JP2000179727A - Abrasion resistant valve element with film, valve seat, valve having valve element and valve seat, and manufacture of valve element and valve seat - Google Patents

Abrasion resistant valve element with film, valve seat, valve having valve element and valve seat, and manufacture of valve element and valve seat

Info

Publication number
JP2000179727A
JP2000179727A JP10354976A JP35497698A JP2000179727A JP 2000179727 A JP2000179727 A JP 2000179727A JP 10354976 A JP10354976 A JP 10354976A JP 35497698 A JP35497698 A JP 35497698A JP 2000179727 A JP2000179727 A JP 2000179727A
Authority
JP
Japan
Prior art keywords
valve
valve seat
film
crn
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10354976A
Other languages
Japanese (ja)
Inventor
Naoaki Kitagawa
直明 北川
Isao Ando
勲雄 安東
Shinichi Okabe
信一 岡部
Yuki Tsukada
由貴 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10354976A priority Critical patent/JP2000179727A/en
Publication of JP2000179727A publication Critical patent/JP2000179727A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve a sliding characteristic, include no material making radioactivity, and reduce costs. SOLUTION: In an abrasion resistant valve element with a film and a valve seat, a CrN film whose surface is formed as a sliding surface is formed on a base material. The valve has one kind or two kinds of the valve element and the valve seat. This manufacturing method is composed of a first process for executing blast treatment, alkali cleaning, or ethanol cleaning on a valve element base material surface corresponding to the sliding surface or on the valve seat base material surface, a second process for executing surfacing, a third process for executing Cr ion bombardment treatment, and a fourth process for forming a CrN film by an ion plating method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被膜付き耐摩耗性
弁体、弁座、該弁体・弁座を有する弁、および該弁体・
弁座の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant valve body with a coating, a valve seat, a valve having the valve body / valve seat, and a valve body having the valve body / valve seat.
The present invention relates to a valve seat manufacturing method.

【0002】[0002]

【従来の技術】高圧・高温水用ゲート弁・グローブ弁・
ボール弁・チェック弁・調整弁などの弁は、弁体および
弁座を有し、弁体が弁座に対して摺動することによって
開閉を行う。従って、弁体および弁座は耐摩耗性・耐焼
付性などの摺動特性に優れていることが必要である。
[Prior Art] High pressure / high temperature water gate valve / globe valve /
A valve such as a ball valve, a check valve, and a regulating valve has a valve body and a valve seat, and opens and closes when the valve body slides with respect to the valve seat. Therefore, the valve element and the valve seat need to have excellent sliding characteristics such as wear resistance and seizure resistance.

【0003】ところで、弁体および弁座は、材質が炭素
鋼やステンレス鋼などであるので摺動特性が劣る。その
ため、通常、ステライトに代表される表面硬化材による
肉盛溶接を、弁体と弁座の摺動面に相当する基材表面に
施す。
[0003] Incidentally, since the material of the valve body and the valve seat is made of carbon steel, stainless steel or the like, the sliding characteristics are inferior. Therefore, build-up welding with a surface hardening material represented by stellite is usually performed on the surface of the base material corresponding to the sliding surface between the valve body and the valve seat.

【0004】しかるに、ステライトは希少金属で高価で
あるコバルトを主成分とする。また、ステライトを用い
て炭素鋼などの基材表面に肉盛溶接を施す場合、肉盛溶
接の他に、熱処理・切削・研摩・擦り合わせなどの工程
を経る。
[0004] However, stellite is mainly composed of cobalt, which is a rare metal and expensive. In addition, when performing build-up welding on the surface of a base material such as carbon steel using stellite, a process such as heat treatment, cutting, polishing, and rubbing is performed in addition to build-up welding.

【0005】これらの工程において、(1)肉盛溶接は
熟練を要する、(2)熱処理は熱歪を除去するため不可
欠であり、切削・研摩は肉盛溶接後の形状を整えるため
不可欠であり、また両者の表面を削って面と面を合わせ
る擦り合わせは弁体と弁座の間で水漏れを起こさないた
めに不可欠である、(3)弁座は、弁箱に付いた状態で
は肉盛溶接およびその後の加工を施すことが困難なた
め、これらを別に施した後に弁箱に接続溶接する。
In these steps, (1) overlay welding requires skill, (2) heat treatment is indispensable for removing thermal strain, and cutting and polishing are indispensable for adjusting the shape after overlay welding. In addition, the rubbing of the surfaces by shaving both surfaces is essential to prevent water leakage between the valve body and the valve seat. (3) When the valve seat is attached to the valve box, Since it is difficult to perform lap welding and subsequent processing, these are separately applied and then connected and welded to the valve box.

【0006】従って、ステライトを用いて肉盛溶接を施
す方法は、(1)高価なステライトの多くが切削・研摩
で無駄になる、(2)熟練を要する、(3)工程が多い
(コスト高)という問題点がある。さらに、ステライト
の主成分であるコバルトが放射線環境下で放射能を帯び
るので、表面硬化弁のメンテナンス・廃棄処理などで特
別な留意が必要であるという問題点もある。
Therefore, the method of performing overlay welding using stellite is as follows: (1) Most of expensive stellite is wasted in cutting and polishing, (2) skill is required, and (3) many steps (high cost) ). Furthermore, since cobalt, which is a main component of stellite, has radioactivity in a radiation environment, there is also a problem that special care is required for maintenance and disposal of a surface hardening valve.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、上記
問題点を解消し、(1)摺動特性に優れ、(2)放射能
化する材料を含まない、かつ(3)安価な被膜付き耐摩
耗性弁体、弁座、該弁体・弁座を有する弁、および該弁
体・弁座の製法を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention solves the above-mentioned problems, and (1) has excellent sliding characteristics, (2) does not contain a material to be activated, and (3) has an inexpensive film. It is an object to provide a wear-resistant valve body, a valve seat, a valve having the valve body / valve seat, and a method of manufacturing the valve body / valve seat.

【0008】[0008]

【課題を解決するための手段】本発明の被膜付き耐摩耗
性弁体および弁座は、上記目的を達成するために、被膜
表面が摺動面となるCrN被膜が基材表面に形成されて
なる。
According to the present invention, there is provided a wear-resistant valve body and a valve seat with a film in which a CrN film whose surface is a sliding surface is formed on a substrate surface in order to achieve the above object. Become.

【0009】また、本発明の弁は、上記本発明の被膜付
き耐摩耗性弁体および弁座から選ばれる1種または2種
を有する。
Further, the valve of the present invention has one or two types selected from the above-mentioned coated wear-resistant valve body and valve seat of the present invention.

【0010】さらに、本発明の弁体・弁座の製法は、摺
動面に相当する弁体基材表面または弁座基材表面をブラ
スト処理、アルカリ洗浄またはエタノール洗浄する第1
工程、第1工程を経た該表面の面仕上げをする第2工
程、第2工程を経た該表面をCrイオンボンバード処理
する第3工程、および第3工程を経た該表面にイオンプ
レーティング法によりCrN被膜を形成する第4工程か
らなる。
Further, in the method of manufacturing a valve body and a valve seat according to the present invention, the first step includes blasting, alkali washing or ethanol washing the surface of the valve body substrate or the surface of the valve seat substrate corresponding to the sliding surface.
A second step of finishing the surface after the first step, a third step of performing a Cr ion bombardment treatment on the surface after the second step, and a CrN by ion plating on the surface after the third step. It comprises a fourth step of forming a coating.

【0011】[0011]

【発明の実施の形態】(1)被膜付き弁体・弁座 本発明の被膜付き弁体および弁座の基材は、S25C、
S35C、S45Cなどの炭素鋼などの成分組成を有
し、鍛造法や鋳造法などで作成される。このような鍛鋼
材・鋳鋼材は、表面硬度が一般的な産業構造材程度のH
V 350以下である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) Valve Body and Valve Seat with Film The base material of the valve body with a film and the valve seat of the present invention is S25C,
It has a component composition of carbon steel such as S35C and S45C, and is formed by a forging method, a casting method, or the like. Such forged steel materials and cast steel materials have a surface hardness equivalent to that of general industrial structural materials.
V 350 or less.

【0012】上記基材にCrN被膜を形成する。CrN
被膜は、(a)耐摩耗性、耐かじり性および耐食性(特
に高温水中での耐食性)が優れる、(b)成膜が容易で
ある、(c)ピンホールの数が少ないなどの利点を有す
る。
A CrN film is formed on the substrate. CrN
The coating has advantages such as (a) excellent wear resistance, galling resistance and corrosion resistance (especially corrosion resistance in high-temperature water), (b) easy film formation, and (c) small number of pinholes. .

【0013】CrN被膜は、平均膜厚が2μm以上、膜
厚分布(膜厚のばらつき)が平均膜厚の±2μmの範囲
以内、かつ表面の平均粗さRaが0.5μm以下になる
ように形成するのが好ましい。平均膜厚が2μm未満で
は、大型部材に被膜を形成したときに、膜厚分布のため
に密着不良の箇所、従って耐摩耗性の低い箇所が生じる
恐れがある。そして、膜厚分布と表面平均粗さの上記条
件を満たせば、十分なシール性を得る(水漏れをなく
す)ために再度行う被膜表面の仕上げ研磨(擦り合わ
せ)の必要が生じない。平均膜厚の約10%が膜厚分布
としてばらつくので、上記膜厚分布を満足させるため
に、平均膜厚の上限は20μmが好ましい。
The CrN film has an average film thickness of 2 μm or more, a film thickness distribution (film thickness variation) within a range of ± 2 μm of the average film thickness, and an average surface roughness Ra of 0.5 μm or less. Preferably, it is formed. When the average film thickness is less than 2 μm, when a film is formed on a large member, there is a possibility that a portion having poor adhesion due to the film thickness distribution, and thus a portion having low wear resistance, may occur. If the above conditions of the film thickness distribution and the surface average roughness are satisfied, it is not necessary to perform the finishing polishing (rubbing) of the coating surface again to obtain sufficient sealing properties (elimination of water leakage). Since about 10% of the average film thickness varies as the film thickness distribution, the upper limit of the average film thickness is preferably 20 μm to satisfy the above film thickness distribution.

【0014】また、CrN被膜は、(イ)摩耗特性が優
れる、(ロ)ピンホールが少ない、(ハ)成膜時間が短
いなどの理由で、(111)面または(220)面が強
く配向する結晶配向が好ましい。
The CrN film has a (111) plane or a (220) plane which is strongly oriented because of (a) excellent wear characteristics, (b) few pinholes, and (c) short film formation time. Preferred crystal orientation.

【0015】(2)被膜付き弁体・弁座を有する弁 CrN被膜はそれ自体、摺動特性に優れるので、弁体お
よび弁座にCrN被膜が形成されていれば、それら弁体
および弁座は優れた摺動特性を示す。それだけでなく、
弁体基材および弁座基材から選ばれる1種にCrN被膜
が形成されていて、他の1種にCrN被膜が形成されて
いずそのまま弁体または弁座に用いても、弁体および弁
座双方が優れた摺動特性を示す。それは、1種に形成さ
れているCrN被膜が双方間の摩擦係数を小さくするか
らであると考えられる。
(2) A valve having a valve element and a valve seat with a coating Since the CrN coating itself has excellent sliding characteristics, if the valve element and the valve seat are formed with a CrN coating, the valve element and the valve seat will be provided. Shows excellent sliding characteristics. not only that,
Even if a CrN film is formed on one type selected from the valve body base material and the valve seat base material and the other type is not formed with a CrN film and used as it is for the valve body or the valve seat, the valve body and the valve seat may be used. Both seats show excellent sliding characteristics. This is considered to be because the CrN film formed as one kind reduces the friction coefficient between the two.

【0016】(3)被膜付き弁体・弁座の製造方法 (a)ブラスト処理・アルカリ洗浄・エタノール洗浄 (イ)弁体基材、弁座基材から錆・汚れ・油・ガスなど
を除去する、(ロ)被膜との密着性を向上させるため
に、ブラスト処理・アルカリ洗浄・エタノール洗浄など
を行う。
(3) Manufacturing method of valve body and valve seat with coating (a) Blast treatment, alkali washing, ethanol washing (a) Removal of rust, dirt, oil, gas, etc. from valve body base material and valve seat base material (B) In order to improve the adhesion to the coating, blasting, alkali washing, ethanol washing, etc. are performed.

【0017】(b)面仕上げ 被膜と基材との密着力は、基材が平滑なほど大きい。基
材の表面が荒れていると、基材の粗さを被膜がそのまま
受け継いで、膜厚にムラが生じたり凹凸の山に応力が集
中したりして膜の剥離などが生じる可能性がある。従っ
て、被膜付き弁体・弁座の摺動特性を向上させ、水漏れ
が発生しないシール性をもたせるために、基材の表面粗
さはできるだけ小さい方が望ましい。そこで、摺動面に
相当する基材表面は研磨される。研磨前の基材表面粗さ
は平均粗さRaが通常5〜20μmであるが、この基材
を研削およびホーニング加工で0.2〜3μmまで研磨
する。さらにラップ仕上げやバフ研磨などを行い、Ra
で0.1μm以下にすることが望ましい。
(B) Surface Finish The adhesion between the coating and the substrate is greater as the substrate is smoother. If the surface of the substrate is rough, the film inherits the roughness of the substrate as it is, which may cause unevenness in the film thickness or concentration of stress on the peaks of the unevenness, which may cause peeling of the film. . Therefore, it is desirable that the surface roughness of the base material be as small as possible in order to improve the sliding characteristics of the valve body and the valve seat with a coating and to provide a sealing property without water leakage. Therefore, the surface of the base material corresponding to the sliding surface is polished. The average surface roughness Ra of the base material before polishing is usually 5 to 20 μm, and the base material is polished to 0.2 to 3 μm by grinding and honing. In addition, lapping and buffing are performed, and Ra
Is desirably 0.1 μm or less.

【0018】(c)イオンボンバード処理 研磨・洗浄した基材を真空チャンバーに設置し、10-5
Torr程度の真空に排気する。チャンバーにはCrタ
ーゲットが設置されている。基材表面の洗浄、加熱およ
び被膜との密着性向上のために、Crイオンボンバード
処理を行う。このときのバイアス電圧は−1000〜−
800Vが望ましい。バイアス電圧を−1000V未満
にする(絶対値が1000Vを超える)と、基材の表面
粗さが増す恐れがある。一方、−800Vを超えると
(絶対値が800V未満では)、上記効果が十分得られ
ない。
(C) Ion bombardment treatment The polished and washed substrate is placed in a vacuum chamber, and 10 -5
Evacuate to about Torr vacuum. A Cr target is installed in the chamber. A Cr ion bombardment treatment is performed to clean and heat the substrate surface and to improve the adhesion to the coating. The bias voltage at this time is -1000 to-
800V is desirable. If the bias voltage is less than -1000 V (absolute value exceeds 1000 V), the surface roughness of the substrate may increase. On the other hand, when it exceeds -800 V (when the absolute value is less than 800 V), the above effect cannot be sufficiently obtained.

【0019】(d)成膜 このような基材に、コバルト基・ニッケル基・鉄基など
の耐摩耗用肉盛材を用いず直接に、耐摩耗性・耐かじり
性・耐食性に優れたCrN被膜を形成する。
(D) Film formation CrN having excellent wear resistance, galling resistance and corrosion resistance is directly formed on such a base material without using a wear-resistant overlay material such as cobalt-based, nickel-based or iron-based. Form a coating.

【0020】CrN被膜を形成する方法は、比較的低い
温度(200〜500℃)で処理でき、基材材質の劣化
や被膜硬度のばらつきが少ないPVD法(物理蒸着法)
が適している。PVD法には、イオンプレーティング
法、蒸着法、スパッタリング法などがある。これらの中
でイオンプレーティング法は、真空中で被膜を形成する
ときに蒸発粒子をイオン化して運動エネルギーを増加さ
せる方法であり、被膜特性・密着性・反応性を高められ
る点で大変優れている。イオンプレーティング法には、
イオン化の方法により、カソードアーク法、直流放電
法、高周波励起法、活性化反応性蒸着法、ホロカソード
法などがある。
The method of forming a CrN film can be performed at a relatively low temperature (200 to 500 ° C.), and the PVD method (physical vapor deposition method) in which deterioration of the base material and variation in the film hardness are small.
Is suitable. The PVD method includes an ion plating method, an evaporation method, a sputtering method, and the like. Among them, the ion plating method is a method of increasing kinetic energy by ionizing evaporated particles when forming a film in a vacuum, and is extremely excellent in that it can improve film characteristics, adhesion, and reactivity. I have. In the ion plating method,
Examples of the ionization method include a cathode arc method, a DC discharge method, a high-frequency excitation method, an activated reactive vapor deposition method, and a hollow cathode method.

【0021】カソードアーク式イオンプレーティング法
は、蒸着源である金属ターゲットを陰極とし、チャンバ
ーを陽極として、これらの間にアーク放電を起こさせ、
金属蒸気をイオン化し、反応ガスもイオンとの衝突によ
りイオン化され、基材表面に積層させて被膜を形成する
ものである。窒化物被膜を形成する場合は、チャンバー
内に窒素原子を含む反応ガスを導入する。このようなカ
ソードアーク式イオンプレーティング法は、金属のイオ
ン化率が高く、またカソードを多数配置でき、大型形状
や複雑形状の基材に均一な厚さの被膜が形成できるの
で、弁体基材や弁座基材への硬質膜形成に適している。
In the cathodic arc ion plating method, an arc discharge is generated between a metal target, which is a vapor deposition source, as a cathode and a chamber as an anode.
The metal vapor is ionized, and the reaction gas is also ionized by collision with the ions, and is laminated on the substrate surface to form a coating. In the case of forming a nitride film, a reaction gas containing nitrogen atoms is introduced into the chamber. Such a cathodic arc ion plating method has a high metal ionization rate, can arrange a large number of cathodes, and can form a coating having a uniform thickness on a large-sized or complicated-shaped substrate. Or for forming a hard film on a valve seat substrate.

【0022】反応ガスとして、N2 、NH3 や、(CH
33Nのような窒素を含んだ有機化合物などが使用でき
る。被膜形成時のガス圧は用いるガスの種類により異な
るが、通常10-3〜101 Torrの範囲で適宜選択す
れば良い。バイアス電圧は−500〜−50Vが望まし
い。また、このときの部材の温度は200〜500℃が
望ましく、イオンボンバード処理前にヒータによって加
熱を行っても良い。成膜は2〜7μm/hの割合で行
い、膜厚は蒸発源電流やコーティング時間で調整する。
CrN被膜の結晶性は、例えば、反応ガス圧、部材温
度、成膜速度、バイアス電圧などの成膜条件で調整す
る。CrN被膜の結晶面を(111)面に強く配向させ
るには、N2 ガス圧を10〜70mTorr、バイアス
電圧を−500〜−200V、部材温度を450〜55
0℃、成膜速度を5〜7μm/hにする。また、(22
0)面に強く配向させるには、部材温度を300〜42
0℃、成膜速度を2〜4μm/hにする。
As the reaction gas, N 2 , NH 3 , (CH
3) 3 nitrogen laden organic compounds such as N, etc. can be used. The gas pressure at the time of forming the film varies depending on the type of gas used, but may be appropriately selected usually in the range of 10 -3 to 10 1 Torr. The bias voltage is preferably from -500 to -50V. In addition, the temperature of the member at this time is desirably 200 to 500 ° C., and heating may be performed by a heater before the ion bombardment process. Film formation is performed at a rate of 2 to 7 μm / h, and the film thickness is adjusted by the evaporation source current and the coating time.
The crystallinity of the CrN film is adjusted by film forming conditions such as a reaction gas pressure, a member temperature, a film forming speed, and a bias voltage. To strongly oriented crystal plane of the CrN coating (111) plane, 10~70MTorr the N 2 gas pressure, the bias voltage -500-200V, the member Temperature 450-55
At 0 ° C., the film forming speed is 5 to 7 μm / h. Also, (22
0) In order to strongly orient the surface, the member temperature is set to 300 to 42.
At 0 ° C., the film forming speed is 2 to 4 μm / h.

【0023】[0023]

【実施例】[実施例1]直径200mm、厚み2mmの
S25C炭素鋼鍛鋼材(表面粗さRa:0.08μm)
を基材に用いた。エタノールおよびアセトンで基材を超
音波洗浄しカソードアーク方式のイオンプレーティング
装置に設置して、2×10-5Torrまで真空排気し
た。上記イオンプレーティング装置にはCrターゲット
が設置されている。その後、−1000Vのバイアス電
圧を印加しながらCrイオンで基材が450℃になるま
でイオンボンバード処理を施した。
[Example 1] Forged steel material of S25C carbon steel having a diameter of 200 mm and a thickness of 2 mm (surface roughness Ra: 0.08 μm)
Was used as a substrate. The substrate was ultrasonically cleaned with ethanol and acetone, installed in a cathode arc type ion plating apparatus, and evacuated to 2 × 10 −5 Torr. A Cr target is installed in the ion plating apparatus. Thereafter, ion bombardment treatment was performed with Cr ions until the substrate reached 450 ° C. while applying a bias voltage of −1000 V.

【0024】続いて、N2 ガスを導入して真空チャンバ
ー内を50mTorrに制御し、−300Vのバイアス
電圧を印加しながら上記基材にCrN被膜を形成した。
このときの試験片の温度は370℃であった。成膜終了
後、真空下で放置冷却してから大気に開放し取り出し
た。
Subsequently, a CrN film was formed on the base material while introducing a N 2 gas to control the inside of the vacuum chamber to 50 mTorr and applying a bias voltage of −300 V.
At this time, the temperature of the test piece was 370 ° C. After completion of the film formation, the film was allowed to cool under vacuum, opened to the atmosphere, and taken out.

【0025】CrN被膜について、(1)平均膜厚およ
び膜厚分布、(2)平均粗さRa、(3)結晶配向、
(4)表面硬度HV 、(5)耐摩耗性を測定した。ここ
で、膜厚は、電磁式膜厚計を用いることにより、また耐
摩耗性は、形成した被膜表面で直径6mmの超硬合金製
ボールを繰り返し摺動させるボールオンディスク試験
(ボール荷重:2N、周速度:100mm/sec)を
行うことにより測定した。
Regarding the CrN film, (1) average film thickness and film thickness distribution, (2) average roughness Ra, (3) crystal orientation,
(4) surface hardness H V, was measured (5) Abrasion resistance. Here, the film thickness is measured by using an electromagnetic film thickness meter, and the wear resistance is measured by a ball-on-disk test (ball load: 2N) in which a cemented carbide ball having a diameter of 6 mm is repeatedly slid on the surface of the formed film. , Peripheral speed: 100 mm / sec).

【0026】その結果、平均膜厚は20μm、膜厚分布
(最小膜厚〜最大膜厚)は18〜22μm、平均粗さR
aは0.4μmであった。また、CrN被膜は(22
0)面に強く配向していた。さらに、表面硬度はHV
900であり、ステライトで肉盛りした表面硬化材の表
面硬度HV 430を大きく上回った。そして、ボールオ
ンディスク試験では、摩擦係数は0.3〜0.4で、2
0000回の摺動を繰り返しても焼付による摩擦係数の
増加は発生しなかった。また、成膜した部材に摩耗した
痕は観察されなかった。
As a result, the average film thickness was 20 μm, the film thickness distribution (minimum film thickness to maximum film thickness) was 18 to 22 μm, and the average roughness R was
a was 0.4 μm. The CrN coating is (22
0) It was strongly oriented on the plane. Further, the surface hardness H V 1
900, which was much higher than the surface hardness H V 430 of the surface hardened material which was overlaid with stellite. In the ball-on-disk test, the coefficient of friction was 0.3 to 0.4 and 2
Even after repeated 0000 slidings, no increase in the coefficient of friction due to seizure occurred. No wear marks were observed on the formed member.

【0027】[実施例2]イオンボンバード処理までは
実施例1と同様に行った。
Example 2 The procedure was the same as in Example 1 up to the ion bombardment treatment.

【0028】続いて、N2 ガスを導入して真空チャンバ
ー内を50mTorrに制御し、−500Vのバイアス
電圧を印加しながら基材にCrN被膜を形成した。この
ときの試験片の温度は500℃であった。成膜終了後、
真空下で放置冷却してから大気に開放し取り出した。
Subsequently, a CrN film was formed on the substrate while introducing a N 2 gas to control the inside of the vacuum chamber to 50 mTorr and applying a bias voltage of −500 V. At this time, the temperature of the test piece was 500 ° C. After film formation,
After leaving to cool under vacuum, it was opened to the atmosphere and taken out.

【0029】ボールオンディスク試験においてボール荷
重を5Nとした以外は、実施例1と同様にして測定を行
った。
The measurement was carried out in the same manner as in Example 1 except that the ball load was 5 N in the ball-on-disk test.

【0030】その結果、平均膜厚は18μm、膜厚分布
は17〜20μm、平均粗さRaは0.3μmであっ
た。また、CrN被膜は(111)面に強く配向してい
た。さらに、表面硬度はHV 1950であった。そし
て、ボールオンディスク試験では、実施例1と同様の結
果を得た。
As a result, the average film thickness was 18 μm, the film thickness distribution was 17 to 20 μm, and the average roughness Ra was 0.3 μm. Further, the CrN coating was strongly oriented on the (111) plane. Further, the surface hardness was H V 1950. Then, in the ball-on-disk test, the same result as in Example 1 was obtained.

【0031】[実施例3]膜厚をより薄くするために成
膜時間を短くした以外は、実施例1と同様に試験した。
Example 3 A test was performed in the same manner as in Example 1 except that the film formation time was shortened to make the film thickness thinner.

【0032】その結果、平均膜厚は4μm、膜厚分布は
3.2〜4.7μmであった。また、表面硬度はHV
50であり、ステライトで肉盛りした表面硬化材の表面
硬度HV 430を上回った。これら以外は、実施例1と
同様の結果であった。
As a result, the average film thickness was 4 μm, and the film thickness distribution was 3.2 to 4.7 μm. The surface hardness is H V 6
50, which was higher than the surface hardness H V 430 of the surface hardened material overlaid with stellite. Except for these, the results were the same as in Example 1.

【0033】[実施例4]膜厚をより薄くするために成
膜時間を短くした以外は、実施例2と同様に試験した。
Example 4 A test was performed in the same manner as in Example 2 except that the film formation time was shortened to make the film thickness thinner.

【0034】その結果、平均膜厚は3μm、膜厚分布は
2.1〜3.6μmであった。また、表面硬度はHV
20であった。これら以外は、実施例2と同様の結果で
あった。
As a result, the average film thickness was 3 μm, and the film thickness distribution was 2.1 to 3.6 μm. The surface hardness is H V 6
20. Except for these, the results were the same as in Example 2.

【0035】[実施例5]S25C相当炭素鋼鋳鋼材
(SCPH−2)を基材に用いた以外は、実施例1と同
様に試験した。
Example 5 A test was performed in the same manner as in Example 1 except that a cast carbon steel material (SCPH-2) corresponding to S25C was used as a base material.

【0036】その結果、表面硬度はHV 1900であっ
た。これ以外は、実施例1と同様の結果であった。
[0036] As a result, the surface hardness was H V 1900. Except for this, the results were the same as in Example 1.

【0037】[参考例1]成膜時のバイアス電圧を0V
にした以外は実施例1と同様に試験した。
Reference Example 1 The bias voltage at the time of film formation was 0 V
The test was performed in the same manner as in Example 1 except that

【0038】表面硬度はHV 1000であった。そし
て、ボールオンディスク試験の結果、摩擦係数は0.5
〜0.6と大きくなり、試験片の摩耗深さは0.8μm
になった。
The surface hardness was H V 1000. As a result of the ball-on-disk test, the friction coefficient was 0.5
~ 0.6, the wear depth of the test piece is 0.8μm
Became.

【0039】[実施例6]S35C炭素鋼鍛鋼材を基材
に用いた以外は、実施例1と同様に試験した。
Example 6 A test was conducted in the same manner as in Example 1 except that a forged steel material of S35C was used as a base material.

【0040】その結果、表面硬度はHV 1950であっ
た。これ以外は、実施例1と同様の結果であった。
[0040] As a result, the surface hardness was H V 1950. Except for this, the results were the same as in Example 1.

【0041】[実施例7]S35C炭素鋼鍛鋼材を基材
に用いた以外は、実施例2と同様に試験した。
Example 7 A test was conducted in the same manner as in Example 2 except that a forged steel material of S35C was used as a base material.

【0042】その結果、表面硬度はHV 1980であっ
た。これ以外は、実施例2と同様の結果であった。
[0042] As a result, the surface hardness was H V 1980. Except for this, the result was similar to that of Example 2.

【0043】[実施例8]S35C相当炭素鋼鋳鋼材を
基材に用いた以外は、実施例3と同様に試験した。
Example 8 A test was conducted in the same manner as in Example 3 except that a cast steel material corresponding to S35C was used as the base material.

【0044】その結果、表面硬度はHV 600であっ
た。これ以外は、実施例3と同様の結果であった。
[0044] As a result, the surface hardness was H V 600. Except for this, the result was similar to that of Example 3.

【0045】[実施例9]S45C炭素鋼鍛鋼材を基材
に用いた以外は、実施例1と同様に試験した。
Example 9 A test was performed in the same manner as in Example 1 except that a forged S45C steel material was used as a base material.

【0046】その結果、表面硬度はHV 1980であっ
た。これ以外は、実施例1と同様の結果であった。
[0046] As a result, the surface hardness was H V 1980. Except for this, the results were the same as in Example 1.

【0047】[実施例10]S45C炭素鋼鍛鋼材を基
材に用いた以外は、実施例2と同様に試験した。
Example 10 A test was performed in the same manner as in Example 2 except that a forged S45C steel material was used as a base material.

【0048】その結果、表面硬度はHV 1980であっ
た。これ以外は、実施例2と同様の結果であった。
[0048] As a result, the surface hardness was H V 1980. Except for this, the result was similar to that of Example 2.

【0049】[実施例11]S45C相当炭素鋼鋳鋼材
を基材に用いた以外は、実施例3と同様に試験した。
Example 11 A test was conducted in the same manner as in Example 3 except that a cast carbon steel material corresponding to S45C was used as a base material.

【0050】その結果、表面硬度はHV 630であっ
た。これ以外は、実施例3と同様の結果であった。
[0050] As a result, the surface hardness was H V 630. Except for this, the result was similar to that of Example 3.

【0051】実施例1〜11、参考例1における試験条
件および結果の一部を表1に示す。
Table 1 shows some of the test conditions and results in Examples 1 to 11 and Reference Example 1.

【0052】[0052]

【表1】 [Table 1]

【0053】[従来例1]ステライトを試験片に用い
て、実施例1と同様のボールオンディスク試験を行っ
た。その結果、摩擦係数は0.5で上記実施例に比べ若
干高い。また、焼付による摩擦係数の増加は発生しなか
ったが、試験片の摩耗深さは1.20μmになった。
[Conventional Example 1] The same ball-on-disk test as in Example 1 was performed using stellite as a test piece. As a result, the coefficient of friction was 0.5, which was slightly higher than that of the above embodiment. Although the increase in the coefficient of friction did not occur due to seizure, the wear depth of the test piece was 1.20 μm.

【0054】[従来例2]S25C炭素鋼鍛鋼材をその
まま(成膜を行わないで)試験片に用いて、実施例1と
同様のボールオンディスク試験を行った。その結果、摩
擦係数は0.8で上記実施例に比べ高い。また、焼付に
よる摩擦係数の増加は発生しなかったが、試験片の摩耗
深さは20μmになった。
[Conventional Example 2] A ball-on-disk test similar to that of Example 1 was performed using a forged steel material of S25C carbon steel as it was (without performing film formation). As a result, the friction coefficient was 0.8, which was higher than that of the above embodiment. Although the increase in the coefficient of friction did not occur due to seizure, the wear depth of the test piece was 20 μm.

【0055】[従来例3]S25C相当炭素鋼鋳鋼材
(SCPH−2)をそのまま(成膜を行わないで)試験
片に用いて、実施例1と同様のボールオンディスク試験
を行った。その結果、摩擦係数は0.8で上記実施例に
比べ高い。また、焼付による摩擦係数の増加は発生しな
かったが、試験片の摩耗深さは25μmになった。
[Conventional Example 3] A ball-on-disk test similar to that of Example 1 was conducted using a cast steel material of S25C equivalent carbon steel (SCPH-2) as it was (without forming a film). As a result, the friction coefficient was 0.8, which was higher than that of the above embodiment. Although the increase in the coefficient of friction did not occur due to seizure, the wear depth of the test piece was 25 μm.

【0056】[実施例12〜15]S25C相当炭素鋼
鋳鋼材(SCPH−2、表面粗さRa:0.08μm)
を基材に用いて摺動試験を行った。摺動試験は、焼付摩
耗試験装置に取り付けたディスク試験片とシート試験片
との空間に高圧水を供給しながら、また、ディスク試験
片の摺動面とシート試験片の摺動面とを摺動させなが
ら、漏洩水量を量るとともに、摺動後に試験片を取り外
してその外観を観察することにより行った。図1はディ
スク試験片の断面図であり、ディスク試験片の寸法(単
位:mm)と摺動面1を示す。また、図2はシート試験
片の断面図、図3は図2の摺動部付近の拡大断面図であ
り、シート試験片の寸法(単位:mm)と摺動面2を示
す。なお、図1〜3に示す試験片には、焼付摩耗試験装
置に取り付けるのに必要なボルト穴などが加工されてい
るが、これらの図示は省略した。摺動条件は、試験温度
を288℃、高圧水圧力を88kg/cm2 、試験片の
面圧を20kg/mm2、摺動距離を6mm、摺動速度
を150mm/分とした。ディスク試験片はCrN被膜
を平均膜厚5μm(実施例12、13)および平均膜厚
20μm(実施例14、15)に成膜した。また、シー
ト試験片はCrN被膜を平均膜厚5μm(実施例12)
および平均膜厚20μm(実施例14)に成膜したもの
と、成膜しないでそのまま用いるもの(実施例13、1
5)を用意した。基材の前処理方法およびCrN被膜の
形成方法は実施例1、3と同様である。試験片の組み合
わせを表2に、試験結果を表3に示す。
Examples 12 to 15 Cast carbon steel equivalent to S25C (SCPH-2, surface roughness Ra: 0.08 μm)
A sliding test was performed using the substrate as a base material. In the sliding test, while supplying high-pressure water to the space between the disk test piece and the sheet test piece attached to the seizure wear tester, the sliding surface of the disk test piece and the sliding surface of the sheet test piece slide. While moving, the amount of leaked water was measured, and after sliding, the test piece was removed and its appearance was observed. FIG. 1 is a cross-sectional view of the disk test piece, showing the dimensions (unit: mm) and the sliding surface 1 of the disk test piece. FIG. 2 is a cross-sectional view of the sheet test piece, and FIG. 3 is an enlarged cross-sectional view of the vicinity of the sliding portion in FIG. Although the test pieces shown in FIGS. 1 to 3 are formed with bolt holes and the like necessary for attachment to a seizure wear test apparatus, these are not shown. The sliding conditions were as follows: the test temperature was 288 ° C., the high-pressure water pressure was 88 kg / cm 2 , the surface pressure of the test piece was 20 kg / mm 2 , the sliding distance was 6 mm, and the sliding speed was 150 mm / min. For the disk test pieces, CrN films were formed with an average film thickness of 5 μm (Examples 12 and 13) and an average film thickness of 20 μm (Examples 14 and 15). Further, the sheet test piece had a CrN film having an average film thickness of 5 μm (Example 12).
And a film having an average film thickness of 20 μm (Example 14) and a film having an average film thickness of 20 μm (Example 14).
5) was prepared. The method of pretreating the base material and the method of forming the CrN coating are the same as in Examples 1 and 3. Table 2 shows the combinations of the test pieces, and Table 3 shows the test results.

【0057】[従来例4]ステライト(表面粗さRa:
0.08μm)をそのまま(成膜を行わないで)ディス
ク試験片、シート試験片に用いた以外は、実施例12と
同様に摺動試験を行った。試験片の組み合わせを表2
に、試験結果を表3に示す。
[Conventional Example 4] Stellite (surface roughness Ra:
0.08 μm) was used in the same manner as in Example 12 except that the disk test piece and the sheet test piece were used as they were (without film formation). Table 2 shows the combinations of test pieces.
Table 3 shows the test results.

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】表2、3から次の(1)、(2)のことが
分かる。
Tables 2 and 3 show the following (1) and (2).

【0061】(1)実施例12〜15では(CrN膜厚
が5μmでも20μmでも、またシート試験片にCrN
被膜を形成しなくても)、水漏れが発生しなかった。ま
た、CrN被膜表面はほとんど変化が見られなかった。
(1) In Examples 12 to 15, (whether the CrN film thickness is 5 μm or 20 μm,
No water leakage occurred (even without forming a coating). Further, the CrN coating surface showed almost no change.

【0062】(2)これに対して、従来例4では摺動回
数100回で20cc漏れる。また、擦り傷が発生して
いた。
(2) On the other hand, in the conventional example 4, 20 cc leaks when the number of times of sliding is 100. In addition, abrasion occurred.

【0063】[参考例2]平均膜厚を1μmに成膜した
以外は実施例12と同様にディスク試験片を作成した。
平均膜厚は1μmであったので、ターゲットから最も離
れている試験片の上部、下部は0.5μmしか成膜せ
ず、またエッジの影になった部分の一部に未成膜部が発
生した。
Reference Example 2 A disk test piece was prepared in the same manner as in Example 12 except that the average film thickness was formed to 1 μm.
Since the average film thickness was 1 μm, only the upper and lower portions of the test piece farthest from the target formed only 0.5 μm, and an unfilmed portion occurred in a part of the shadowed edge. .

【0064】[参考例3]平均膜厚を30μmに成膜し
た以外は実施例12と同様にディスク試験片を作成し
た。摺動面は剥離なく被膜が形成されていたが、エッジ
部に一部欠けが見られた。
Reference Example 3 A disk test piece was prepared in the same manner as in Example 12, except that the average film thickness was formed to 30 μm. The coating was formed on the sliding surface without peeling, but a part of the edge was chipped.

【0065】[参考例4]S25C炭素鋼鍛鋼材を基材
に用い、平均膜厚を30μmに成膜した以外は、実施例
12と同様に試験した。また、成膜したCrN被膜の表
面粗さと膜厚分布を実施例1と同様に測定した。
Reference Example 4 A test was performed in the same manner as in Example 12 except that a forged steel material of S25C was used as a base material and an average film thickness was formed to 30 μm. Further, the surface roughness and the film thickness distribution of the formed CrN film were measured in the same manner as in Example 1.

【0066】成膜したCrN被膜の表面粗さRaは0.
7μm以上で、膜厚分布は27〜33μmであった。そ
して、水漏れ試験(摺動回数100回)で水漏れが若干
発生した。
The surface roughness Ra of the formed CrN film is 0.5.
At 7 μm or more, the film thickness distribution was 27 to 33 μm. Then, in the water leak test (the number of times of sliding was 100 times), slight water leak occurred.

【0067】[0067]

【発明の効果】本発明により、(1)摺動特性に優れ、
(2)放射能化する材料を含まない、かつ(3)安価な
被膜付き耐摩耗性弁体、弁座、該弁体・弁座を有する
弁、および該弁体・弁座の製法を提供することができ
る。
According to the present invention, (1) excellent sliding characteristics,
(2) Provide an inexpensive, wear-resistant valve body with a coating, which does not contain a material to be activated, a valve seat, a valve having the valve body / valve seat, and a method of manufacturing the valve body / valve seat. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例12で作製したディスク試験片の断面図
である。
FIG. 1 is a sectional view of a disk test piece manufactured in Example 12.

【図2】実施例12で作製したシート試験片の断面図で
ある。
FIG. 2 is a cross-sectional view of a sheet test piece manufactured in Example 12.

【図3】実施例12で作製したシート試験片摺動面付近
の拡大断面図である。
FIG. 3 is an enlarged cross-sectional view near a sliding surface of a sheet test piece manufactured in Example 12.

【符号の説明】[Explanation of symbols]

1 ディスク試験片の摺動面 2 シート試験片の摺動面 1 Sliding surface of disk test piece 2 Sliding surface of sheet test piece

フロントページの続き (72)発明者 岡部 信一 千葉県市川市中国分3−18−5住友金属鉱 山株式会社中央研究所内 (72)発明者 塚田 由貴 千葉県市川市中国分3−18−5住友金属鉱 山株式会社中央研究所内 Fターム(参考) 3H052 BA22 BA35 CA19 CB20 EA03 4K029 AA02 BA58 BB07 BC02 BD03 CA04 EA01 FA04 FA05 Continued on the front page (72) Inventor Shinichi Okabe 3-18-5, China, Ichikawa, Chiba Prefecture Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Yuki Tsukada 3-18-5, China, Ichikawa, Chiba Sumitomo Metal Mining Co., Ltd. Central Research Laboratory F term (reference) 3H052 BA22 BA35 CA19 CB20 EA03 4K029 AA02 BA58 BB07 BC02 BD03 CA04 EA01 FA04 FA05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被膜表面が摺動面となるCrN被膜が基
材表面に形成されてなる被膜付き耐摩耗性弁体または弁
座。
An abrasion-resistant valve body or valve seat with a film, wherein a CrN film whose surface is a sliding surface is formed on a substrate surface.
【請求項2】 基材は、炭素鋼鍛鋼材または炭素鋼鋳鋼
材である請求項1に記載の被膜付き耐摩耗性弁体または
弁座。
2. The wear-resistant valve body or valve seat with a coating according to claim 1, wherein the base material is a carbon steel forged steel material or a carbon steel cast steel material.
【請求項3】 CrN被膜は、平均膜厚が2μm以上、
膜厚分布が平均膜厚の±2μmの範囲以内、かつ表面の
平均粗さRaが0.5μm以下である請求項1に記載の
被膜付き耐摩耗性弁体または弁座。
3. The CrN film has an average film thickness of 2 μm or more,
2. The coated wear-resistant valve body or valve seat according to claim 1, wherein the film thickness distribution is within ± 2 μm of the average film thickness, and the average surface roughness Ra is 0.5 μm or less.
【請求項4】 CrN被膜は、平均膜厚が20μm以下
である請求項1または3に記載の被膜付き耐摩耗性弁体
または弁座。
4. The wear-resistant valve body or valve seat with a coating according to claim 1, wherein the CrN coating has an average thickness of 20 μm or less.
【請求項5】 CrN被膜は、結晶面が(111)面ま
たは(220)面に強く配向している請求項1、3また
は4に記載の被膜付き耐摩耗性弁体または弁座。
5. The wear-resistant valve body or valve seat according to claim 1, wherein the CrN film has a crystal plane oriented strongly to the (111) plane or the (220) plane.
【請求項6】 CrN被膜は、カソードアークイオンプ
レーティング法で形成される請求項1、3、4または5
に記載の被膜付き耐摩耗性弁体または弁座。
6. The method according to claim 1, wherein the CrN film is formed by a cathodic arc ion plating method.
2. A wear-resistant valve body or valve seat with a coating according to claim 1.
【請求項7】 請求項1〜6のいずれかに記載の被膜付
き耐摩耗性弁体および弁座から選ばれる1種または2種
を有する弁。
7. A valve having one or two selected from the abrasion-resistant valve body with a coating and the valve seat according to any one of claims 1 to 6.
【請求項8】 摺動面に相当する弁体基材表面または弁
座基材表面をブラスト処理、アルカリ洗浄またはエタノ
ール洗浄する第1工程、第1工程を経た該表面の面仕上
げをする第2工程、第2工程を経た該表面をCrイオン
ボンバード処理する第3工程、および第3工程を経た該
表面にイオンプレーティング法によりCrN被膜を形成
する第4工程からなる被膜付き耐摩耗性弁体・弁座の製
法。
8. A first step of blasting, alkali-washing or ethanol-washing the valve element base material surface or the valve seat base material surface corresponding to the sliding surface, and the second step of finishing the surface after the first step. And a fourth step of forming a CrN coating on the surface after the third step by an ion plating method, and a fourth step of forming a CrN coating on the surface after the third step by an ion plating method. -Valve seat manufacturing method.
JP10354976A 1998-12-14 1998-12-14 Abrasion resistant valve element with film, valve seat, valve having valve element and valve seat, and manufacture of valve element and valve seat Pending JP2000179727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354976A JP2000179727A (en) 1998-12-14 1998-12-14 Abrasion resistant valve element with film, valve seat, valve having valve element and valve seat, and manufacture of valve element and valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354976A JP2000179727A (en) 1998-12-14 1998-12-14 Abrasion resistant valve element with film, valve seat, valve having valve element and valve seat, and manufacture of valve element and valve seat

Publications (1)

Publication Number Publication Date
JP2000179727A true JP2000179727A (en) 2000-06-27

Family

ID=18441146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354976A Pending JP2000179727A (en) 1998-12-14 1998-12-14 Abrasion resistant valve element with film, valve seat, valve having valve element and valve seat, and manufacture of valve element and valve seat

Country Status (1)

Country Link
JP (1) JP2000179727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214460A (en) * 2005-02-01 2006-08-17 Teijin Pharma Ltd Rotary valve
KR101243677B1 (en) 2012-08-24 2013-03-15 주식회사 동양밸브 Method of treating a valve surface with enhanced durability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214460A (en) * 2005-02-01 2006-08-17 Teijin Pharma Ltd Rotary valve
JP4602779B2 (en) * 2005-02-01 2010-12-22 帝人ファーマ株式会社 Rotating valve
KR101243677B1 (en) 2012-08-24 2013-03-15 주식회사 동양밸브 Method of treating a valve surface with enhanced durability

Similar Documents

Publication Publication Date Title
CA2145123C (en) Multiple layer erosion resistant coating and a method for its production
Rousseau et al. Microstructural and tribological characterisation of a nitriding/TiAlN PVD coating duplex treatment applied to M2 High Speed Steel tools
US20070071993A1 (en) Carbon film-coated article and method of producing the same
US5952085A (en) Multiple layer erosion resistant coating and a method for its production
JP6084996B2 (en) Strengthening adhesion of low temperature ceramic coating
KR20150077450A (en) Component having a coating and method for the production thereof
CN106893987B (en) Preparation method of physical vapor deposition Ta-C coating and Ta-C coating
JP2771947B2 (en) Sliding member
Drábik et al. Influence of substrate material and its plasma pretreatment on adhesion and properties of WC/aC: H nanocomposite coatings deposited at low temperature
Wang et al. Mechanical and tribological evaluation of CrSiCN, CrBCN and CrSiBCN coatings
US7323219B2 (en) Apparatus and method for applying diamond-like carbon coatings
KR20150077451A (en) Component having a coating and method for the production thereof
JP4449187B2 (en) Thin film formation method
CN1651597A (en) Strengthening treatment method of cold forging mould surface hard covering film
JP2020125758A (en) Internal combustion engine liner
JP2001335878A (en) Sliding member
CN110468259A (en) A kind of preparation method of wear-resistant hydraulic pump component
US7279078B2 (en) Thin-film coating for wheel rims
US20070128826A1 (en) Article with multilayered coating and method for manufacturing same
JP2000179727A (en) Abrasion resistant valve element with film, valve seat, valve having valve element and valve seat, and manufacture of valve element and valve seat
CN108359938B (en) Preparation method of super-thick diamond-like carbon film coating on surface of piston ring
CA2000320A1 (en) Surface treatment of metals and alloys
Sanchette et al. Single cycle plasma nitriding and hard coating deposition in a cathodic arc evaporation device
Quaeyhaegens et al. Promising developments for new applications
CN110938803A (en) Coating treatment method for preparing Ti-Mo-N lubricating coating

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040723