-05
KR100299991B1 (en) 2001-09-26
EP1014466B1 (en) 2003-10-08
KR20000047375A (en) 2000-07-25
CN1159786C (en) 2004-07-28
CA2263080C (en) 2004-08-10
CA2263080A1 (en) 2000-06-25

Similar Documents

Publication Publication Date Title
JP3303694B2 (en) Lithium ion secondary battery and method of manufacturing the same
US6232014B1 (en) Lithium ion secondary battery and manufacture thereof
KR100279071B1 (en) Lithium ion secondary battery
US6423447B1 (en) Non-aqueous electrolyte secondary battery and method of production of the same
US7833656B2 (en) Electrochemical device and method for producing the same
JP3225864B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP3223824B2 (en) Lithium ion secondary battery
JP4008508B2 (en) Method for producing lithium ion secondary battery
JP2001085065A (en) Electrochemical device
JP3729112B2 (en) Solid electrolyte battery
JP2000195501A (en) Organic electrolyte battery and manufacture of the same
JP2000208129A (en) Lithium secondary battery
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JPH10326628A (en) Battery and its manufacture
JPH11307084A (en) Organic electrolyte battery
JP2000149905A (en) Solid electrolyte battery
JP2000133274A (en) Polymer lithium secondary battery
JPH11121043A (en) Manufacture of polymer secondary battery
JPH10214639A (en) Manufacture of battery
US6376125B2 (en) Lithium ion secondary battery and process for producing the same
JP2003297337A (en) Electrode structure, its manufacturing method, and secondary battery
JP3598186B2 (en) Separator, secondary battery employing the same, and method of manufacturing the same
JPH11144738A (en) Polymer electrolyte secondary battery
JP2000353510A (en) Positive electrode material for polymer lithium secondary battery and negative electrode material for polymer lithium secondary battery
JPH11214035A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918