JP2000179984A - Regenerative power/heat combined supply system - Google Patents

Regenerative power/heat combined supply system

Info

Publication number
JP2000179984A
JP2000179984A JP10351310A JP35131098A JP2000179984A JP 2000179984 A JP2000179984 A JP 2000179984A JP 10351310 A JP10351310 A JP 10351310A JP 35131098 A JP35131098 A JP 35131098A JP 2000179984 A JP2000179984 A JP 2000179984A
Authority
JP
Japan
Prior art keywords
ice
turbine
heat
heat storage
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10351310A
Other languages
Japanese (ja)
Inventor
Nozomi Kusumoto
望 楠本
Yoshinori Inoue
良則 井上
Yuji Yoshitake
裕二 吉竹
Shuji Sugiura
修史 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP10351310A priority Critical patent/JP2000179984A/en
Publication of JP2000179984A publication Critical patent/JP2000179984A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise the output of a turbine extremely economically and raise the total efficiently, by diving a generator by the combustion of fuel so as to obtain the power, and utilizing the heat of combustion exhaust gas for a heat source for cooling or the like, and further, utilizing the exhaust heat more effectively. SOLUTION: A generator 2 is interlocked and coupled with a turbine 1, which outputs rotating power by burning fuel, so as to obtain the power. The heat of the exhaust gas discharged from the turbine 1 is recovered to an absorption refrigering machine 8 to get a cold refrigerant, and ice is produced with an ice machine 15 by the cold refrigerant, and the produced ice is accumulated in an ice heat accumulating vessel 19. A heat exchanger 24 is interposed in an intake pipe 4 which supplies the turbine 1 with air, and the heat exchanger 24 is supplied with sherbet-form ice accumulated in the ice heat accumulating vessel 19, and the air to be supplied to the turbine 1 is cooled, utilizing the latent heat of melting of the sherbet-form ice, thus the output of the turbine 1 can be raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油、石炭、液化天
然ガス、天然ガスなどを燃料とするタービンの回転動力
によって発電するとともに、タービンからの排ガスの熱
を回収して蓄えるように構成した蓄熱型熱電併給システ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is configured to generate power by the rotational power of a turbine using oil, coal, liquefied natural gas, natural gas or the like as fuel, and to recover and store heat of exhaust gas from the turbine. The present invention relates to a regenerative cogeneration system.

【0002】[0002]

【従来の技術】タービンでは、そこに供給する空気を、
圧縮機に供給する前段階で冷却することにより出力を向
上できることが知られており、従来一般に、圧縮機への
吸気配管に冷却器を設け、冷却設備からの冷却水を冷却
器に供給するように構成している。
2. Description of the Related Art In a turbine, air supplied to the turbine is
It is known that the output can be improved by cooling before supplying to the compressor.Conventionally, generally, a cooler is provided in an intake pipe to the compressor, and cooling water from the cooling equipment is supplied to the cooler. It is composed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来例
の場合、冷却水を得るために専用の冷却設備を設けてお
り、イニシャルコストおよびランニングコストが増大す
るとともに大型化する欠点があった。
However, in the case of the conventional example, a dedicated cooling system is provided to obtain cooling water, and there is a disadvantage that the initial cost and the running cost are increased and the size is increased.

【0004】本発明は、このような事情に鑑みてなされ
たものであって、燃料の燃焼により発電機を駆動して電
力を得るとともに、燃焼排ガスの熱を冷房用熱源などに
利用し、更に、排熱をより有効に利用し、極めて安価に
タービンの出力を向上して総合効率を向上できるように
することを目的とする。
[0004] The present invention has been made in view of such circumstances, and in addition to driving a generator by burning fuel to obtain electric power, heat of combustion exhaust gas is used as a heat source for cooling. Another object of the present invention is to make it possible to use exhaust heat more effectively, improve the output of the turbine extremely inexpensively, and improve the overall efficiency.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明の蓄
熱型熱電併給システムは、上述のような目的を達成する
ために、燃料を燃焼して回転動力を出力するタービン
と、そのタービンに連動連結されて発電する発電機と、
タービンから排出される排ガスの熱を回収して低温冷媒
を得る吸収式冷凍機と、その吸収式冷凍機の低温冷媒に
よって氷を生成する製氷機と、その製氷機で得られた氷
を蓄える氷蓄熱槽と、タービンに供給する空気を冷却す
る冷却手段とを備え、氷蓄熱槽に蓄えられた氷により空
気を冷却するように構成する。
According to a first aspect of the present invention, there is provided a regenerative cogeneration system, comprising: a turbine for burning fuel to output rotational power; A generator that is linked to generate power,
An absorption refrigerator that recovers the heat of the exhaust gas discharged from the turbine to obtain a low-temperature refrigerant, an ice machine that generates ice using the low-temperature refrigerant of the absorption refrigerator, and ice that stores the ice obtained by the ice machine A heat storage tank and cooling means for cooling the air supplied to the turbine are provided, and the air is cooled by the ice stored in the ice heat storage tank.

【0006】また、請求項2に係る発明の蓄熱型熱電併
給システムは、上述のような目的を達成するために、燃
料を燃焼して回転動力を出力するタービンと、そのター
ビンに連動連結されて発電する発電機と、タービンから
排出される排ガスの熱を回収して低温冷媒を得る吸収式
冷凍機と、その吸収式冷凍機の低温冷媒によって氷を生
成する製氷機と、その製氷機で得られた氷を蓄える氷蓄
熱槽と、タービンに供給する空気を冷却する冷却手段と
を備え、氷蓄熱槽と冷却手段とを配管を介して接続し、
氷蓄熱槽に蓄えられた氷により冷却された冷水を冷却手
段に供給して空気を冷却するように構成する。
In order to achieve the above object, a regenerative cogeneration system according to a second aspect of the present invention includes a turbine that burns fuel and outputs rotational power, and is linked to the turbine. A generator that generates electricity, an absorption refrigerator that recovers the heat of the exhaust gas discharged from the turbine to obtain a low-temperature refrigerant, an ice machine that generates ice using the low-temperature refrigerant of the absorption refrigerator, and an ice maker that obtains the ice. An ice heat storage tank for storing the obtained ice, and cooling means for cooling air supplied to the turbine, connecting the ice heat storage tank and the cooling means via a pipe,
Cold water cooled by ice stored in the ice heat storage tank is supplied to cooling means to cool the air.

【0007】[0007]

【作用】請求項1に係る発明の蓄熱型熱電併給システム
の構成によれば、燃料を燃焼してタービンを回転させ、
その回転動力により発電機で電力を得る。一方、燃料の
燃焼に伴って発生するタービンからの排ガスの熱を回収
し、吸収式冷凍機により低温冷媒を得、その低温冷媒に
より氷を作成して氷蓄熱槽に蓄え、適宜、蓄えた氷を冷
房用熱源などに用いる。更に、冷却手段によって、氷の
融解潜熱を利用して、タービンに供給する空気を冷却す
ることができる。
According to the configuration of the regenerative cogeneration system of the present invention, the fuel is burned to rotate the turbine,
Electric power is obtained by the generator using the rotating power. On the other hand, the heat of the exhaust gas from the turbine generated by the combustion of the fuel is recovered, a low-temperature refrigerant is obtained by an absorption refrigerator, ice is formed from the low-temperature refrigerant, and the ice is stored in an ice heat storage tank. Is used as a heat source for cooling. Further, the cooling means can cool the air supplied to the turbine using the latent heat of melting of ice.

【0008】また、請求項2に係る発明の蓄熱型熱電併
給システムの構成によれば、燃料を燃焼してタービンを
回転させ、その回転動力により発電機で電力を得る。一
方、燃料の燃焼に伴って発生するタービンからの排ガス
の熱を回収し、吸収式冷凍機により低温冷媒を得、その
低温冷媒により氷を作成して氷蓄熱槽に蓄え、適宜、蓄
えた氷を冷房用熱源などに用いる。更に、冷却手段に氷
蓄熱槽から冷水を供給し、氷の融解潜熱を利用して得ら
れる冷水によって、タービンに供給する空気を冷却する
ことができる。
Further, according to the configuration of the regenerative cogeneration system according to the second aspect of the present invention, the fuel is burned to rotate the turbine, and electric power is obtained by the generator using the rotating power. On the other hand, the heat of the exhaust gas from the turbine generated by the combustion of the fuel is recovered, a low-temperature refrigerant is obtained by an absorption refrigerator, ice is formed from the low-temperature refrigerant, and the ice is stored in an ice heat storage tank. Is used as a heat source for cooling. Further, the cooling means is supplied with cold water from an ice heat storage tank, and the air supplied to the turbine can be cooled by the cold water obtained by utilizing the latent heat of melting of ice.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0010】図1は、本発明に係る蓄熱型熱電併給シス
テムの第1実施例を示すブロック図であり、1は、液化
天然ガス、天然ガス、油、石炭などの燃料を燃焼して回
転動力を出力するタービンを示し、このタービン1に発
電機2が連動連結され、発電電力を得るように構成され
ている。得られた電力は、照明器具、換気用ファン、給
水用ポンプ、ヒートポンプなどの各種の電気機器の駆動
に供される。
FIG. 1 is a block diagram showing a first embodiment of a regenerative cogeneration system according to the present invention. In FIG. 1, reference numeral 1 denotes a rotary power by burning a fuel such as liquefied natural gas, natural gas, oil, or coal. And a generator 2 is operatively connected to the turbine 1 so as to obtain generated power. The obtained electric power is used for driving various electric devices such as a lighting fixture, a ventilation fan, a water supply pump, and a heat pump.

【0011】タービン1に圧縮機3が連動連結されてい
る。圧縮機3に吸気管4が接続されるとともに、圧縮機
3とタービン1とが、燃焼器5を介装した通気管6を介
して接続され、圧縮機3で圧縮した空気を加熱し、この
高温高圧ガスをタービン1に供給するようになってい
る。
A compressor 3 is connected to the turbine 1 in an interlocked manner. An intake pipe 4 is connected to the compressor 3, and the compressor 3 and the turbine 1 are connected via a ventilation pipe 6 provided with a combustor 5, and heats the air compressed by the compressor 3. The high-temperature and high-pressure gas is supplied to the turbine 1.

【0012】タービン1からの排気管7が、吸収式冷凍
機8の発生器9に付設された排熱回収部10に接続さ
れ、発生器9内のアンモニア水溶液をタービン1からの
排熱により加熱し、アンモニア蒸気を出すようになって
いる。図中11は、排熱回収によって低温化された排ガ
スを排出する煙突を示している。
An exhaust pipe 7 from the turbine 1 is connected to an exhaust heat recovery unit 10 attached to the generator 9 of the absorption refrigerator 8, and heats the aqueous ammonia solution in the generator 9 by exhaust heat from the turbine 1. And emits ammonia vapor. In the figure, reference numeral 11 denotes a chimney for discharging exhaust gas cooled down by exhaust heat recovery.

【0013】吸収式冷凍機8は、前記発生器9と凝縮器
12と蒸発器13と吸収器14とから構成されている。
凝縮器11では、発生器9からのアンモニア蒸気を空気
で冷却して凝縮液化させ、アンモニア液を得るようにな
っている。
The absorption refrigerator 8 is composed of the generator 9, the condenser 12, the evaporator 13, and the absorber 14.
In the condenser 11, the ammonia vapor from the generator 9 is cooled by air and condensed and liquefied to obtain an ammonia liquid.

【0014】蒸発器13内には、アンモニア液を低温冷
媒として氷を生成する製氷機15が収容され、アンモニ
ア液が低温で蒸発するときの気化熱により製氷機15内
のエチレングリコール水溶液から微細な氷、すなわち、
シャーベット状の氷を生成するようになっている。吸収
器14では、蒸発器13からのアンモニア蒸気を吸収
し、空気で冷却することにより、濃度の高いアンモニア
水溶液として発生器9に戻すようになっている。
The evaporator 13 accommodates an ice maker 15 for generating ice using the ammonia liquid as a low-temperature refrigerant, and generates fine water from the ethylene glycol aqueous solution in the ice maker 15 by heat of vaporization when the ammonia liquid evaporates at a low temperature. Ice, ie
They produce sherbet-like ice. The absorber 14 absorbs the ammonia vapor from the evaporator 13 and cools it with air so as to return to the generator 9 as a highly concentrated aqueous ammonia solution.

【0015】製氷機15には、第1のポンプ16を備え
た第1のポンプ配管17と氷搬送管18とを介して氷蓄
熱槽19が接続され、生成した氷を氷蓄熱槽19内に蓄
えるように構成されている。
An ice heat storage tank 19 is connected to the ice making machine 15 via a first pump pipe 17 having a first pump 16 and an ice transport pipe 18, and the generated ice is stored in the ice heat storage tank 19. It is configured to store.

【0016】氷蓄熱槽19内の底部には、第2のポンプ
20を備えた第2のポンプ配管21が接続され、一方、
氷蓄熱槽19内の上部には、シャワーノズル22が設け
られるとともにそのシャワーノズル22に第1の戻り配
管23が接続され、氷蓄熱槽19内からシャーベット状
の氷を取り出して冷房用熱源としての凝縮器(図示せ
ず)などに供給し、発電に伴う排熱を利用して冷房など
を行えるように構成されている。
A second pump pipe 21 having a second pump 20 is connected to the bottom of the ice heat storage tank 19.
A shower nozzle 22 is provided in the upper part of the ice heat storage tank 19 and a first return pipe 23 is connected to the shower nozzle 22 to take out sherbet-like ice from the ice heat storage tank 19 and serve as a heat source for cooling. It is configured to be supplied to a condenser (not shown) or the like, and to perform cooling or the like using waste heat accompanying power generation.

【0017】圧縮機3への吸気管4に冷却手段としての
熱交換器24が介装され、この熱交換器24と氷蓄熱槽
19とが、第3のポンプ25を備えた第3のポンプ配管
26を介して接続されるとともに、熱交換器24とシャ
ワーノズル22とが第2の戻り配管27を介して接続さ
れている。
A heat exchanger 24 as a cooling means is interposed in the intake pipe 4 to the compressor 3, and the heat exchanger 24 and the ice heat storage tank 19 are connected to a third pump having a third pump 25. The heat exchanger 24 and the shower nozzle 22 are connected via a second return pipe 27 while being connected via a pipe 26.

【0018】上記構成により、発電に伴う排熱を利用し
て生成される氷を氷蓄熱槽19に蓄え、更に、蓄えた氷
を利用して、タービン1に供給する圧縮前の空気を冷却
し、タービン1の出力を向上できる。
According to the above configuration, ice generated by using the exhaust heat generated by the power generation is stored in the ice heat storage tank 19, and the compressed air to be supplied to the turbine 1 is cooled by using the stored ice. Thus, the output of the turbine 1 can be improved.

【0019】このため、例えば、工場などのように1日
中発電電力を必要としている場合に、連続して製氷し、
昼間など、要求される電力負荷が高くなるときなど必要
な時間に、適宜蓄えた氷を利用してタービン1の出力を
向上して発電機2による出力を向上でき、排熱回収効率
と発電機の出力効率とを合計した総合効率を効果的に向
上でき、極めて有用である。一例を示せば、圧縮機3へ
の吸入空気の温度を34℃から24℃まで冷却した場合、発
電機の出力を8%上昇できる。
For this reason, for example, when power generation is required all day, such as in a factory, ice is continuously produced.
At a required time, such as when the required power load becomes high, such as during the daytime, the output of the turbine 1 can be improved by using the ice that has been appropriately stored, and the output of the generator 2 can be improved. The total efficiency obtained by summing the output efficiency and the total output efficiency can be effectively improved, which is extremely useful. For example, when the temperature of the intake air to the compressor 3 is cooled from 34 ° C. to 24 ° C., the output of the generator can be increased by 8%.

【0020】図2は、本発明に係る蓄熱型熱電併給シス
テムの第2実施例を示すブロック図であり、第1実施例
と異なるところは次の通りである。
FIG. 2 is a block diagram showing a second embodiment of the regenerative cogeneration system according to the present invention. The difference from the first embodiment is as follows.

【0021】すなわち、タービン1aに排熱回収ボイラ
31が接続されるとともに、タービン1aに蒸気タービ
ン32が連動連結され、排熱回収ボイラ31と蒸気ター
ビン32とが蒸気配管33を介して接続され、発電に伴
って発生する高温排熱を利用して蒸気を発生させ、その
蒸気を蒸気タービン32に供給し、発電出力を向上する
ようにコンバインドサイクル発電システムが構成されて
いる。
That is, an exhaust heat recovery boiler 31 is connected to the turbine 1a, a steam turbine 32 is connected to the turbine 1a in an interlocking manner, and the exhaust heat recovery boiler 31 and the steam turbine 32 are connected via a steam pipe 33. A combined cycle power generation system is configured to generate steam using high-temperature exhaust heat generated by power generation, supply the steam to a steam turbine 32, and improve power generation output.

【0022】蒸気タービン32には復水器34が付設さ
れ、その復水器34と排熱回収ボイラ31とが給水ポン
プ35を介装した給水管36を介して接続され、冷却液
化した還元水を排熱回収ボイラ31を戻すように構成さ
れている。図中37は、排熱回収によって低温化された
排ガスを排出する煙突を示している。
A condenser 34 is attached to the steam turbine 32, and the condenser 34 and the exhaust heat recovery boiler 31 are connected via a water supply pipe 36 provided with a water supply pump 35, and the cooled liquefied reduced water Is returned to the exhaust heat recovery boiler 31. In the figure, reference numeral 37 denotes a chimney for discharging exhaust gas cooled down by exhaust heat recovery.

【0023】蒸気タービン32と排熱回収部10aとが
排気管7aを介して接続され、膨張済みの蒸気を吸収式
冷凍機8に供給するように構成されている。他の構成は
第1実施例と同じであり、同一図番を付すことにより、
その説明は省略する。
The steam turbine 32 and the exhaust heat recovery unit 10a are connected via an exhaust pipe 7a, and are configured to supply expanded steam to the absorption refrigerator 8. The other configuration is the same as that of the first embodiment.
The description is omitted.

【0024】この第2実施例によれば、蒸気タービン3
2の付加に加え、発電に伴う排熱を利用して生成される
氷を利用して、圧縮機3に供給する空気を冷却してター
ビン1の出力を向上し、発電出力をより一層向上でき
る。
According to the second embodiment, the steam turbine 3
In addition to the addition of 2, the output of the turbine 1 is improved by cooling the air supplied to the compressor 3 using ice generated by using the exhaust heat generated by the power generation, and the power generation output can be further improved. .

【0025】上記実施例では、タービン1に供給する空
気を冷却するのに、氷蓄熱槽19からシャーベット状の
氷を熱交換器24に供給するように構成し、氷の融解潜
熱を利用できるために、冷水を供給する場合に比べ、氷
搬送のための配管などを小径のものにでき、スペースを
少なくできる利点を有しているが、例えば、氷蓄熱槽1
9に熱交換器を設け、その熱交換器と吸気管4に介装し
た熱交換器24とを配管を介して接続し、熱交換器24
に冷水を供給して冷却するようにしても良い(請求項
2)。この場合、エチレングリコール水溶液の量を少な
くできるとともに、氷搬送のための複雑な構成が不要で
安価にできる利点がある。
In the above embodiment, to cool the air supplied to the turbine 1, the sherbet-like ice is supplied from the ice heat storage tank 19 to the heat exchanger 24, and the latent heat of melting of the ice can be utilized. In addition, compared with the case of supplying cold water, there is an advantage that a pipe for ice transport can be made smaller in diameter and a space can be reduced.
9 is provided with a heat exchanger, and the heat exchanger is connected to a heat exchanger 24 interposed in the intake pipe 4 via a pipe.
The cooling may be performed by supplying cold water to the cooling device (claim 2). In this case, there is an advantage that the amount of the ethylene glycol aqueous solution can be reduced, and a complicated configuration for transporting ice is not required and the cost can be reduced.

【0026】上記実施例において、タービン1に供給す
る空気を冷却するのに、例えば、吸気管4を氷蓄熱槽1
9内に通すように構成しても良く、このような構成をも
冷却手段と称する。
In the above embodiment, for cooling the air supplied to the turbine 1, for example, the intake pipe 4 is connected to the ice heat storage tank 1.
9, and such a configuration is also referred to as cooling means.

【0027】上記実施例において、熱交換器24の下流
側において吸気管4に温度センサを設け、その温度セン
サによる測定温度と設定温度とを比較し、測定温度が設
定温度になるように第3のポンプ25の吐出量を調整
し、所定温度の空気をタービン1,1aに供給できるよ
うに構成しても良い。
In the above embodiment, a temperature sensor is provided in the intake pipe 4 on the downstream side of the heat exchanger 24, a temperature measured by the temperature sensor is compared with a set temperature, and a third temperature is set so that the measured temperature becomes the set temperature. The discharge amount of the pump 25 may be adjusted so that air at a predetermined temperature can be supplied to the turbines 1 and 1a.

【0028】吸収式冷凍機8に使用する低温冷媒として
は、アンモニア水溶液に限らず、例えば、二成分系フロ
ンガス、アルコール類など各種のものが使用可能であ
る。
The low-temperature refrigerant used in the absorption refrigerator 8 is not limited to the aqueous ammonia solution, and various types of refrigerant such as two-component Freon gas and alcohols can be used.

【0029】[0029]

【発明の効果】以上説明したように、請求項1に係る発
明の蓄熱型熱電併給システムによれば、燃料を燃焼させ
て発電するとともに、それに伴って発生する排熱を回収
し、氷として氷蓄熱槽に蓄え、適宜、冷房用熱源などと
して用いるから、システム全体を安価に構築できる。し
かも、排熱を回収するのみならず、それによって得た氷
によって、排熱発生源であるタービンに供給する空気を
冷却するという、新規な循環構成を採用し、氷蓄熱槽に
蓄えた氷の融解潜熱を利用して、タービンに供給する空
気を冷却するから、別途専用の冷却設備を設けずに済む
とともに、氷を搬送供給する場合でも冷水を供給する場
合に比べて搬送量を少なくでき、極めて安価にしてター
ビンの出力を向上し、総合効率を向上できる。
As described above, according to the regenerative cogeneration system according to the first aspect of the present invention, the fuel is burned to generate power, and the waste heat generated thereby is recovered, and ice is used as ice. Since the system is stored in a heat storage tank and is appropriately used as a cooling heat source, the entire system can be constructed at low cost. In addition, not only the waste heat is recovered, but the resulting ice cools the air supplied to the turbine, which is the source of the waste heat. By utilizing the latent heat of melting to cool the air supplied to the turbine, there is no need to provide a separate cooling facility, and even when ice is transported and supplied, the transport amount can be reduced compared to the case where cold water is supplied. It is possible to improve the output of the turbine at a very low price and improve the overall efficiency.

【0030】また、請求項2に係る発明の蓄熱型熱電併
給システムによれば、請求項1に係る発明と同様に、シ
ステム全体を安価に構築できる。しかも、排熱を回収す
るのみならず、それによって得た氷によって冷却された
冷水を排熱発生源であるタービンに供給するという、新
規な循環構成を採用し、氷蓄熱槽に蓄えた氷の融解潜熱
を利用して、タービンに供給する空気を冷却するから、
別途専用の冷却設備を設けずに済むとともに、氷を供給
する場合に比べて搬送装置を簡単にでき、極めて安価に
してタービンの出力を向上し、総合効率を向上できる。
According to the regenerative heat and power supply system according to the second aspect of the present invention, the entire system can be constructed at a low cost, similarly to the first aspect of the present invention. In addition, a new circulation configuration is adopted that not only recovers the exhaust heat but also supplies the cold water cooled by the ice obtained to the turbine, which is the source of the exhaust heat, and the ice stored in the ice heat storage tank is recycled. Since the air supplied to the turbine is cooled using the latent heat of fusion,
It is not necessary to separately provide a dedicated cooling facility, and the conveying device can be simplified as compared with the case where ice is supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蓄熱型熱電併給システムの第1実
施例を示す全体システム構成図である。
FIG. 1 is an overall system configuration diagram showing a first embodiment of a regenerative cogeneration system according to the present invention.

【図2】本発明に係る蓄熱型熱電併給システムの第2実
施例を示す全体システム構成図である。
FIG. 2 is an overall system configuration diagram showing a second embodiment of a regenerative cogeneration system according to the present invention.

【符号の説明】[Explanation of symbols]

1,1a…タービン 2…発電機 8…吸収式冷凍機 15…製氷機 19…氷蓄熱槽 24…冷却手段としての熱交換器 1, 1a Turbine 2 Generator 8 Absorption refrigerator 15 Ice maker 19 Ice storage tank 24 Heat exchanger as cooling means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28D 20/02 F28D 20/00 C (72)発明者 吉竹 裕二 大阪市中央区本町四丁目1番13号 株式会 社竹中工務店大阪本店内 (72)発明者 杉浦 修史 大阪市中央区本町四丁目1番13号 株式会 社竹中工務店大阪本店内 Fターム(参考) 3L093 AA01 BB01 BB26 BB28 LL01 LL05 MM06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F28D 20/02 F28D 20/00 C (72) Inventor Yuji Yoshitake 4-1-1-13 Honcho, Chuo-ku, Osaka-shi (72) Inventor Osamu Sugiura 4-1-1, Honmachi, Chuo-ku, Osaka-shi F-term (reference) 3L093 AA01 BB01 BB26 BB28 LL01 LL05 MM06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料を燃焼して回転動力を出力するター
ビンと、 前記タービンに連動連結されて発電する発電機と、 前記タービンから排出される排ガスの熱を回収して低温
冷媒を得る吸収式冷凍機と、 前記吸収式冷凍機の低温冷媒によって氷を生成する製氷
機と、 前記製氷機で得られた氷を蓄える氷蓄熱槽と、 前記タービンに供給する空気を冷却する冷却手段とを備
え、 前記氷蓄熱槽に蓄えられた氷により空気を冷却するよう
に構成したことを特徴とする蓄熱型熱電併給システム。
1. A turbine that burns fuel to output rotational power, a generator that is linked to the turbine to generate power, and an absorption type that recovers heat of exhaust gas discharged from the turbine to obtain a low-temperature refrigerant. A refrigerator; an ice maker that generates ice by using a low-temperature refrigerant of the absorption refrigerator; an ice heat storage tank that stores ice obtained by the ice maker; and a cooling unit that cools air supplied to the turbine. A heat storage type cogeneration system, wherein air is cooled by ice stored in the ice heat storage tank.
【請求項2】 燃料を燃焼して回転動力を出力するター
ビンと、 前記タービンに連動連結されて発電する発電機と、 前記タービンから排出される排ガスの熱を回収して低温
冷媒を得る吸収式冷凍機と、 前記吸収式冷凍機の低温冷媒によって氷を生成する製氷
機と、 前記製氷機で得られた氷を蓄える氷蓄熱槽と、 前記タービンに供給する空気を冷却する冷却手段とを備
え、 前記氷蓄熱槽と前記冷却手段とを配管を介して接続し、
前記氷蓄熱槽に蓄えられた氷により冷却された冷水を前
記冷却手段に供給して空気を冷却するように構成したこ
とを特徴とする蓄熱型熱電併給システム。
2. A turbine that burns fuel to output rotary power, a generator that is connected to the turbine to generate power, and an absorption type that recovers heat of exhaust gas discharged from the turbine to obtain a low-temperature refrigerant. A refrigerator; an ice maker that generates ice by using a low-temperature refrigerant of the absorption refrigerator; an ice heat storage tank that stores ice obtained by the ice maker; and a cooling unit that cools air supplied to the turbine. Connecting the ice heat storage tank and the cooling means via a pipe,
A heat storage type combined heat and power supply system, characterized in that cold water cooled by ice stored in the ice heat storage tank is supplied to the cooling means to cool air.
JP10351310A 1998-12-10 1998-12-10 Regenerative power/heat combined supply system Pending JP2000179984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10351310A JP2000179984A (en) 1998-12-10 1998-12-10 Regenerative power/heat combined supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10351310A JP2000179984A (en) 1998-12-10 1998-12-10 Regenerative power/heat combined supply system

Publications (1)

Publication Number Publication Date
JP2000179984A true JP2000179984A (en) 2000-06-30

Family

ID=18416449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10351310A Pending JP2000179984A (en) 1998-12-10 1998-12-10 Regenerative power/heat combined supply system

Country Status (1)

Country Link
JP (1) JP2000179984A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097352A (en) * 2001-09-27 2003-04-03 Chugoku Electric Power Co Inc:The Cogeneration system utilizing lng cryogenics
KR100716282B1 (en) 2006-06-20 2007-05-08 한국지역난방공사 Ice slurry supply system
CN101846416A (en) * 2010-04-29 2010-09-29 华北电力大学 System and method for realizing area combined cooling heat by cogeneration coupling heat pump
CN101852459A (en) * 2010-04-30 2010-10-06 北京中科华誉能源技术发展有限责任公司 System for improving efficiency of power plant by driving heat pump with steam extracted from extraction steam turbine
US20160177827A1 (en) * 2013-08-01 2016-06-23 Siemens Aktiengesellschaft Gas turbine power plant made flexible
CN110500183A (en) * 2019-09-03 2019-11-26 潍坊市长松柴油机有限责任公司 A kind of cold and hot Electricity Federation Gas Generator Set
CN110552749A (en) * 2019-09-03 2019-12-10 中南大学 Transcritical carbon dioxide circulation waste heat power generation system of coupling lithium bromide absorption refrigeration
JP2021528620A (en) * 2018-04-18 2021-10-21 カーボン−クリーン テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Operation method of regenerative heat storage device and heat storage device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097352A (en) * 2001-09-27 2003-04-03 Chugoku Electric Power Co Inc:The Cogeneration system utilizing lng cryogenics
KR100716282B1 (en) 2006-06-20 2007-05-08 한국지역난방공사 Ice slurry supply system
CN101846416A (en) * 2010-04-29 2010-09-29 华北电力大学 System and method for realizing area combined cooling heat by cogeneration coupling heat pump
CN101852459A (en) * 2010-04-30 2010-10-06 北京中科华誉能源技术发展有限责任公司 System for improving efficiency of power plant by driving heat pump with steam extracted from extraction steam turbine
US20160177827A1 (en) * 2013-08-01 2016-06-23 Siemens Aktiengesellschaft Gas turbine power plant made flexible
JP2021528620A (en) * 2018-04-18 2021-10-21 カーボン−クリーン テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Operation method of regenerative heat storage device and heat storage device
JP7159346B2 (en) 2018-04-18 2022-10-24 カーボン-クリーン テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of operating regenerative heat storage device and heat storage device
CN110500183A (en) * 2019-09-03 2019-11-26 潍坊市长松柴油机有限责任公司 A kind of cold and hot Electricity Federation Gas Generator Set
CN110552749A (en) * 2019-09-03 2019-12-10 中南大学 Transcritical carbon dioxide circulation waste heat power generation system of coupling lithium bromide absorption refrigeration

Similar Documents

Publication Publication Date Title
EP0277777B1 (en) Power plant using co2 as a working fluid
US8286431B2 (en) Combined cycle power plant including a refrigeration cycle
US7827794B1 (en) Ultra low emissions fast starting power plant
JP7181690B2 (en) Cryogenic generator
KR101320593B1 (en) Cogeneration system using heat pump
US11293593B2 (en) System to recover negative energy from liquefied natural gas
JPH08296410A (en) Cogeneration equipment and combined cycle generation equipment
JPH03215139A (en) Power generating method
JPH10288047A (en) Liquefied natural gas evaporating power generating device
JP2003232226A (en) Gas turbine power generation equipment
JP2000179984A (en) Regenerative power/heat combined supply system
JPH04127850A (en) Liquid air storage power generating system
KR20150094190A (en) Combined cogeneration Organic Rankine cycle electricity generation system
KR20150096266A (en) Combined cogeneration Organic Rankine cycle electricity generation system
JPH11343865A (en) Cryogenic turbine power generation system
JPH0688538A (en) Gas turbine plant
KR102426556B1 (en) Floating and storage power plant using cold heat of liquefied natural gas and generating method thereof
CN109882292A (en) A kind of LNG gas turbine coupling cold energy generation system and electricity-generating method
JPH0913918A (en) Liquid air utilizing power generating facility
CN107289665A (en) Regional Energy supply system
US9608498B2 (en) Method and device for generating electrical energy
JP2001159318A (en) Cryogenic power generating device
JP2005171861A (en) Rankine cycle power generation system
RU2812381C1 (en) Operating method of steam gas plant
JP2000193341A (en) Ice making system