JP2000192174A - Berylium-copper-zinc alloy excellent in mirror finishing property - Google Patents

Berylium-copper-zinc alloy excellent in mirror finishing property

Info

Publication number
JP2000192174A
JP2000192174A JP10365865A JP36586598A JP2000192174A JP 2000192174 A JP2000192174 A JP 2000192174A JP 10365865 A JP10365865 A JP 10365865A JP 36586598 A JP36586598 A JP 36586598A JP 2000192174 A JP2000192174 A JP 2000192174A
Authority
JP
Japan
Prior art keywords
alloy
phase
copper
beryllium
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10365865A
Other languages
Japanese (ja)
Other versions
JP3316191B2 (en
Inventor
Tomoyasu Sumiya
知泰 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP36586598A priority Critical patent/JP3316191B2/en
Publication of JP2000192174A publication Critical patent/JP2000192174A/en
Application granted granted Critical
Publication of JP3316191B2 publication Critical patent/JP3316191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively prevent the generation of the unevenness of polishing, into a Be-Cu alloy, by incorporating Zn in a specified range. SOLUTION: The amt. of Zn to be added to a Be-Cu alloy is controlled to 5.0 to 30.0 wt.%. Furthermore, the suitable componential compsn. of the Be-Cu alloy is the one contg. Be by 1.0 to 3.0 wt.%, and the one contg. <=1.0 wt.% Co as well is more preferable. In this way, the size of the crystal grains is made small and also uniform, the surface roughness after polishing is good as well, and excellent polishability can be obtd. Moreover, the aging time till it reaches the maximum hardness can remarkably be reduced. As the amt. of Zn to be added increases, the m.p. of the alloy reduces, and the range of the solidifying temp. is also made narrow, so that casting at a low temp. is made possible. Furthermore, the generation of residues in the surface of the molten metal reduces as well, so that its castability exceedingly improves, and it is made advantageous also in the phase of the cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鏡面性に優れた
ベリリウム−銅−亜鉛合金に関し、特にベリリウム−銅
合金中に適量の亜鉛を含有させることにより、みがき性
を改善して鏡面性の有利な向上を図ると共に、時効硬化
の促進、鋳造性の向上および結晶組織の均質化を併せて
実現しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beryllium-copper-zinc alloy having excellent specularity, and in particular, by adding an appropriate amount of zinc to a beryllium-copper alloy to improve polishing properties and improve specularity. In addition to the above, the present invention is intended to promote age hardening, improve castability and homogenize the crystal structure.

【0002】[0002]

【従来の技術】ベリリウム−銅合金とは、銅の中に3wt
%以下のベリリウムを固溶させ、さらにはこれに少量の
元素を添加した合金である。このベリリウム−銅合金
は、溶体化処理を行ってから焼入れすると、過飽和とな
ったベリリウムを固溶したままのα相の組織が得られ、
その後、溶体化処理したものを低温で加熱すると、過飽
和のベリリウムはα相中よりγ相 (CuBe) として析出
し、合金は著しく硬化する。
2. Description of the Related Art Beryllium-copper alloy contains 3 wt% of copper.
% Beryllium or less as a solid solution, and further added with a small amount of element. When this beryllium-copper alloy is subjected to solution treatment and then quenched, an α-phase structure in which supersaturated beryllium remains in a solid solution is obtained,
Thereafter, when the solution-treated material is heated at a low temperature, supersaturated beryllium precipitates out of the α phase as a γ phase (CuBe), and the alloy hardens significantly.

【0003】このように、ベリリウム−銅合金は、焼入
れ、焼戻し効果によって、著しく硬化(析出硬化)する
ことから、この性質を利用して各分野で広範囲にわたり
利用されている。例えば、この合金に適切な熱処理を施
すと、特殊鋼に匹敵する高強度と優れたバネ性、非発火
性、導電性、耐摩耗性および耐食性などが得られること
から、通信機、石油化学および自動車等の分野において
幅広く使用されている。また、精密鋳造性も良いことか
らプラスチック金型としても利用されている。
[0003] As described above, beryllium-copper alloys are remarkably hardened (precipitation hardened) by the quenching and tempering effects, and are widely used in various fields utilizing this property. For example, when an appropriate heat treatment is applied to this alloy, high strength and excellent spring properties, non-ignitability, conductivity, abrasion resistance and corrosion resistance comparable to special steel are obtained, so that communication equipment, petrochemical and It is widely used in fields such as automobiles. In addition, it is used as a plastic mold because of its good precision castability.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ベリリ
ウム−銅合金は、鏡面研磨を行うと、鋳造品の鋳放しで
の結晶粒の大きさが影響して、みがきムラが発生し易い
という問題を残していた。このみがきムラは、プラスチ
ック成形品の見栄えを劣化させ、商品価値を大幅に低下
させる不利がある。
However, the beryllium-copper alloy has a problem that, when mirror polishing is performed, the size of the crystal grains in the as-cast product of the cast product is affected, and uneven polishing is likely to occur. I was This uneven polishing has the disadvantage of deteriorating the appearance of the plastic molded article and significantly reducing the commercial value.

【0005】この発明は、上記の問題を有利に解決する
もので、従来懸念されたみがきムラの発生を効果的に防
止したベリリウム−銅−亜鉛合金を提案することを目的
とする。
An object of the present invention is to advantageously solve the above-mentioned problem, and it is an object of the present invention to propose a beryllium-copper-zinc alloy in which the occurrence of polishing unevenness, which has been conventionally concerned, is effectively prevented.

【0006】さて、発明者らは、上記の問題を解決すべ
く鋭意検討を重ねた結果、ベリリウム−銅合金中に適量
の亜鉛を添加することが、所期した目的の達成に関し、
極めて有効であることの知見を得た。また、実験の過程
で、亜鉛の添加は、この種合金に特有の現象である時効
硬化を促進させるだけでなく、融点が低下して鋳造性を
向上させ、さらには結晶組織の均質化や黒色酸化物の発
生防止の面でも有効であることの知見を得た。この発明
は、上記の知見に立脚するものである。
[0006] As a result of intensive studies to solve the above-mentioned problems, the inventors have found that adding an appropriate amount of zinc to a beryllium-copper alloy has a problem in achieving the intended purpose.
It was found to be extremely effective. In the course of the experiment, the addition of zinc not only promotes age hardening, a phenomenon peculiar to this kind of alloy, but also lowers the melting point, improves castability, and further improves the crystal structure homogeneity and blackness. We have found that it is also effective in preventing the generation of oxides. The present invention is based on the above findings.

【0007】すなわち、この発明は、ベリリウム−銅合
金中に、亜鉛を 5.0〜30.0wt%の範囲で含有させたこと
を特徴とする鏡面性に優れたベリリウム−銅−亜鉛合金
である。
That is, the present invention is a beryllium-copper-zinc alloy excellent in mirror properties, characterized in that zinc is contained in a beryllium-copper alloy in a range of 5.0 to 30.0 wt%.

【0008】この発明において、ベースとなるベリリウ
ム−銅合金としては、Be:1.0 〜3.0 wt%、Co:0〜1.
0 wt%を含有し、残部は実質的にCuの成分組成になるも
のがとりわけ好適である。
In the present invention, the base beryllium-copper alloy includes Be: 1.0 to 3.0 wt% and Co: 0 to 1.
Particularly preferred is one containing 0 wt%, with the balance being substantially the Cu component composition.

【0009】[0009]

【発明の実施の形態】以下、この発明を由来するに至っ
た実験結果について説明する。試料としては、表1に示
す5種類のベリリウム−銅合金を用いた。同表中、No.1
は金型用として一般的な 275C合金、No.2は鍛造材の25
合金であり、No.3〜5はそれぞれ亜鉛を10wt%、20wt%
および30wt%目標で添加したベリリウム−銅−亜鉛合金
である(No.1, 3〜5は鋳造材)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results which led to the present invention will be described. Five kinds of beryllium-copper alloys shown in Table 1 were used as samples. In the table, No. 1
Is a 275C alloy commonly used for molds, No.2 is a forged material of 25
No. 3 to 5 are zinc 10wt% and 20wt% respectively
And a beryllium-copper-zinc alloy added with a target of 30 wt% (No. 1, 3-5 are cast materials).

【0010】[0010]

【表1】 [Table 1]

【0011】実験1 表1中、No.1〜3の試料をついて、鋳造後、鏡面研磨
(バフ研磨)を施した後の結晶粒の大きさおよび均一性
を測定した。また、研磨後の表面粗さについても測定
し、最終的なみがき性について評価した。なお、みがき
性の評価は ○:♯1000エメリーペーパーレベルの研磨で傷とみがき
ムラがなくなる、 △:バフ研磨レベルでみがきムラがなくなる、 ×:バフ研磨レベルでもみがきムラが残る で行った。結晶粒の大きさおよび均一性についての測定
結果を表2に、またバフ研磨後の表面粗さおよび最終的
なみがき性についての評価結果を表3に示す。
Experiment 1 Samples Nos. 1 to 3 in Table 1 were cast and then subjected to mirror polishing (buff polishing) to measure crystal grain size and uniformity. The surface roughness after polishing was also measured, and the final polishing property was evaluated. In addition, the evaluation of the polishing property was performed as follows: ♯: No scratches and non-uniformity were removed by polishing at a level of 1000 emery paper, Δ: No non-uniform polishing was obtained at the buff polishing level, and ×: Non-uniform polishing was left even at the buff polishing level. Table 2 shows the measurement results of the crystal grain size and uniformity, and Table 3 shows the evaluation results of the surface roughness after buffing and the final polishability.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】表2および表3に示したとおり、ベリリウ
ム−銅−亜鉛合金に20wt%の亜鉛を添加した場合には、
275C合金や25合金に比べると、結晶粒の大きさが小さ
く、均一になっており、また研磨後の表面粗さも良好
で、優れたみがき性が得られている。
As shown in Tables 2 and 3, when 20 wt% of zinc is added to the beryllium-copper-zinc alloy,
Compared with the 275C alloy and the 25 alloy, the crystal grains are small in size and uniform, and the surface roughness after polishing is good, and excellent polishing properties are obtained.

【0015】実験2 表1中、No.1, 3〜5の試料を、 800℃, 2hrの溶体化
処理を行ってから、水焼入れし、 360℃で所定の時間だ
け時効処理を行った。時効時間と硬度との関係について
調べた結果を図1〜図4に示す。なお、各試料全体の平
均的な硬度測定には、ビッカース硬さ試験機を用い、ま
た組織中の各相の硬度測定には、マイクロビッカース硬
さ試験機を用いた。
Experiment 2 Samples Nos. 1 and 3 to 5 in Table 1 were subjected to a solution treatment at 800 ° C. for 2 hours, followed by water quenching, and an aging treatment at 360 ° C. for a predetermined time. The results of examining the relationship between the aging time and the hardness are shown in FIGS. A Vickers hardness tester was used to measure the average hardness of each sample as a whole, and a micro Vickers hardness tester was used to measure the hardness of each phase in the tissue.

【0016】同図に示したとおり、 275C合金は、溶体
化処理後のビッカース硬度(Hv)は151 であったが、約
1時間の時効処理によって著しく硬化(Hv : 425)し
た。これに対し、Cu−Be−10Zn合金は、溶体化処理後の
Hv は175 であり、時効処理:約30分で最高硬度(Hv
:324 )に達した。また、Cu−Be−20Zn合金は、溶体
化処理後のHv は404 と極めて高く、約5分間の時効処
理により最高硬度(Hv :420 )に達した。さらに、Cu
−Be−30Zn合金は、溶体化処理後のHv は365 であり、
時効処理:約20分間で最高硬度(Hv :380 )に達し
た。
As shown in FIG. 1, the 275C alloy had a Vickers hardness (Hv) of 151 after solution treatment, but was significantly hardened (Hv: 425) by aging treatment for about one hour. On the other hand, Hv of the Cu-Be-10Zn alloy after solution treatment is 175, and aging treatment: the maximum hardness (Hv
: 324). The Cu-Be-20Zn alloy had an extremely high Hv of 404 after solution treatment, and reached the highest hardness (Hv: 420) after aging treatment for about 5 minutes. Furthermore, Cu
-Be-30Zn alloy has Hv of 365 after solution treatment,
Aging treatment: The maximum hardness (Hv: 380) was reached in about 20 minutes.

【0017】このように、ベリリウム−銅合金に亜鉛を
添加することにより、最高硬度に達するまでの時効時間
が 275C合金の場合に比べて大幅に短縮される。なお、
Cu−Be−10Zn合金については、時効処理時間が短縮され
たとはいえ、最高硬度が324 と、 275C合金に比べると
幾分低下したが、この理由は 275C合金に比べるとBe含
有量が少なかったことによるものと考えられる。この
点、Cu−Be−20Zn合金は、 275C合金に比べるとBe含有
量が少ないにもかかわらず、約5分間の時効処理でHv
: 420 という 275C合金に比べても何ら遜色のない優
れた硬度を得ることができた。
As described above, by adding zinc to the beryllium-copper alloy, the aging time until reaching the maximum hardness is greatly reduced as compared with the case of the 275C alloy. In addition,
For the Cu-Be-10Zn alloy, although the aging time was shortened, the maximum hardness was 324, which was somewhat lower than that of the 275C alloy, because the Be content was lower than that of the 275C alloy. It is thought to be due to this. In this respect, the Cu-Be-20Zn alloy has a lower Hv content after aging for about 5 minutes despite its lower Be content than the 275C alloy.
: Excellent hardness comparable to that of the 275C alloy of 420 was obtained.

【0018】実験3 溶体化処理( 800℃, 2hr→ W.Q)およびその後 360℃
で3時間の時効処理を施した各試料(No.1, 3〜5)に
ついて、# 240〜1500のエメリー紙で湿式研磨仕上げを
したのち、次の条件でX線回折を行い、合金の生成相を
分析した。 ・ターゲット:Cu ・電圧,電流:40kV,300mA ・2θ:20°〜100 °
Experiment 3 Solution treatment (800 ° C., 2 hours → WQ) and then 360 ° C.
Each sample (No. 1, 3 to 5) aged for 3 hours was wet-polished with # 240-1500 emery paper, and then subjected to X-ray diffraction under the following conditions to produce an alloy. The phases were analyzed.・ Target: Cu ・ Voltage and current: 40kV, 300mA ・ 2θ: 20 ° -100 °

【0019】 275C合金のX線回折結果を図5に示す。
同図に示したとおり、溶体化処理した試料では、ほとん
どがα相で、わずかにβ相のピークが見られたのに対
し、時効処理した試料では、α相とγ相のピークが見ら
れた。また、時効処理した試料は、溶体化処理した試料
に比べてα相のピークがブロードになっていることか
ら、α相中からγ相が整合性をもって析出していること
が分かる。β相はα+γ相の共析組織になったと考えら
れる。
FIG. 5 shows the result of X-ray diffraction of the 275C alloy.
As shown in the figure, most of the solution-treated samples showed α phase and slightly β-phase peaks, whereas the aged samples showed α-phase and γ-phase peaks. Was. In addition, since the peak of the α phase is broader in the aging-treated sample than in the solution-treated sample, it can be seen that the γ phase is precipitated from the α phase with consistency. It is considered that the β phase became an eutectoid structure of the α + γ phase.

【0020】次に、Cu−Be−10Zn合金のX線回折結果を
図6に示す。同図に示したとおり、溶体化処理した試料
には、α相とγ相のピークが認められ、同様に、時効処
理を行った試料にもα相とγ相のピークが見られた。こ
こに、Cu−Be−10Zn合金の時効処理後の回折図形は、27
5C合金の場合とほぼ同じで、α相のピークはブロードに
なり、γ相ピークが高くなった。
Next, the results of X-ray diffraction of the Cu-Be-10Zn alloy are shown in FIG. As shown in the figure, peaks of α phase and γ phase were observed in the solution-treated sample, and similarly, peaks of α phase and γ phase were also observed in the sample subjected to aging treatment. Here, the diffraction pattern of the Cu-Be-10Zn alloy after the aging treatment is shown in FIG.
As in the case of the 5C alloy, the peak of the α phase was broad and the peak of the γ phase was high.

【0021】次に、Cu−Be−20Zn合金を溶体化処理した
試料について、X線回折により生成相を同定した結果を
図7に示す。同図から明らかなように、この試料は、α
相およびγ相のピークが見られ、時効処理前であるにも
かかわらず、α相のピーク強度は低くブロードである。
この結果は、時効処理した場合とほぼ同じ回折図形であ
り、この時点でα相中にγ相が整合性をもって析出して
いると考えられる。
Next, FIG. 7 shows the result of identifying the generated phase by X-ray diffraction for the sample in which the Cu-Be-20Zn alloy was solution-treated. As is apparent from FIG.
The peaks of the α phase and the γ phase are observed, and the peak intensity of the α phase is low and broad, even before the aging treatment.
The result is almost the same diffraction pattern as in the case of the aging treatment. At this point, it is considered that the γ phase is precipitated in the α phase with consistency.

【0022】同様に、Cu−Be−30Zn合金の溶体化処理後
の試料について調査した結果を図8に示すが、この場合
も、Cu−Be−20Zn合金の場合と同様に、α相とγ相のピ
ークが見られ、しかもα相のピーク強度が低くブロード
であることから、γ相が整合性をもって析出していると
考えられる。
Similarly, FIG. 8 shows the result of investigation on the sample after solution treatment of the Cu-Be-30Zn alloy. In this case, as in the case of the Cu-Be-20Zn alloy, the α phase and the γ Since the peak of the phase was observed and the peak intensity of the α phase was low and broad, it is considered that the γ phase was precipitated with consistency.

【0023】上述したとおり、 275C合金では、時効処
理によりてα相中にγ相を整合性をもって析出させるこ
とによって、硬化が進むのであるが、この点、かかるベ
リリウム−銅合金に適量のZnを添加した場合は、溶体化
処理段階である程度γ相が整合性をもって析出している
ため、初期硬度が高く、また短時間で最高温度に達する
ものと考えられる。
As described above, in the 275C alloy, the hardening proceeds by precipitating the γ phase into the α phase by aging treatment with consistency. In this regard, an appropriate amount of Zn is added to the beryllium-copper alloy. When added, it is considered that the initial hardness is high and the maximum temperature is reached in a short time because the γ phase is precipitated with some consistency at the solution treatment stage.

【0024】実験4 溶体化処理( 800℃, 2hr→ W.Q)およびその後 360℃
で3時間の時効処理を施した各試料(No.1, 3〜5)に
ついて、# 240〜1500のエメリー紙で湿式研磨後、 0.5
〜0.05μm のアルミナでバフ研磨仕上げを行ったのち、
光学顕微鏡およびEPMAを用いて組織観察を行った。
なお、組織観察のための腐食液は、蒸留水:80ml、硫
酸:5ml、二クロム酸カリウム:10gを使用した。
Experiment 4 Solution treatment (800 ° C., 2 hours → WQ) and then 360 ° C.
Each of the samples (No. 1, 3 to 5) that had been subjected to the aging treatment for 3 hours at # 1 was wet-polished with # 240-1500 emery paper,
After buffing with ~ 0.05μm alumina,
The structure was observed using an optical microscope and EPMA.
As a corrosive liquid for observing the structure, distilled water: 80 ml, sulfuric acid: 5 ml, and potassium dichromate: 10 g were used.

【0025】図9に、 275C合金の光学顕微鏡による組
織観察結果を示す。溶体化処理した試料では、デンドラ
イトα相組織およびデンドライト間隙の組織が見られ
た。デンドライトα相中に見られるくさび型の組織は、
BeとCoの金属間化合物である。また、図10に、溶体化処
理後の試料のEPMAの組成像による組織を示す。同図
より、デンドライト間隙は二相の混合組織となっている
ことが分かる。
FIG. 9 shows the results of observation of the structure of the 275C alloy by an optical microscope. In the sample subjected to the solution treatment, a dendrite α-phase structure and a structure of dendrite gap were observed. The wedge-shaped structure found in the dendrite α phase
It is an intermetallic compound of Be and Co. FIG. 10 shows the structure of the sample after the solution treatment by the composition image of EPMA. From the figure, it can be seen that the dendrite gap has a two-phase mixed structure.

【0026】図11に、Cu−Be−10Zn合金の光学顕微鏡に
よる組織観察結果を示す。同図に示したとおり、溶体化
処理した試料のデンドライト間隙の組織は、均一な組織
に見えた。この組織をEPMAによる組成像で組織観察
した結果を図12に示す。同図から明らかなように、光学
顕微鏡観察では均一な組織に見えた領域において、微細
な析出物が見られた。
FIG. 11 shows the results of microscopic observation of the Cu-Be-10Zn alloy by an optical microscope. As shown in the figure, the structure of the dendrite gap of the solution-treated sample looked uniform. FIG. 12 shows the result of structure observation of this structure with a composition image by EPMA. As is clear from the figure, fine precipitates were observed in a region where a uniform structure was observed by optical microscope observation.

【0027】図13に、Cu−Be−20Zn合金の光学顕微鏡に
よる組織観察結果を示す。このCu−Be−20Zn合金は、 2
75C合金やCu−Be−10Zn合金と異なり、デンドライト組
織ではなく、均一な二相組織になっている。この試料で
は、結晶粒界と粒内に島状にγ相が析出した領域がみら
れる。また、この試料についてEPMAによる組織観察
の結果を図14に示す。この合金では、溶体化処理後に部
分的にγ相が析出している。
FIG. 13 shows the results of microscopic observation of the Cu-Be-20Zn alloy by an optical microscope. This Cu-Be-20Zn alloy has 2
Unlike the 75C alloy and the Cu-Be-10Zn alloy, it has a uniform two-phase structure instead of a dendrite structure. In this sample, a region where the γ phase is precipitated in an island shape in the crystal grain boundaries and in the grains is observed. FIG. 14 shows the results of the structure observation of this sample by EPMA. In this alloy, the γ phase is partially precipitated after the solution treatment.

【0028】図15に、Cu−Be−30Zn合金の光学顕微鏡に
よる組織観察結果を示す。溶体化処理を行った試料およ
び時効処理を行った試料は、275C合金、Cu−Be−10Znお
よびCu−Be−20Znと全く違う組織であり、微細な結晶の
組織となっていた。
FIG. 15 shows the results of microscopic observation of the structure of the Cu-Be-30Zn alloy by an optical microscope. The sample subjected to the solution treatment and the sample subjected to the aging treatment had completely different structures from the 275C alloy, Cu-Be-10Zn and Cu-Be-20Zn, and had a fine crystal structure.

【0029】このように、ベリリウム−銅合金にZnを添
加すると、溶体化処理後の結晶組織は変化する。この結
晶組織の変化形態は、Zn量に応じて幾分異なるけれど
も、いずれも微細となって、結晶組織は均質化されてい
る。
As described above, when Zn is added to the beryllium-copper alloy, the crystal structure after the solution treatment is changed. The change of the crystal structure is slightly different depending on the amount of Zn, but all are fine and the crystal structure is homogenized.

【0030】実験5 表1中、No.1, 3〜5の試料を、エレマ炉(電気抵抗
炉)で溶解し、セラミック鋳型に溶湯を流し込み、その
押湯部において、冷却曲線および凝固温度範囲を調査し
た。得られた冷却曲線を図16に、また凝固温度範囲を表
4に示す。また、ひけ具合や溶湯表面のカスの出具合に
ついても調査し、総合的な鋳造性を評価した。得られた
結果を表4に併記する。なお、鋳造性の評価は ○:鋳込み可能温度が低く、注湯時に酸化物等の介在物
発生が少なく、引け巣が出にくい、 △:上記○に対し、いずれかが劣っている、 ×:鋳込み可能温度が高く、注湯時に介在物が発生し易
く、引け巣も出易いで行った。
Experiment 5 In Table 1, samples No. 1 and Nos. 3 to 5 were melted in an elema furnace (electric resistance furnace), and a molten metal was poured into a ceramic mold. investigated. FIG. 16 shows the obtained cooling curve, and Table 4 shows the solidification temperature range. In addition, the degree of sinkage and the appearance of scum on the surface of the molten metal were also investigated, and the overall castability was evaluated. Table 4 also shows the obtained results. The castability was evaluated as follows: :: Pouring temperature is low, inclusions such as oxides during pouring are small, and shrinkage cavities are difficult to appear. △: Any of the above ○ is inferior. ×: The casting temperature was high, inclusions were easily generated during pouring, and shrinkage cavities were easily formed.

【0031】[0031]

【表4】 [Table 4]

【0032】同表から明らかなように、ベリリウム−銅
合金に亜鉛を添加すると、亜鉛量が多くなるにつれて、
融点が下がり、また凝固温度範囲も狭くなっている。こ
の結果は、亜鉛を添加した場合には 275C合金よりも低
い温度で鋳造が可能であることを示している。また、亜
鉛添加合金は、ひけ具合も 275C合金と同等レベルであ
り、溶湯表面のカスの出具合も低減していた。このよう
に、ベリリウム−銅合金に亜鉛を添加する、鋳造性が格
段に向上することが判明したのである。
As is clear from the table, when zinc is added to the beryllium-copper alloy, as the amount of zinc increases,
The melting point is lower and the solidification temperature range is narrower. This result indicates that casting can be performed at a lower temperature than the 275C alloy when zinc is added. The zinc-added alloy also had the same degree of sinkage as the 275C alloy, and the appearance of scum on the surface of the molten metal was reduced. Thus, it has been found that the addition of zinc to the beryllium-copper alloy significantly improves the castability.

【0033】なお、この発明の適用鋼種は、いわゆるベ
リリウム−銅合金であれば、従来公知のものいずれもが
適合する。ここに、好適な成分組成は、Beを 1.0〜3.0
wt%の範囲で含有する組成になるものである。さらに、
Coを含有させることもでき、この場合における含有量は
1.0wt%以下とすることが好ましい。
As the steel type to which the present invention is applied, any conventionally known beryllium-copper alloy can be used. Here, a preferable component composition is such that Be is 1.0 to 3.0.
The composition is to be contained in the range of wt%. further,
Co can also be contained, and in this case, the content is
It is preferable that the content be 1.0 wt% or less.

【0034】[0034]

【発明の効果】かくして、この発明によれば、従来ベリ
リウム−銅合金において懸念された、みがきムラの発生
を効果的に防止できるだけでなく、時効硬化時間の短縮
および鋳造性の向上の面でも偉効を奏する。また、この
発明によれば、高価なBeの含有量を低減しても、従来と
遜色のない最高硬度を得ることができる、コストの面で
も有利である。
As described above, according to the present invention, not only the occurrence of polishing unevenness, which has been concerned with the conventional beryllium-copper alloy, can be effectively prevented, but also the age hardening time is shortened and the castability is improved. It works. Further, according to the present invention, even if the content of expensive Be is reduced, the highest hardness comparable to the conventional one can be obtained, which is advantageous in terms of cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 275C合金の時効時間と硬度との関係を示し
たグラフである。
FIG. 1 is a graph showing the relationship between aging time and hardness of a 275C alloy.

【図2】 Cu−Be−10Zn合金の時効時間と硬度との関係
を示したグラフである。
FIG. 2 is a graph showing a relationship between aging time and hardness of a Cu—Be-10Zn alloy.

【図3】 Cu−Be−20Zn合金の時効時間と硬度との関係
を示したグラフである。
FIG. 3 is a graph showing the relationship between aging time and hardness of Cu—Be-20Zn alloy.

【図4】 Cu−Be−30Zn合金の時効時間と硬度との関係
を示したグラフである。
FIG. 4 is a graph showing a relationship between aging time and hardness of a Cu—Be-30Zn alloy.

【図5】 275C合金のX線回折パターンを示した図で
ある。
FIG. 5 is a diagram showing an X-ray diffraction pattern of a 275C alloy.

【図6】 Cu−Be−10Zn合金のX線回折パターンを示し
た図である。
FIG. 6 is a diagram showing an X-ray diffraction pattern of a Cu—Be-10Zn alloy.

【図7】 Cu−Be−20Zn合金のX線回折パターンを示し
た図である。
FIG. 7 is a diagram showing an X-ray diffraction pattern of a Cu—Be-20Zn alloy.

【図8】 Cu−Be−30Zn合金のX線回折パターンを示し
た図である。
FIG. 8 is a view showing an X-ray diffraction pattern of a Cu—Be-30Zn alloy.

【図9】 275C合金の光学顕微鏡組織写真である。FIG. 9 is an optical micrograph of a 275C alloy.

【図10】 X線マイクロアナライザー(EPMA)により
観察した 275C合金の金属組織写真である。
FIG. 10 is a photograph of a metal structure of a 275C alloy observed by an X-ray microanalyzer (EPMA).

【図11】 Cu−Be−10Zn合金の光学顕微鏡組織写真で
ある。
FIG. 11 is an optical micrograph of a Cu—Be-10Zn alloy.

【図12】 X線マイクロアナライザー(EPMA)により
観察したCu−Be−10Zn合金の金属組織写真である。
FIG. 12 is a metallographic photograph of a Cu—Be-10Zn alloy observed by an X-ray microanalyzer (EPMA).

【図13】 Cu−Be−20Zn合金の光学顕微鏡組織写真で
ある。
FIG. 13 is an optical micrograph of a Cu—Be-20Zn alloy.

【図14】 X線マイクロアナライザー(EPMA)により
観察したCu−Be−20Zn合金の金属組織写真である。
FIG. 14 is a microstructure photograph of a Cu—Be-20Zn alloy observed by an X-ray microanalyzer (EPMA).

【図15】 Cu−Be−30Zn合金の光学顕微鏡組織写真で
ある。
FIG. 15 is an optical micrograph of a Cu-Be-30Zn alloy.

【図16】 275C合金、Cu−Be−10Zn合金、Cu−Be−
20Zn合金およびCu−Be−30Zn合金の冷却曲線を比較して
示した図である。
Fig. 16 275C alloy, Cu-Be-10Zn alloy, Cu-Be-
It is the figure which showed and compared the cooling curve of 20Zn alloy and Cu-Be-30Zn alloy.

【手続補正書】[Procedure amendment]

【提出日】平成11年9月29日(1999.9.2
9)
[Submission date] September 29, 1999 (1999.9.2)
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】すなわち、この発明は、Beを 1.6〜3.0 wt
%の範囲で含有するベリリウム−銅合金中に、亜鉛を
5.0〜30.0wt%の範囲で含有させたことを特徴とする鏡
面性に優れたベリリウム−銅−亜鉛合金である。
That is, according to the present invention, Be is used in an amount of 1.6 to 3.0 wt.
% In a beryllium-copper alloy containing
This is a beryllium-copper-zinc alloy having an excellent specularity characterized by being contained in the range of 5.0 to 30.0 wt%.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】この発明において、ベースとなるベリリウ
ム−銅合金としては、亜鉛を含む合金全体の比率で、B
e:1.6 〜3.0 wt%の他、Co:1.0 wt%以下およびSi:
0.10〜0.28wt%を含有する組成になるものがとりわけ好
適である。
In the present invention, as a base beryllium-copper alloy, B is a ratio of the entire alloy containing zinc.
e: 1.6 to 3.0 wt%, Co: 1.0 wt% or less and Si:
A composition having a composition containing 0.10 to 0.28 wt% is particularly preferable.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0033】なお、この発明の適用鋼種としては、Beを
1.6〜3.0 wt%の範囲で含有さえしていれば、従来公知
のいわゆるベリリウム−銅合金のいずれもが適合する。
ここに、好適な成分組成は、上記したBe:1.6 〜3.0 wt
%の他、Co:1.0 wt%以下(ただし、0は含まない)お
よびSi:0.10〜0.28wt%を含有する組成になるものであ
る。
The steel type to which the present invention is applied is Be.
Any conventionally known so-called beryllium-copper alloy is suitable as long as it is contained in the range of 1.6 to 3.0 wt%.
Here, the preferred component composition is the above-mentioned Be: 1.6 to 3.0 wt.
%, Co: 1.0 wt% or less (however, 0 is not included) and Si: 0.10 to 0.28 wt%.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ベリリウム−銅合金中に、亜鉛を 5.0〜3
0.0wt%の範囲で含有させたことを特徴とする鏡面性に
優れたベリリウム−銅−亜鉛合金。
(1) Zinc in a beryllium-copper alloy is 5.0 to 3%.
A beryllium-copper-zinc alloy having excellent specularity characterized by being contained in the range of 0.0 wt%.
【請求項2】請求項1において、ベースとなるベリリウ
ム−銅合金が、 Be:1.0 〜3.0 wt%、 Co:0〜1.0 wt% を含有し、残部は実質的にCuの成分組成になるものであ
る鏡面性に優れたベリリウム−銅−亜鉛合金。
2. The beryllium-copper alloy according to claim 1, wherein the base contains 1.0 to 3.0 wt% of Be and 0 to 1.0 wt% of Co, with the balance being substantially the composition of Cu. Beryllium-copper-zinc alloy with excellent mirror finish.
JP36586598A 1998-12-24 1998-12-24 Beryllium-copper-zinc alloy with excellent mirror finish Expired - Fee Related JP3316191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36586598A JP3316191B2 (en) 1998-12-24 1998-12-24 Beryllium-copper-zinc alloy with excellent mirror finish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36586598A JP3316191B2 (en) 1998-12-24 1998-12-24 Beryllium-copper-zinc alloy with excellent mirror finish

Publications (2)

Publication Number Publication Date
JP2000192174A true JP2000192174A (en) 2000-07-11
JP3316191B2 JP3316191B2 (en) 2002-08-19

Family

ID=18485315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36586598A Expired - Fee Related JP3316191B2 (en) 1998-12-24 1998-12-24 Beryllium-copper-zinc alloy with excellent mirror finish

Country Status (1)

Country Link
JP (1) JP3316191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665839B1 (en) * 2011-01-21 2018-12-26 Carl Zeiss SMT GmbH Mirrors for euv lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665839B1 (en) * 2011-01-21 2018-12-26 Carl Zeiss SMT GmbH Mirrors for euv lithography

Also Published As

Publication number Publication date
JP3316191B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
EP1873267B1 (en) Copper alloy for electronic material
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
RU2413021C1 (en) COPPER ALLOY Cu-Si-Co FOR MATERIALS OF ELECTRONIC TECHOLOGY AND PROCEDURE FOR ITS PRODUCTION
MX2007001008A (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings.
JP2011026635A (en) Copper alloy sheet and method for manufacturing the same, and electric and electronic component
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JPH02232324A (en) Production of parts made of aluminum alloy keeping high fatigue strength even after being kept in high temperature for hours
CN109266900A (en) A kind of Anti-dezincificationyellow yellow brass alloy of lead-free corrosion resistant and preparation method thereof
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JP7181768B2 (en) High Young&#39;s Modulus Cu--Ni--Al Copper Alloy Plate Material, Manufacturing Method Thereof, and Conductive Spring Member
CA2086063C (en) Hardenable copper alloy
EP3640354A1 (en) Copper alloy and use thereof
JP2004027257A (en) Copper alloy with excellent bendability, and its manufacturing method
Suman The effects of direct aging on mechanical properties and corrosion resistance of diecast magnesium alloys AZ91D and AM60B
CN112981190A (en) Aluminum alloy for die casting and method for manufacturing cast aluminum alloy using the same
JP3316191B2 (en) Beryllium-copper-zinc alloy with excellent mirror finish
JPH06220594A (en) Production of copper alloy for electric parts having good workability
KR810002049B1 (en) Non-erosion aluminium alloy for die-casting
JP6961861B1 (en) Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors
US20050167011A1 (en) Casting of aluminum based wrought alloys and aluminum based casting alloys
US2885286A (en) Anodizable aluminum die casting alloy
KR101967017B1 (en) Corson alloy and method for producing same
GB2169000A (en) Aluminium-base alloy for head drum of video cassette recorders
KR101895558B1 (en) Cu-Ti-based copper alloy sheet material and method of manufacturing same
JP2001303222A (en) Method of heat treatment for titanium-copper alloy and titanium-copper alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020507

LAPS Cancellation because of no payment of annual fees