JP2000192188A - High strength cold rolled steel sheet excellent in resistance to secondary working brittleness and deep drawability - Google Patents

High strength cold rolled steel sheet excellent in resistance to secondary working brittleness and deep drawability

Info

Publication number
JP2000192188A
JP2000192188A JP37240098A JP37240098A JP2000192188A JP 2000192188 A JP2000192188 A JP 2000192188A JP 37240098 A JP37240098 A JP 37240098A JP 37240098 A JP37240098 A JP 37240098A JP 2000192188 A JP2000192188 A JP 2000192188A
Authority
JP
Japan
Prior art keywords
steel sheet
resistance
amount
added
secondary working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37240098A
Other languages
Japanese (ja)
Inventor
Masaaki Miura
正明 三浦
Ichiro Tsukatani
一郎 塚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP37240098A priority Critical patent/JP2000192188A/en
Publication of JP2000192188A publication Critical patent/JP2000192188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet for deep drawing, combining drawability, strength, and resistance to secondary working brittleness and used for automobile members or the like. SOLUTION: This steel sheet has a composition containing, by mass, 0.0010-0.0040% C, <=1.0% Si, 0.5-2.0% Mn, 0.03-0.12% P, <=0.02% S, 0.01-0.10% Al, <=0.004% N, 0.015-0.060% Ti, 0.005-0.040% Nb, and 0.0003-0.0020% B, also containing respective elements satisfying inequalities C<= Ti-(48/14)N+(48/93) Nb}/10, 0.05×Mn-0.02<=P<=0.1×Mn+0.02, and 0.5×Ti-0.01<=Nb<=0.5×Ti+0.02, and having the balance Fe with inevitable impurities. Each symbol of element in the inequalities represents its content (%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、例えば自動車用部
材の素材鋼板として用いられる深絞り用高強度冷延鋼板
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength cold-rolled steel sheet for deep drawing used, for example, as a material steel sheet for automobile parts.

【0002】[0002]

【従来の技術】かつて、深絞り用高強度鋼板はP添加ア
ルミキルド鋼をバッチ焼鈍することにより製造されてい
たが、生産性および加工性向上の観点から、近年は極低
炭素IF鋼にP,Mn,Si等の固溶強化元素を添加し
た所謂IFハイテンでの製造が主流になっている。しか
しながら、そもそも極低炭素IF鋼はTi,Nb等の炭
窒化物形成元素により固溶C,Nを固定しているため粒
界が脆弱であり、さらにIFハイテンで多用される強化
元素であるPは粒界に偏析して脆化を促進する元素であ
るため、耐二次加工脆性に劣るという欠点を有してい
る。このような事情から、IFハイテンの製造において
は、Ti,Nbに加えてBを添加し、さらにP,Mn,
Si,Cr等の強化元素を複合添加する方法が採られる
ことが多い。
2. Description of the Related Art In the past, high-strength steel sheets for deep drawing were manufactured by batch annealing P-added aluminum killed steel. Production using a so-called IF high tensile steel to which a solid solution strengthening element such as Mn or Si is added has become mainstream. However, in the first place, ultra-low carbon IF steel has a weak grain boundary because solid solution C and N are fixed by carbonitride forming elements such as Ti and Nb, and P is a strengthening element frequently used in IF high tensile steel. Is an element that segregates at the grain boundaries and promotes embrittlement, and thus has a drawback of being inferior in secondary working embrittlement resistance. Under these circumstances, in the production of IF hyten, B is added in addition to Ti and Nb, and P, Mn,
In many cases, a method in which reinforcing elements such as Si and Cr are combined and added is employed.

【0003】例えば、特開平5−214487号公報に
はTi,Nb,B添加鋼をベースに、耐二次加工脆性に
悪影響を及ぼすPに比較してMnを多量に添加すること
により、耐二次加工脆性に優れた深絞り用高強度鋼板を
製造する技術が開示されている。しかしながら、Mnの
添加量が多いことから、高温焼鈍による深絞り性向上が
困難であり、またNb添加量も多くコストアップが避け
られない。また、特開平2−149624号公報および
特開平5−263184号公報にはTi,Nb,B添加
鋼にMn,Pを複合添加することによる深絞り用高強度
鋼板の製造方法が開示されている。しかしながら本発明
者らの検討によると、Ti,Nb,B添加高強度IF鋼
において深絞り性と耐二次加工脆性を両立させるために
は、Ti,Nb量に対するC量の適正化およびMn,P
バランスの適正化が必要である。
[0003] For example, Japanese Patent Application Laid-Open No. 5-214487 discloses that, based on a steel containing Ti, Nb, and B, a large amount of Mn is added as compared with P which adversely affects the resistance to secondary working embrittlement. A technique for manufacturing a high-strength steel sheet for deep drawing excellent in secondary working brittleness is disclosed. However, since the added amount of Mn is large, it is difficult to improve the deep drawability by high-temperature annealing, and the added amount of Nb is too large to increase the cost. JP-A-2-149624 and JP-A-5-263184 disclose a method for producing a high-strength steel sheet for deep drawing by adding Mn and P to Ti, Nb, and B-added steel in a complex manner. . However, according to the study of the present inventors, in order to achieve both the deep drawability and the resistance to secondary working embrittlement in the Ti, Nb, and B-added high-strength IF steel, the optimization of the amount of C with respect to the amounts of Ti and Nb and Mn, P
It is necessary to optimize the balance.

【0004】一方、C,Nに対する当量以下のTi添
加、ないしはTi,Nb添加鋼を高温焼鈍することによ
るNbCの溶解により焼付硬化性鋼板を得る技術が提案
されており、固溶Cの存在から耐二次加工脆性も良好で
あると考えられる。しかしながら、焼付硬化性を現出さ
せるほどの量の固溶Cは、調質圧延により導入される転
位への集積により時効劣化を惹起し、深絞り性の劣化を
招く恐れがある。
On the other hand, there has been proposed a technique for obtaining a bake-hardenable steel sheet by dissolving NbC by adding Ti in an amount equal to or less than that of C and N or by annealing Ti and Nb-added steel at a high temperature. It is considered that the secondary work brittleness resistance is also good. However, solid solution C in such an amount that bake hardenability appears may cause aging deterioration due to accumulation in dislocations introduced by temper rolling, which may lead to deterioration of deep drawability.

【0005】[0005]

【発明が解決しようとする課題】強化能に優れたPは耐
二次加工脆性への悪影響が大きく、Mnについても、P
に比較すれば軽微であるが、やはり耐二次加工脆性を阻
害する元素であり、また、強化量あたりの延性・絞り性
の劣化が大きく、深絞り用鋼板への添加量は制限され
る。一方、Siは耐二次加工脆性への弊害が比較的少な
い強化元素であるが、多量の添加は冷延鋼板での化成処
理性を劣化させ、また溶融亜鉛めっき製造時の不めっき
の原因となるので好ましくない。これらの元素の他にC
r,Mo等の強化元素も存在するが、添加量あたりの強
化量が小さく、高価であることから、補助的な強化元素
の域を出ないのが実状である。このように、深絞り用高
強度鋼板を製造するために添加する強化元素にはそれぞ
れ長所・短所があり、理想的な添加バランスは明確でな
い。一方、数ppmの添加により耐二次加工脆性を改善
する元素であるBに関しても、その効果は20ppm程
度の添加で飽和し、さらなる添加により深絞り性の劣化
がみられるので、強化元素の添加量が増した場合には、
耐二次加工脆性の改善が不十分となる。
[0006] P, which is excellent in strengthening ability, has a large adverse effect on the brittleness resistance to secondary working.
Although it is a small element as compared with, it is also an element that inhibits secondary work brittleness resistance, and also has a large deterioration in ductility and drawability per amount of reinforcement, and the amount of addition to the steel sheet for deep drawing is limited. On the other hand, Si is a strengthening element that has relatively little adverse effect on the brittleness resistance to secondary working, but the addition of a large amount degrades the chemical conversion property of cold-rolled steel sheets and causes non-plating during hot-dip galvanizing production. Is not preferred. In addition to these elements,
There are strengthening elements such as r and Mo. However, since the amount of strengthening per added amount is small and expensive, the fact is that they do not fall into the range of auxiliary strengthening elements. As described above, the strengthening elements added to produce a high-strength steel sheet for deep drawing each have advantages and disadvantages, and the ideal balance of addition is not clear. On the other hand, the effect of B, which is an element that improves the resistance to secondary working embrittlement by the addition of several ppm, is saturated by the addition of about 20 ppm, and the deep drawability is deteriorated by the further addition. If the amount increases,
The improvement in secondary work brittleness resistance is insufficient.

【0006】本発明はこれらの諸問題を解決し、自動車
用部材等に用いられる、絞り性、強度および耐二次加工
脆性を兼備した深絞り用高強度冷延鋼板を提供するもの
である。
The present invention solves these problems and provides a high-strength cold-rolled steel sheet for deep drawing, which has both drawability, strength, and resistance to secondary working brittleness, and is used for automobile parts and the like.

【0007】[0007]

【課題を解決するための手段】本発明者らはかかる課題
を解決するために鋭意研究を行った結果、以下の知見を
得てこの発明を完成させるに至った。すなわち、深絞り
性、強度および耐二次加工脆性を同時に満足させるため
に、鋼組成として適正なTi,Nb量のもとでのC量の
調整、Mn,P量のバランスの調整およびB添加を行う
ことが本発明鋼板の基本原理である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to solve such problems, and as a result, have obtained the following findings and completed the present invention. That is, in order to simultaneously satisfy the deep drawability, the strength, and the resistance to secondary working embrittlement, the adjustment of the C content under the appropriate Ti and Nb amounts as the steel composition, the adjustment of the balance of the Mn and P amounts, and the addition of B Is the basic principle of the steel sheet of the present invention.

【0008】極低炭素IF鋼において一般的なTi単独
添加鋼は、軟鋼の強度レベルではコスト・特性面から有
利であるといえるが、高強度IF鋼、特にP添加鋼にお
いては、N,Cを固定するために充分なTiを添加する
と、リン化物の析出量の増加を通じて深絞り性を阻害す
る要因となり好ましくない。一方、リン化物を形成せず
固溶元素を固定する元素としてはNbが考えられ、Ti
の作用の一部を代替させることによりTi添加量の低減
が可能となり、リン化物による悪影響を軽減できる。さ
らに焼鈍板粒径の微細化およびTiに比較して弱い炭化
物形成能による固溶C残存効果とが相まって、耐二次加
工脆性の改善に大きく寄与する。但し、Nb添加量が過
剰になると再結晶温度の上昇等の理由により加工性劣化
を招くので、総量およびTiに対する添加比率に適正範
囲が存在し、それはTi量の概ね1/2であることが明
らかとなった。
[0008] It can be said that the Ti-only steel generally used in the ultra-low carbon IF steel is advantageous in terms of cost and characteristics at the strength level of mild steel. However, in the high-strength IF steel, particularly in the P-added steel, N, C If Ti is added sufficiently to fix the content, the drawability of deep drawability is impaired through an increase in the amount of phosphide precipitated, which is not preferable. On the other hand, Nb is considered as an element that does not form a phosphide and fixes a solid solution element.
By substituting a part of the action of the above, the amount of Ti added can be reduced, and the adverse effect of the phosphide can be reduced. Furthermore, the refinement of the grain size of the annealed sheet and the effect of the solid solution C remaining due to the ability to form a carbide that is weaker than that of Ti contribute significantly to the improvement in the brittleness resistance in secondary working. However, an excessive amount of Nb causes deterioration of workability due to an increase in the recrystallization temperature or the like. Therefore, there is an appropriate range in the total amount and the ratio of addition to Ti, which is approximately 1/2 of the Ti amount. It became clear.

【0009】極低炭素IF鋼のC量は、深絞り性を改善
するという観点からは減じるほど好ましいとされている
が、耐二次加工脆性に対しては鋼中の若干量の固溶Cが
寄与するため、少なくとも総量で10ppm程度のCが
必要である。ただし、C量が多くなると炭化物析出の駆
動力が増し、却って耐二次加工脆性確保に必要な固溶C
の残存が図りにくくなるとともに、微細炭化物量の増加
にともなって延性の劣化を生じるので、総C量は炭化物
形成に寄与するTi,Nb量に応じて最適化する必要が
ある。本発明鋼のようにMnを多量に含有する場合には
Sは専らMnSとなりTiとの化合物は形成し難いた
め、窒化物を除いたTiとNbが炭化物を形成し、この
場合、鋼中のC含有量が原子当量比でこれらの元素の4
割を越えると耐二次加工脆性が劣化することを見出し
た。
It is said that the carbon content of the ultra-low carbon IF steel is preferably as small as possible from the viewpoint of improving the deep drawability, but a small amount of solid solution C in the steel is required for the resistance to secondary working embrittlement. Contributes at least, a total amount of C of about 10 ppm is required. However, when the amount of C increases, the driving force of carbide precipitation increases, and on the contrary, the solid solution C necessary for securing the secondary work brittleness resistance is obtained.
It is difficult to achieve the remaining, and the ductility is deteriorated with the increase in the amount of fine carbides. Therefore, the total C amount needs to be optimized according to the Ti and Nb amounts that contribute to carbide formation. When Mn is contained in a large amount as in the steel of the present invention, S is exclusively MnS and a compound with Ti is difficult to form, so that Ti and Nb excluding nitride form carbides. The C content is 4% of these elements in atomic equivalent ratio.
It has been found that when it exceeds a certain value, the resistance to secondary working brittleness deteriorates.

【0010】次に、強化元素であるMn,P、さらにB
添加の技術思想を以下に述べる。強化を専らMnに頼っ
た場合、r値向上に寄与する熱延板粒径微細化の効果が
期待でき、特にBとの複合添加時にその効果は顕著とな
る。しかし、Bを添加した場合には再結晶温度の上昇が
生ずるため、できるだけ高温での焼鈍が望まれるが、M
n添加によるAc3変態点降下のため、焼鈍中の変態温度
通過により延性が劣化してしまい、高加工性高強度鋼板
の製造には不向きである。一方、P主体の強化鋼におい
ては、Ti存在時にリン化物の析出を招きやすく、深絞
り性を阻害する要因となる。B添加はリン化物の粒界析
出を抑制し、さらに熱延板微細化効果も得られることか
ら好都合ではあるが、そのためにはかなり大量のB添加
が必要であり、再結晶温度上昇による加工性劣化の弊害
の方が顕著となってしまう。ところが、最適なMn−P
バランス、すなわち本発明のTi−Nb添加超極低C鋼
においては、P量に対してMn量をおおよそ10〜20
倍含有させた場合、B添加との相乗効果により、きわめ
て優れた加工性および耐二次加工脆性を確保しつつ、高
強度化が図れるのである。これは前述のMn,P単独強
化時のB複合添加の弊害が減少し、Mnとの相乗効果に
よる少量のB添加での熱延板微細化効果およびリン化物
析出抑制効果が最大限に発揮されるためである。このよ
うに、加工性、耐二次加工脆性改善の観点から添加する
Bの存在時に、Mn−Pの添加バランスを最適化するこ
とにより、きわめて優れた特性を現出可能なことが判明
した。
Next, strengthening elements Mn, P, and B
The technical concept of the addition is described below. When Mn is exclusively used for strengthening, an effect of reducing the grain size of the hot-rolled sheet, which contributes to the improvement of the r value, can be expected, and the effect becomes remarkable especially when B and B are added in combination. However, when B is added, the recrystallization temperature rises. Therefore, it is desirable to perform annealing at as high a temperature as possible.
Due to the lowering of the Ac 3 transformation point due to the addition of n, the ductility deteriorates due to the passage of the transformation temperature during annealing, which is not suitable for the production of a high-workability, high-strength steel sheet. On the other hand, in a strengthened steel mainly composed of P, precipitation of phosphide easily occurs in the presence of Ti, which is a factor that hinders deep drawability. The addition of B is advantageous because it suppresses grain boundary precipitation of phosphide and also has the effect of making the hot-rolled sheet finer, but for that purpose a considerably large amount of B is required, and the workability due to the increase in the recrystallization temperature is increased. The adverse effects of the degradation become more pronounced. However, the optimal Mn-P
The balance, that is, in the Ti-Nb-added ultra-low C steel of the present invention, the Mn content is approximately 10 to 20 with respect to the P content.
When it is doubled, the synergistic effect with the addition of B makes it possible to achieve high strength while securing extremely excellent workability and secondary work brittleness resistance. This reduces the adverse effects of the addition of B compound when Mn and P alone are strengthened as described above, and maximizes the effect of adding a small amount of B by the synergistic effect with Mn to refine the hot-rolled sheet and suppress phosphide precipitation. That's because. Thus, it was found that by optimizing the Mn-P addition balance in the presence of B added from the viewpoint of improving workability and secondary work brittleness resistance, extremely excellent properties can be exhibited.

【0011】以上の知見に基づいて完成された本発明の
深絞り用高強度冷延鋼板は、質量%で、 C : 0.0010≦C ≦0.0040、 Si: Si ≦1.0、 Mn: 0.5 ≦Mn ≦2.0、 P : 0.03 ≦P ≦0.12、 S : S ≦0.02、 Al: 0.01 ≦Al ≦0.10、 N : N ≦0.004、 Ti: 0.015 ≦Ti ≦0.060、 Nb: 0.005 ≦Nb ≦0.040、 B : 0.0003≦B ≦0.0020 かつ、下記式(1) 、(2) および(3) を満足する各元素を
含有し、残部がFe及び不可避的不純物よりなるもので
ある。なお、式中の元素記号は、その元素の含有%を意
味する。 C≦{Ti−(48/14)N+(48/93)Nb}/10……式(1) 0.05×Mn−0.02≦P≦0.1×Mn+0.02 ……式(2) 0.5×Ti−0.01≦Nb≦0.5×Ti+0.02 ……式(3)
[0011] The high-strength cold-rolled steel sheet for deep drawing of the present invention completed on the basis of the above findings is, by mass%, C: 0.0010 ≦ C ≦ 0.0040, Si: Si ≦ 1.0, and Mn. : 0.5 ≦ Mn ≦ 2.0, P: 0.03 ≦ P ≦ 0.12, S: S ≦ 0.02, Al: 0.01 ≦ Al ≦ 0.10, N: N ≦ 0.004 , Ti: 0.015 ≦ Ti ≦ 0.060, Nb: 0.005 ≦ Nb ≦ 0.040, B: 0.0003 ≦ B ≦ 0.0020 and the following formulas (1), (2) and (3) ), And the balance consists of Fe and inevitable impurities. The symbol of the element in the formula means the content% of the element. C ≦ {Ti− (48/14) N + (48/93) Nb} / 10 Formula (1) 0.05 × Mn−0.02 ≦ P ≦ 0.1 × Mn + 0.02 Formula (2) ) 0.5 × Ti−0.01 ≦ Nb ≦ 0.5 × Ti + 0.02 (3)

【0012】以下、本発明鋼板の成分限定理由を説明す
る。単位は質量%である。 C:0.0010≦C≦0.0040 深絞り性を改善するためには、冷延・焼鈍時に固溶状態
として存在するCをできるだけ低減することが望まし
く、そのために後述のTi・Nb等の元素を添加する。
これらの添加により形成される炭化物量の増大が延性の
劣化を招くこと、および総C量の増加により炭化物析出
の駆動力が増し、耐二次加工脆性の確保に必要な最低限
の固溶Cの残存が困難となるので、C量の上限は0.0
040%かつ下記式(1) にて規定される量以下とする。
一方、耐二次加工脆性を確保するためには数ppmの固
溶Cが存在しなければならず、そのために総C量は少な
くとも0.0010%必要であるので、C量の下限は
0.0010%である。 C≦{Ti−(48/14)N+(48/93)Nb}/10……式(1)
Hereinafter, the reasons for limiting the components of the steel sheet of the present invention will be described. The unit is mass%. C: 0.0010 ≦ C ≦ 0.0040 In order to improve the deep drawability, it is desirable to reduce C existing as a solid solution state during cold rolling and annealing as much as possible. Add elements.
An increase in the amount of carbides formed by these additions leads to deterioration of ductility, and an increase in the total amount of carbon increases the driving force for carbide precipitation, and minimizes the amount of solid solution C necessary to secure secondary work brittleness resistance. Is difficult to remain, the upper limit of the amount of C is 0.0
040% and the amount specified by the following formula (1).
On the other hand, in order to ensure secondary work brittleness resistance, a few ppm of solid solution C must be present, and therefore, the total C content is required to be at least 0.0010%. 0010%. C ≦ {Ti− (48/14) N + (48/93) Nb} / 10 Formula (1)

【0013】Si:Si≦1.0 Siは深絞り性、耐二次加工脆性を阻害することなく高
強度化が可能な元素であるが、過剰の添加は、冷延鋼板
の化成処理性、また溶融亜鉛めっき時の濡れ性等を悪化
させるので、上限を1.0%とする。
Si: Si ≦ 1.0 Si is an element capable of increasing the strength without impairing the deep drawability and the resistance to secondary working embrittlement. Further, since the wettability during hot-dip galvanizing is deteriorated, the upper limit is made 1.0%.

【0014】Mn:0.5≦Mn≦2.0 Mnは強化を目的として0.5%以上添加するが、添加
量の増加と共に強化への寄与が減少し、加工性の低下を
招くことになる。またAc3変態温度を低下させ、高温焼
鈍による材質改善を阻害するので、その上限を2.0%
とする。
Mn: 0.5 ≦ Mn ≦ 2.0 Mn is added in an amount of 0.5% or more for the purpose of strengthening. However, as the amount of Mn increases, the contribution to strengthening decreases, leading to a decrease in workability. Become. Further, since the Ac 3 transformation temperature is lowered and the material improvement by high-temperature annealing is hindered, the upper limit is 2.0%.
And

【0015】P:0.03≦P≦0.12 Pは強化のために0.03%以上の添加が必要である
が、過剰な添加は耐二次加工脆性の劣化を招くため、上
限を0.12%以下とする必要がある。さらに、深絞り
性と耐二次加工脆性を良好とするためには、Mn量との
間で下記式(2) に示す範囲とする必要がある。 0.05×Mn−0.02≦P≦0.1×Mn+0.02 ……式(2)
P: 0.03 ≦ P ≦ 0.12 P needs to be added in an amount of 0.03% or more for strengthening. However, excessive addition causes degradation of secondary work brittleness resistance. Must be 0.12% or less. Further, in order to improve the deep drawability and the resistance to secondary working embrittlement, it is necessary to set the range between the Mn content and the value represented by the following formula (2). 0.05 × Mn−0.02 ≦ P ≦ 0.1 × Mn + 0.02 Equation (2)

【0016】S:S≦0.02 SはMnを多量に含有する鋼板内で硫化物系介在物とな
るが、圧延後伸張した介在物は鋼板の延性劣化の原因と
なるので、上限を0.02%とする。
S: S ≦ 0.02 S is a sulfide-based inclusion in a steel sheet containing a large amount of Mn, but the inclusion expanded after rolling causes deterioration of the ductility of the steel sheet. 0.02%.

【0017】Al:0.01≦Al≦0.10 Alは脱酸のために添加し、0.01%以上が必要であ
るが、0.10%以上添加してもその効果が飽和するた
め、下限を0.01%、上限を0.10%とする。
Al: 0.01 ≦ Al ≦ 0.10 Al is added for deoxidation and needs to be added in an amount of 0.01% or more. However, even if added in an amount of 0.10% or more, the effect is saturated. , The lower limit is 0.01%, and the upper limit is 0.10%.

【0018】N:N≦0.004 NはTi添加鋼中ではTiと結合してTiNを形成する
が、TiNは加工性劣化の原因となるためできるだけ低
減することが望ましく、その上限を0.004%とす
る。
N: N ≦ 0.004 N combines with Ti in Ti-added steel to form TiN. However, since TiN causes deterioration of workability, it is desirable to reduce TiN as much as possible. 004%.

【0019】Ti:0.015≦Ti≦0.060 Nb:0.005≦Nb≦0.040 深絞り性の劣化を招く固溶N,C低減のため、Tiを少
なくとも0.015%、Nbを少なくとも0.005%
添加することが必要である。一方、過剰な添加は鋼板の
特性劣化を招くので、Tiの上限は0.060%、Nb
の上限は0.040%とする必要がある。さらに、これ
ら固溶元素低減効果を専らTiにより現出させようとす
ると、P存在下ではFeTiPの析出により深絞り性の
劣化を招き、一方過剰なNbの添加は再結晶温度上昇に
より延性、深絞り性の劣化を招く。これらおよび耐二次
加工脆性を改善する観点から、Ti,Nbの含有量は下
記式(3) を満足することが必要である。 0.5×Ti−0.01≦Nb≦0.5×Ti+0.02 ……式(3)
Ti: 0.015 ≦ Ti ≦ 0.060 Nb: 0.005 ≦ Nb ≦ 0.040 At least 0.015% of Ti and Nb to reduce solid solution N and C which cause deterioration of deep drawability. At least 0.005%
It is necessary to add. On the other hand, excessive addition causes deterioration of the properties of the steel sheet.
Must be 0.040%. Further, if the effect of reducing the solute elements is to be exhibited solely by Ti, in the presence of P, precipitation of FeTiP causes deterioration of deep drawability. On the other hand, excessive addition of Nb increases ductility and depth due to a rise in recrystallization temperature. This causes deterioration of the drawability. From these viewpoints and from the viewpoint of improving the resistance to secondary working brittleness, the contents of Ti and Nb need to satisfy the following expression (3). 0.5 × Ti−0.01 ≦ Nb ≦ 0.5 × Ti + 0.02 (3)

【0020】B:0.0003≦B≦0.0020 Bは耐二次加工脆性および深絞り性改善のため0.00
03%以上添加する。しかし0.0020%を超えて添
加してもその効果は飽和するため、添加範囲を0.00
03%〜0.0020%とする。
B: 0.0003 ≦ B ≦ 0.0020 B is 0.00% for improving secondary work brittleness and deep drawability.
Add at least 03%. However, even if added over 0.0020%, the effect is saturated.
03% to 0.0020%.

【0021】本発明の冷延鋼板は、上記成分のほか、残
部実質的にFeで形成される。また、上記成分系よりな
る冷延鋼板の製造法は常法に従えばよく、焼鈍はバッチ
焼鈍、連続焼鈍の如何を問わない。また、本発明の冷延
鋼板は、深絞り用高強度溶融亜鉛めっき鋼板等の素材鋼
板として好適であり、インライン焼鈍方式の溶融亜鉛め
っき、合金化溶融亜鉛めっきを施しても良い。また、本
発明の冷延鋼板の表面に、電気メッキおよび各種化成処
理を施しても、本発明の特長を損ねるものではない。
The cold-rolled steel sheet of the present invention is substantially formed of Fe in addition to the above components. The method for producing a cold-rolled steel sheet comprising the above-described components may be in accordance with a conventional method, and the annealing may be any of batch annealing and continuous annealing. Further, the cold-rolled steel sheet of the present invention is suitable as a material steel sheet such as a high-strength hot-dip galvanized steel sheet for deep drawing, and may be subjected to in-line annealing hot-dip galvanizing or alloyed hot-dip galvanizing. Further, even if the surface of the cold rolled steel sheet of the present invention is subjected to electroplating and various chemical conversion treatments, the features of the present invention are not spoiled.

【0022】[0022]

【実施例】〔実施例1〕表1に示す成分からなる鋼を常
法により鋳造した後、仕上温度890℃で3.2mm厚
に熱間圧延後、30℃/sで冷却し、600℃で巻取
後、酸洗、75%の圧下率で冷延を行い、さらに830
℃×60秒の条件にて焼鈍を行い、伸び率0.8%の調
質圧延を施した。その後JIS5号試験片による引張試
験、r値測定および延性脆性遷移温度(DBTT)の測
定を行った。
EXAMPLES Example 1 A steel having the components shown in Table 1 was cast by a conventional method, hot-rolled to a thickness of 3.2 mm at a finishing temperature of 890 ° C., cooled at 30 ° C./s, and cooled to 600 ° C. After picking up, pickling and cold rolling at a rolling reduction of 75% were carried out.
Annealing was performed under the conditions of ℃ 60 seconds, and temper rolling at an elongation of 0.8% was performed. Thereafter, a tensile test using a JIS No. 5 test piece, measurement of an r value, and measurement of a ductile brittle transition temperature (DBTT) were performed.

【0023】r値は、圧延方向に対して0,45,90
度方向に採取したJIS5号引張試験片の10%変形時
の板幅歪みと板厚歪みの対数比をそれぞれr0,r4
5,r90として下記式(4) により求めた。 r=(1/4)r0+(1/2)r45+(1/4)r90 ……(4) 延性脆性遷移温度(DBTT)は、ブランクを絞り比
2.5で25mm径のカップに成形し、頂角30゜の円
錐ポンチを1.5tの加重で開口部より圧下したときの
破壊形態を各温度で調査して求めた。
The r value is 0, 45, 90 with respect to the rolling direction.
The logarithmic ratio of the sheet width distortion and the sheet thickness distortion at the time of 10% deformation of the JIS No. 5 tensile test specimen taken in the degree direction was r0, r4, respectively.
5, r90 was determined by the following equation (4). r = (1/4) r0 + (1/2) r45 + (1/4) r90 (4) The ductile brittle transition temperature (DBTT) is obtained by molding a blank into a 25 mm diameter cup at a drawing ratio of 2.5. The fracture mode when a conical punch having a vertex angle of 30 ° was pressed down from the opening with a load of 1.5 t was determined at each temperature.

【0024】これらの調査結果を表1に併せて示す。な
お、表1中、「Nb下限」、「Nb上限」の値は、前記
式(3) の下限値(%)、上限値(%)を示す。また、表
中の下線した値は発明範囲外(「Nb下限」、「Nb上
限」の場合は、Nb含有量が下限値未満あるいは上限値
超)であることを示す。
The results of these investigations are also shown in Table 1. In Table 1, the values of “Nb lower limit” and “Nb upper limit” indicate the lower limit (%) and the upper limit (%) of the formula (3). The underlined values in the table indicate that the Nb content is outside the range of the invention (in the case of “Nb lower limit” and “Nb upper limit”, the Nb content is less than the lower limit or exceeds the upper limit).

【0025】[0025]

【表1】 [Table 1]

【0026】表1より、本発明の成分範囲を外れた試料
について、Ti量の少ないNo. 1及び6において、強度
を勘案した場合のr値が劣化している。またNb量の少
ないNo. 3,5では延性脆性遷移温度が上昇している。
一方、Tiまたは/およびNb添加量が過剰なNo. 1
0,15,16,19,20については、いずれもEl
の劣化が見られ、r値も低下している。これら以外の本
発明例については、良好な強度延性バランス、r値およ
び延性脆性遷移温度を示している。
From Table 1, it can be seen that, for samples out of the component range of the present invention, the r values of Nos. 1 and 6 with small amounts of Ti in consideration of the strength are deteriorated. In Nos. 3 and 5 where the Nb content is small, the ductile brittle transition temperature is increased.
On the other hand, No. 1 with an excessive amount of Ti and / or Nb added
0, 15, 16, 19 and 20 are all El.
, And the r value is also reduced. Other examples of the present invention show good strength-ductility balance, r-value and ductile brittle transition temperature.

【0027】〔実施例2〕表2に示す成分からなる鋼を
常法により鋳造した後、仕上温度900℃で3.2mm
厚に熱間圧延後20℃/sで冷却し、580℃で巻取
後、酸洗、75%の圧下率で冷延を行い、さらに850
℃×60秒の条件にて焼鈍を行い、伸び率0.8%の調
質圧延を施した。その後JIS5号試験片による引張試
験、r値測定および延性脆性遷移温度(DBTT)の測
定を行った。各測定方法は前述同様である。結果を表2
に併せて示す。なお、表2中、「C上限」の値は、前記
式(1)の上限値(%)を示す。また、表中の下線した値
は発明範囲外(「C上限」の場合は、C含有量が上限値
超)であることを示す。
Example 2 After a steel having the components shown in Table 2 was cast by a conventional method, a finishing temperature of 900 ° C. was 3.2 mm.
After hot rolling to a thickness, cooling at 20 ° C / s, winding at 580 ° C, pickling, cold rolling at a reduction of 75%, and further 850
Annealing was performed under the conditions of ℃ 60 seconds, and temper rolling at an elongation of 0.8% was performed. Thereafter, a tensile test using a JIS No. 5 test piece, measurement of an r value, and measurement of a ductile brittle transition temperature (DBTT) were performed. Each measuring method is the same as described above. Table 2 shows the results
Are shown together. In Table 2, the value of "C upper limit" indicates the upper limit (%) of the above formula (1). The underlined values in the table indicate that the C content is outside the range of the invention (in the case of "C upper limit", the C content exceeds the upper limit value).

【0028】[0028]

【表2】 [Table 2]

【0029】表2より、総C量の不足している試料No.
22〜24では延性脆性遷移温度が上昇している。ま
た、有効Ti,Nb量に対してC量が過剰であるNo. 2
1,26,31,32,35,36では、延性脆性遷移
温度の上昇とともに機械的性質の劣化も見られる。これ
ら以外の本発明鋼については、良好な機械的性質、r値
および延性脆性遷移温度を示す。
From Table 2, it can be seen that the sample Nos.
In Nos. 22 to 24, the ductile brittle transition temperature increases. No. 2 in which the amount of C is excessive with respect to the amounts of effective Ti and Nb.
In Nos. 1, 26, 31, 32, 35, and 36, the mechanical properties are also deteriorated with an increase in the ductile brittle transition temperature. Other steels of the invention exhibit good mechanical properties, r-values and ductile brittle transition temperatures.

【0030】〔実施例3〕表3に示す成分からなる鋼を
常法により鋳造した後、仕上温度880℃で3.2mm
厚に熱間圧延後40℃/sで冷却し、540℃で巻取
後、酸洗、75%の圧下率で冷延を行い、さらに860
℃×60秒の条件にて焼鈍を行い、伸び率0.5%の調
質圧延を施した。その後JIS5号試験片による引張試
験、r値測定および延性脆性遷移温度の測定を行った。
各測定方法は前述同様である。結果を表3に併せて示
す。なお、表3中、「P下限」、「P上限」の値は、前
記式(2)の下限値(%)、上限値(%)を示す。また、
表中の下線した値は発明範囲外(「P下限」、「P上
限」の場合は、P含有量が下限値未満あるいは上限値
超)であることを示す。
Example 3 After a steel having the components shown in Table 3 was cast by a conventional method, a finishing temperature of 880 ° C. was 3.2 mm.
After hot rolling to a thickness, cooling at 40 ° C / s, winding at 540 ° C, pickling, cold rolling at a rolling reduction of 75%, and further 860
Annealing was carried out under the conditions of ° C. × 60 seconds, and temper rolling at an elongation of 0.5% was performed. Thereafter, a tensile test, a measurement of an r value, and a measurement of a ductile brittle transition temperature were performed using a JIS No. 5 test piece.
Each measuring method is the same as described above. The results are shown in Table 3. In Table 3, the values of “P lower limit” and “P upper limit” indicate the lower limit (%) and the upper limit (%) of the formula (2). Also,
The underlined values in the table indicate that the P content is outside the range of the invention (in the case of “P lower limit” and “P upper limit”, the P content is less than the lower limit or exceeds the upper limit).

【0031】[0031]

【表3】 [Table 3]

【0032】表3より、試料No. 39,40,53は
P,Mnの添加量が不足しており、高強度鋼板となって
いない。さらに、No. 53については、P,Mnを所定
量含有した鋼種と異なり、B添加によりr値が劣化して
いることが、No. 39,40との比較で明らかである。
またNo. 39〜52のB無添加鋼は全般に機械的性質が
優れず、延性脆性遷移温度も高くなっている。一方、B
添加鋼であるNo. 53〜66においても、Mn,P添加
量が過剰なNo. 58,59,66およびMn,P添加バ
ランスに問題のあるNo. 56,61,63,65につい
ては、機械的性質または耐二次加工脆性の劣化が生じて
いる。これら以外の本発明例については、所定量のM
n,P含有時にB添加の複合効果が現れており、耐二次
加工脆性を満足しつつ、加工性も良好なものとなってい
る。
From Table 3, it can be seen that Samples Nos. 39, 40 and 53 lack the added amounts of P and Mn, and are not high strength steel sheets. Furthermore, it is clear from the comparison with Nos. 39 and 40 that the r-value of No. 53 is different from the steel type containing a predetermined amount of P and Mn, and the r value is deteriorated by the addition of B.
In addition, the B-free steels of Nos. 39 to 52 generally do not have excellent mechanical properties and have a high ductile brittle transition temperature. On the other hand, B
Also in Nos. 53 to 66, which are added steels, Nos. 58, 59, and 66 with excessive amounts of Mn and P additions and Nos. 56, 61, 63, and 65 with a problem in Mn and P addition balance are mechanically Of the mechanical properties or the resistance to secondary working brittleness. For other examples of the present invention, a predetermined amount of M
When n and P are contained, the combined effect of the addition of B appears, and the workability is also good while satisfying the secondary work brittleness resistance.

【0033】[0033]

【発明の効果】本発明の高強度冷延鋼板によれば、耐二
次加工脆性および深絞り性に優れるため、プレス成形用
高強度冷延鋼板として好適であり、自動車用内外板等、
加工性に対する要求が厳しく、かつ軽量化のために強度
も要求される工業分野における素材鋼板として最適であ
る。
According to the high-strength cold-rolled steel sheet of the present invention, since it has excellent secondary work brittleness resistance and deep drawability, it is suitable as a high-strength cold-rolled steel sheet for press forming.
It is most suitable as a raw steel sheet in the industrial field where the demand for workability is severe and strength is also required for weight reduction.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C : 0.0010≦C ≦0.0040、 Si: Si ≦1.0、 Mn: 0.5 ≦Mn ≦2.0、 P : 0.03 ≦P ≦0.12、 S : S ≦0.02、 Al: 0.01 ≦Al ≦0.10、 N : N ≦0.004、 Ti: 0.015 ≦Ti ≦0.060、 Nb: 0.005 ≦Nb ≦0.040、 B : 0.0003≦B ≦0.0020 かつ、下記式(1) 、(2) および(3) を満足する各元素を
含有し、残部がFe及び不可避的不純物よりなる耐二次
加工脆性および深絞り性に優れた高強度冷延鋼板。 C≦{Ti−(48/14)N+(48/93)Nb}/10……式(1) 0.05×Mn−0.02≦P≦0.1×Mn+0.02 ……式(2) 0.5×Ti−0.01≦Nb≦0.5×Ti+0.02 ……式(3)
1. In mass%, C: 0.0010 ≦ C ≦ 0.0040, Si: Si ≦ 1.0, Mn: 0.5 ≦ Mn ≦ 2.0, P: 0.03 ≦ P ≦ 0 .12, S: S ≦ 0.02, Al: 0.01 ≦ Al ≦ 0.10, N: N ≦ 0.004, Ti: 0.015 ≦ Ti ≦ 0.060, Nb: 0.005 ≦ Nb ≦ 0.040, B: 0.0003 ≦ B ≦ 0.0020, and contains each element satisfying the following formulas (1), (2) and (3), with the balance being Fe and unavoidable impurities. High strength cold rolled steel sheet with excellent secondary work brittleness and deep drawability. C ≦ {Ti− (48/14) N + (48/93) Nb} / 10 Formula (1) 0.05 × Mn−0.02 ≦ P ≦ 0.1 × Mn + 0.02 Formula (2) ) 0.5 × Ti−0.01 ≦ Nb ≦ 0.5 × Ti + 0.02 (3)
JP37240098A 1998-12-28 1998-12-28 High strength cold rolled steel sheet excellent in resistance to secondary working brittleness and deep drawability Pending JP2000192188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37240098A JP2000192188A (en) 1998-12-28 1998-12-28 High strength cold rolled steel sheet excellent in resistance to secondary working brittleness and deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37240098A JP2000192188A (en) 1998-12-28 1998-12-28 High strength cold rolled steel sheet excellent in resistance to secondary working brittleness and deep drawability

Publications (1)

Publication Number Publication Date
JP2000192188A true JP2000192188A (en) 2000-07-11

Family

ID=18500382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37240098A Pending JP2000192188A (en) 1998-12-28 1998-12-28 High strength cold rolled steel sheet excellent in resistance to secondary working brittleness and deep drawability

Country Status (1)

Country Link
JP (1) JP2000192188A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126945A1 (en) 2007-04-11 2008-10-23 Nippon Steel Corporation Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
JP2015101776A (en) * 2013-11-27 2015-06-04 新日鐵住金株式会社 Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and alloyed hot-dip galvanized cold rolled steel sheet each having high young modulus and excellent in workability and production methods of them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126945A1 (en) 2007-04-11 2008-10-23 Nippon Steel Corporation Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
US8889264B2 (en) 2007-04-11 2014-11-18 Nippon Steel & Sumitomo Metal Corporation Hot dip plated high strength steel sheet for press forming use superior in low temperature toughness
JP2015101776A (en) * 2013-11-27 2015-06-04 新日鐵住金株式会社 Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and alloyed hot-dip galvanized cold rolled steel sheet each having high young modulus and excellent in workability and production methods of them

Similar Documents

Publication Publication Date Title
US10227683B2 (en) High strength cold rolled steel sheet
US8999085B2 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
US20080251168A1 (en) Bake-Hardenable Cold Rolled Steel Sheet With Superior Strength and Aging Resistance, Gal-Vannealed Steel Sheet Using the Cold Rolled Steel Sheet and Method For Manufacturing the Cold Rolled Steel Sheet
JP5370620B1 (en) Thin steel plate and manufacturing method thereof
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP5655475B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
WO2020151856A1 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
US8518191B2 (en) Bake-hardenable cold rolled steel sheet with superior strength, galvannealed steel sheet using the cold rolled steel and method for manufacturing the cold rolled steel sheet
JP5845837B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP2023507963A (en) High-strength steel sheet with excellent workability and its manufacturing method
EP4265765A1 (en) High strength steel sheet having excellent workability and method for manufacturing same
JP3840855B2 (en) High-strength thin steel sheet with excellent secondary work brittleness resistance and formability and method for producing the same
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
JP2002155317A (en) Method for manufacturing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
JP2000192188A (en) High strength cold rolled steel sheet excellent in resistance to secondary working brittleness and deep drawability
JP3288514B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for deep drawing
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
US20240229184A1 (en) Coiling temperature influenced cold rolled strip or steel
US20240167137A1 (en) High strength cold rolled steel sheet for automotive use having excellent global formability and bending property
JPH055156A (en) High strength steel sheet for forming and its production
JP2002003994A (en) High strength steel sheet and high strength galvanized steel sheet
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
EP2831292B2 (en) High strength cold rolled steel sheet and method of producing such steel sheet
JP2023507956A (en) High-strength steel sheet with excellent workability and its manufacturing method