JP2000173680A - Coloring matter sensitizing solar battery and manufacture thereof - Google Patents

Coloring matter sensitizing solar battery and manufacture thereof

Info

Publication number
JP2000173680A
JP2000173680A JP10345483A JP34548398A JP2000173680A JP 2000173680 A JP2000173680 A JP 2000173680A JP 10345483 A JP10345483 A JP 10345483A JP 34548398 A JP34548398 A JP 34548398A JP 2000173680 A JP2000173680 A JP 2000173680A
Authority
JP
Japan
Prior art keywords
substrate
dye
sealing
transparent substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10345483A
Other languages
Japanese (ja)
Inventor
Tatsushi Nomura
達士 野村
Hitoshi Ishizawa
均 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10345483A priority Critical patent/JP2000173680A/en
Publication of JP2000173680A publication Critical patent/JP2000173680A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery capable of stably sealing an electrolyte inside over a long period by superposing a transparent substrate, forming a transparent conductive film on one surface and a conductive substrate forming a coloring matter sensitizing semiconductor electrode which is counter electrode with the transparent substrate, and painting and sealing the periphery with a resin. SOLUTION: A transparent substrate 1, forming a transparent conductive film 2 on one surface and a conductive substrate 5 forming a coloring matter sensitizing semiconductor electrode 4 being a counter electrode with the transparent substrate 1 are superposed in a state which includes an iodine electrolyte, and the periphery is sealed by a silicone rubber layer 6 to be fixed from above by a sealing solid material 7, to thereby adhesion of the silicon rubber layer 6 and a cross-section of the transparent substrate 1 to stably seal the electrolyte in a coloring matter sensitizing solar battery over a long period, without leaking the iodine electrolyte 3 out. Since the sealing solid material desirably comes into surface contact, a square column having right-angled corners and a plate are desirable, and an insulator of glass, plastic and metal is desirable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光エネルギーを電気
エネルギーに直接変換する色素増感型太陽電池及びその
製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a dye-sensitized solar cell for directly converting light energy into electric energy and a method for manufacturing the same.

【0002】[0002]

【従来の技術】1991年にグレッツェルらが発表した色素
増感太陽電池は、シリコン半導体のp-n接合による太陽
電池とは異なるメカニズムによって作動し、変換効率が
高くしかも製造コストが安いという利点がある。この太
陽電池は、内部に電解液を封入してあることから、色素
増感型太陽電池とも呼ばれる。図2に従来の色素増感太
陽電池の概略断面図を示す。
2. Description of the Related Art A dye-sensitized solar cell disclosed by Gretzel et al. In 1991 operates by a mechanism different from that of a solar cell using a pn junction of a silicon semiconductor, and has the advantages of high conversion efficiency and low manufacturing cost. This solar cell is also called a dye-sensitized solar cell because an electrolyte is sealed inside. FIG. 2 shows a schematic sectional view of a conventional dye-sensitized solar cell.

【0003】この太陽電池は、透明基板1の一方の面に
形成された透明導電膜2と、増感色素を担持させた半導
体電極(色素増感半導体電極4)が形成された導電性基
板5とを電解液を含ませた状態で重ね合わせ、その周囲
に樹脂を塗って封止されている。導電性基板の表面に設
けられた多孔質な酸化チタン皮膜にルテニウム錯体など
太陽光を効率的に吸収することのできる増感色素がコ−
ティングされたものを色素増感半導体電極として用いる
と、光によって励起された電子が酸化チタンに注入され
て電気を流すことができる。このタイプの太陽電池で
は、電子の授受のために電解液が必要であり、一般的に
はヨウ素電解液が用いられている。
In this solar cell, a transparent conductive film 2 formed on one surface of a transparent substrate 1 and a conductive substrate 5 formed with a semiconductor electrode carrying a sensitizing dye (dye-sensitized semiconductor electrode 4) are formed. Are superimposed in a state where the electrolyte is contained, and the periphery thereof is sealed with a resin. A sensitizing dye capable of efficiently absorbing sunlight, such as a ruthenium complex, is coated on a porous titanium oxide film provided on the surface of a conductive substrate.
When the light-exposed material is used as a dye-sensitized semiconductor electrode, electrons excited by light are injected into titanium oxide to allow electricity to flow. In this type of solar cell, an electrolytic solution is necessary for transferring electrons, and an iodine electrolytic solution is generally used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、電解液
を封止するために周辺部(断面部付近)に厚い樹脂を塗
布し、硬化させているのみであるので断面部付近との接
着強度が弱い上に、電解液と接触するため、電解液の溶
媒であるアセトニトリルが樹脂を溶かし、長い間には電
解液が断面部と樹脂との界面から漏れ出してしまい、長
期間安定に封止することは困難であった。
However, since only a thick resin is applied to the periphery (near the cross section) to seal the electrolytic solution and cured, the adhesive strength to the vicinity of the cross section is low. Above, acetonitrile, which is the solvent of the electrolytic solution, dissolves the resin because it comes into contact with the electrolytic solution, and for a long time, the electrolytic solution leaks out from the interface between the cross section and the resin, and the sealing is stably performed for a long time. Was difficult.

【0005】そこで、本発明はこのような問題に鑑みて
なされたものであり、電解液を内部に長期間安定して封
入することのできる色素増感型太陽電池及びその製造方
法を提供することを目的とする。
Accordingly, the present invention has been made in view of such a problem, and it is an object of the present invention to provide a dye-sensitized solar cell capable of stably enclosing an electrolyte therein for a long period of time and a method of manufacturing the same. With the goal.

【0006】[0006]

【課題を解決するための手段】発明者らは鋭意研究の結
果、本発明をするに至った。本発明は第一に「一方の面
に透明導電膜が形成された透明基板と、前記透明基板と
対極をなす色素増感半導体電極が形成された導電性基板
とを重ね合わせ、その周囲に樹脂を塗って封止するとと
もに封止用固形物で固定してなる色素増感型太陽電池
(請求項1)」を提供する。
Means for Solving the Problems The inventors of the present invention have made intensive studies and, as a result, have accomplished the present invention. The present invention firstly lays "a transparent substrate having a transparent conductive film formed on one surface, and a conductive substrate having a dye-sensitized semiconductor electrode formed thereon as a counter electrode to the transparent substrate, and a resin is formed around the transparent substrate. And a dye-sensitized solar cell (Claim 1) which is sealed with a solid material for sealing.

【0007】また、本発明は第二に「前記封止用固形物
がガラス、金属又はプラスチックの角柱であることを特
徴とする色素増感型太陽電池(請求項2)」を提供す
る。また、本発明は第三に「一方の面に透明導電膜が形
成された透明基板を用意する或いは透明基板の一方の面
に透明導電膜を形成する工程と、導電性基板を用意し、
その基板に金属酸化膜を形成し、該金属酸化膜を多孔質
構造にする工程と、前記金属酸化膜に増感色素を付着す
る工程と、前記透明基板に形成された透明導電膜と、前
記導電性基板に形成された増感色素を担持した金属酸化
膜とを向かいあわせて電解液を含ませた状態で樹脂によ
り封止するとともに封止用固形物により固定する工程
と、を有する色素増感型太陽電池の製造方法(請求項
3)」を提供する。
The present invention secondly provides a "dye-sensitized solar cell wherein the solid for sealing is a prism made of glass, metal or plastic (claim 2)". In addition, the present invention is a third step "preparing a transparent substrate having a transparent conductive film formed on one surface or forming a transparent conductive film on one surface of the transparent substrate, preparing a conductive substrate,
Forming a metal oxide film on the substrate, making the metal oxide film a porous structure, attaching a sensitizing dye to the metal oxide film, and a transparent conductive film formed on the transparent substrate; A step of facing the metal oxide film supporting the sensitizing dye formed on the conductive substrate, sealing with a resin in a state in which the electrolytic solution is contained, and fixing with a solid substance for sealing; A method for manufacturing a sensitive solar cell (Claim 3) "is provided.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態としての
色素増感型太陽電池を図面を参照しながら説明する。図
1は、本発明の実施形態の色素増感型太陽電池の概略断
面図である。実施形態の色素増感型太陽電池は、一方の
面に透明導電膜2が形成された透明基板1と、前記透明
基板と対極をなす色素増感半導体電極4が形成された導
電性基板5とを電解液3を含ませた状態で重ね合わせ、
その周囲に樹脂を塗って封止するとともに樹脂の上から
封止用固形物7で固定する構成である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a dye-sensitized solar cell as an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a dye-sensitized solar cell according to an embodiment of the present invention. The dye-sensitized solar cell according to the embodiment includes a transparent substrate 1 having a transparent conductive film 2 formed on one surface, and a conductive substrate 5 having a dye-sensitized semiconductor electrode 4 opposite to the transparent substrate. Are superimposed with the electrolyte solution 3 contained therein,
A configuration is adopted in which a resin is applied around the periphery and sealed, and the resin is fixed on the resin with a sealing solid 7.

【0009】樹脂の上から封止用固形物で固定している
ので、樹脂の厚さは封止用固形物との接合が保たれるの
であれば、少なければ少ない程強固に固定される。導電
性基板としては、チタン、タンタル、ニオブまたはジル
コニウムが挙げられるが、これらに限定されるものでは
ない。半導体電極としては、酸化チタン、酸化タンタ
ル、酸化ニオブ、酸化ジルコニウム等が挙げられるが、
これらに限定されるものではない。
[0009] Since the resin is fixed on the resin from above with the sealing solid, the smaller the thickness of the resin is, the more firmly the resin is fixed, as long as the bonding with the solid sealing is maintained. Conductive substrates include, but are not limited to, titanium, tantalum, niobium or zirconium. Examples of the semiconductor electrode include titanium oxide, tantalum oxide, niobium oxide, and zirconium oxide.
It is not limited to these.

【0010】封止用固形物の形状は、色素増感型太陽電
池を構成する基板の表面または断面と固形物は面接触す
ることが望ましいので、角が直角である角柱や板のほう
が丸棒などの形状より好ましい。封止用固形物の材質
は、ヨウ素電解液の溶媒であるアセトニトリルまたはそ
の他の溶媒に対して耐性があれば何でもよいが、ガラス
やプラスチックなどの絶縁体が好ましい。
The shape of the solid material for sealing is preferably such that the surface or cross section of the substrate constituting the dye-sensitized solar cell is in surface contact with the solid material. It is more preferable than such a shape. The material of the solid for sealing may be any material as long as it has resistance to acetonitrile as a solvent of the iodine electrolyte or other solvents, but an insulator such as glass or plastic is preferable.

【0011】なお、樹脂層を介して接着するので金属で
もかまわない。接着に用いる樹脂やゴムとしては、エポ
キシ樹脂やシリコンゴムをはじめとする周知のものが使
えるが、これらもやはりヨウ素電解液の溶媒であるアセ
トニトリルまたはその他の溶媒に対して耐性があること
が望ましい。次に、本発明の実施形態の湿式太陽電池の
製造方法を説明する。
[0011] Since the bonding is performed via the resin layer, metal may be used. As the resin or rubber used for the bonding, known resins such as epoxy resin and silicone rubber can be used, and it is desirable that these also have resistance to acetonitrile or another solvent which is a solvent of the iodine electrolyte. Next, a method for manufacturing a wet solar cell according to an embodiment of the present invention will be described.

【0012】まず、導電性基板4の一方の面をマスキン
グ剤で覆い、金属酸化膜を形成する陽極酸化法により、
金属酸化膜を形成する。金属酸化膜の形成方法として
は、陽極酸化法、コロイド溶液を塗布する方法等のいず
れの方法も用いられる。陽極酸化法とは、電解質中で、
例えばチタン、ニオブ、タンタル、ジルコニウム等から
選択された金属を陽極、任意の金属を陰極とし、電界を
かけることにより、陽極側の金属の表面上に厚さ数μm
の酸化皮膜を形成する技術である。
First, one surface of the conductive substrate 4 is covered with a masking agent, and a metal oxide film is formed by an anodic oxidation method.
A metal oxide film is formed. As a method of forming the metal oxide film, any method such as an anodizing method and a method of applying a colloid solution is used. Anodization is a process in an electrolyte
For example, a metal selected from titanium, niobium, tantalum, zirconium and the like is used as an anode, and any metal is used as a cathode.
This is a technique for forming an oxide film.

【0013】陽極酸化に用いる電解液としては、リン
酸、硫酸あるいはこれらの混酸、グリセロリン酸塩と金
属酢酸塩を溶解した水溶液などが好ましい。グリセロリ
ン酸塩としては、グリセロリン酸ナトリウム、グリセロ
リン酸カルシウム等があるが、水に非常に溶けやすいこ
とから、グリセロリン酸ナトリウムが最も好ましい。金
属酢酸塩ならば何でも良いが、特にアルカリ金属(リチ
ウム、ナトリウム、カリウム、ルビジウム、セシウム)
の酢酸塩、アルカリ土類金属(マグネシウム、カルシウ
ム、ストロンチウム、バリウム)の酢酸塩、さらに酢酸
ランタンなどはグリセロリン酸塩の水溶液に非常に良く
溶け、しかも高い電圧まで安定した陽極酸化できるので
最も好ましい。
As the electrolytic solution used for the anodic oxidation, phosphoric acid, sulfuric acid, a mixed acid thereof, an aqueous solution in which glycerophosphate and metal acetate are dissolved, and the like are preferable. Examples of the glycerophosphate include sodium glycerophosphate and calcium glycerophosphate, and sodium glycerophosphate is most preferable because it is very soluble in water. Any metal acetate can be used, especially alkali metals (lithium, sodium, potassium, rubidium, cesium)
Acetate, alkaline earth metal (magnesium, calcium, strontium, barium) acetate, and lanthanum acetate are most preferred because they are very well soluble in glycerophosphate aqueous solution and can be stably anodized to a high voltage.

【0014】これらの電解液を用いて例えば、チタンを
陽極酸化すると、リン酸やグリセロリン酸塩からリンイ
オンあるいはリン酸イオンが取り込まれ、また金属酢酸
塩から金属イオンが取り込まれたチタン陽極酸化膜が形
成される。これらの電解液を用いて陽極酸化を始める前
には、あらかじめ最高到達電圧を設定しておく。陽極酸
化を開始すると、電圧は徐々に上昇し、その最高電圧に
到達すると電流が流れなくなり、陽極酸化が終了するよ
うにする。陽極酸化にかかる時間は、電流密度を高くし
て速く昇圧するほど短時間で終了させることができる
が、およそ5〜10分程度と比較的短くする。膜の厚さ
は電圧に比例するので、陽極酸化膜の単位面積当たりの
表面積を増大させるには、高電圧で陽極酸化して膜厚を
大きくするとよい。しかし、膜厚が大きすぎると安定し
て陽極酸化ができなくなるので、500V程度が限界で
ある。電圧が100Vを越えたあたりから、陽極酸化膜
の表面で火花放電が発生し、酸化皮膜が局所的に高い温
度に加熱される。このような膜に対する加熱が無数に繰
り返された結果、陽極酸化膜全体が結晶化され、結晶性
の高い陽極酸化膜が形成される。
For example, when titanium is anodized using these electrolytes, a phosphorous ion or phosphate ion is taken in from phosphoric acid or glycerophosphate, and a titanium anodic oxide film in which metal ions are taken in from metal acetate is formed. It is formed. Before starting anodic oxidation using these electrolytes, the highest attainable voltage is set in advance. When the anodization is started, the voltage gradually increases. When the voltage reaches the maximum voltage, no current flows, and the anodization is terminated. The time required for the anodic oxidation can be completed in a shorter time as the current density is increased and the pressure is increased faster, but is relatively short, about 5 to 10 minutes. Since the thickness of the film is proportional to the voltage, in order to increase the surface area per unit area of the anodized film, it is preferable to increase the film thickness by anodizing at a high voltage. However, if the film thickness is too large, anodic oxidation cannot be performed stably, so the limit is about 500 V. When the voltage exceeds about 100 V, a spark discharge occurs on the surface of the anodic oxide film, and the oxide film is locally heated to a high temperature. As a result of repeatedly heating the film innumerably, the entire anodic oxide film is crystallized, and an anodic oxide film having high crystallinity is formed.

【0015】また、陽極酸化は他のセラミックス膜の製
造方法に比べて成膜速度が速く、大面積であっても均一
な厚さに成膜できるという利点がある。しかも基板表面
に激しい凹凸が形成されていたり、基板が複雑な形状を
していても成膜できるので、大面積のセラミックス膜の
成膜方法としては工業的に有用な方法である。さらに、
湿式太陽電池の変換効率をさらに向上させるために、半
導体電極の表面に色素を吸着させた色素増感半導体電極
を用いる。色素増感半導体電極の単位面積当たりの色素
の吸着量及び光吸収量を多くするには、電極表面に微細
な凹凸を付けて、見かけの表面積をできるだけ大きくす
ることが有効となる。
Anodizing has the advantage that the film forming speed is higher than that of other methods for producing a ceramic film, and that a uniform film thickness can be formed even in a large area. In addition, since a film can be formed even if severe unevenness is formed on the substrate surface or the substrate has a complicated shape, it is an industrially useful method for forming a large-area ceramic film. further,
In order to further improve the conversion efficiency of a wet solar cell, a dye-sensitized semiconductor electrode having a dye adsorbed on the surface of a semiconductor electrode is used. In order to increase the amount of dye adsorbed and the amount of light absorbed per unit area of the dye-sensitized semiconductor electrode, it is effective to form fine irregularities on the electrode surface and increase the apparent surface area as much as possible.

【0016】金属の基板は高電圧で陽極酸化すると、表
面で発生する火花放電によって多数の放電痕が形成さ
れ、多孔質になることがわかっている。しかし、このよ
うな放電痕直径は数μm程度と大きいため、陽極酸化膜
の表面積を大きくするのにはあまり寄与しない。膜の表
面積を増大させるには膜に数10nm程度の非常に微細
な細孔を形成して多孔質にすることが極めて効果的であ
る。
It is known that when a metal substrate is anodized at a high voltage, a large number of discharge marks are formed due to spark discharge generated on the surface and the substrate becomes porous. However, since the diameter of such a discharge mark is as large as about several μm, it does not contribute much to increasing the surface area of the anodic oxide film. In order to increase the surface area of the film, it is very effective to form very fine pores of about several tens nm in the film to make the film porous.

【0017】このような多孔質構造とするためには、ま
ず、陽極酸化の際に火花放電による加熱によって電解液
から陽極酸化膜へイオンの取り込みを行わせ、次に、陽
極酸化膜に取り込まれた、液体に可溶な物質(イオン)
を溶出させればよい。その可溶性物質が溶出したあとに
は細孔が無数に形成され、陽極酸化膜は多孔質となり、
表面積は著しく増大する。
In order to obtain such a porous structure, at the time of anodic oxidation, ions are taken in from the electrolytic solution into the anodic oxide film by heating by spark discharge. Also, substances (ions) soluble in liquids
May be eluted. After the soluble substance elutes, numerous pores are formed, the anodic oxide film becomes porous,
The surface area increases significantly.

【0018】溶出方法しては、オートクレーブのような
密閉容器中の液体又は蒸気の中で陽極酸化膜を100−
500℃の範囲で加熱する、いわゆる水熱法が有効であ
る。加熱温度が100℃より低いと、可溶性物質はほと
んど溶出しない。また。オートクレーブを500℃より
高い温度に加熱することは、装置が非常に大がかりにな
り一般的でない。液体としては一般に純水が用いられる
が、それだけに限定されるものではなく、陽極酸化膜か
ら可溶性物質の溶出を促進させるために、酸性又はアル
カリ性にすることもある。また、液体を攪拌しながら加
熱処理すると溶出が促進される。
The elution method is as follows. Anodized film is formed in a liquid or vapor in a closed vessel such as an autoclave by 100-.
The so-called hydrothermal method of heating in the range of 500 ° C. is effective. When the heating temperature is lower than 100 ° C., the soluble substance hardly elutes. Also. Heating the autoclave to a temperature above 500 ° C. is unusual because the equipment is very bulky. In general, pure water is used as the liquid, but the liquid is not limited to pure water, and may be made acidic or alkaline in order to promote elution of the soluble substance from the anodic oxide film. When the liquid is heated while being stirred, the elution is promoted.

【0019】コロイド溶液を塗布する方法により酸化膜
を形成する方法では、導電性基板に金属酸化物微粒子と
少量の有機高分子を含有するコロイド溶液を塗布し、乾
燥させその後、高温で加熱処理して有機高分子を揮発さ
せて、表面に微細な細孔を形成する。このようにして形
成した多孔質の金属酸化膜を増感色素の溶液に浸漬し、
その表面に増感色素を吸着させ、色素増感半導体電極を
形成する。
In the method of forming an oxide film by applying a colloidal solution, a colloidal solution containing fine metal oxide particles and a small amount of an organic polymer is applied to a conductive substrate, dried, and then heat-treated at a high temperature. To volatilize the organic polymer to form fine pores on the surface. The porous metal oxide film thus formed is immersed in a sensitizing dye solution,
A sensitizing dye is adsorbed on the surface to form a dye-sensitized semiconductor electrode.

【0020】また、ITOやフッ素ド−プされた酸化ス
ズなどの透明導電膜と、その透明導電膜上に透明導電膜
と増感色素との間の電子の授受を促進させるために、透
過率を低下させない程度の膜厚の白金又は炭素膜が形成
されたガラス基板又はプラスチック基板を用意し、或い
は製作する。図1に示すように、このようにして導電性
基板に形成された色素増感半導体電極と、透明基板上に
形成された透明導電膜とを向かいあわせて電解液を含ま
せた状態で重ね合わせ周囲に樹脂を塗って封止するとと
もに封止用固形物で固定する。
Further, in order to promote the transfer of electrons between the transparent conductive film and the sensitizing dye on the transparent conductive film such as ITO or fluorine-doped tin oxide, the transmittance is increased. A glass substrate or a plastic substrate on which a platinum or carbon film is formed with a thickness that does not reduce the temperature is prepared or manufactured. As shown in FIG. 1, the dye-sensitized semiconductor electrode formed on the conductive substrate in this manner and the transparent conductive film formed on the transparent substrate face each other and are superposed with the electrolyte contained therein. A resin is applied to the periphery to seal and is fixed with a solid material for sealing.

【0021】[0021]

【実施例】[実施例1]実施例1にかかる色素増感型太
陽電池を以下の様な手順で製作した。大きさが5×5c
m、厚さ0.4mmのチタン基板を用意し、一方の面にマ
スキング剤を塗布した後、濃度が0.02mol/lの
β-グリセロリン酸ナトリウムと0.08mol/lの
酢酸ストロンチウムからなる電解質水溶液中で400V
まで陽極酸化することによって酸化チタン皮膜を形成し
た。電解質温度は40℃、電流密度は50mA/cm2
に設定した。
[Example 1] A dye-sensitized solar cell according to Example 1 was manufactured by the following procedure. 5 × 5c in size
A titanium substrate having a thickness of 0.4 mm and a thickness of 0.4 mm is prepared, a masking agent is applied to one surface, and an aqueous electrolyte solution comprising 0.02 mol / l sodium β-glycerophosphate and 0.08 mol / l strontium acetate is used. 400V in
The titanium oxide film was formed by performing anodic oxidation until this. The electrolyte temperature is 40 ° C. and the current density is 50 mA / cm 2
Set to.

【0022】次に、陽極酸化されたチタンをオ−トクレ
−ブを用いて、高圧水中180℃で2日間加熱処理し
て、陽極酸化膜に含まれていたストロンチウムとリンを
溶出させることによって微細な細孔を形成し、皮膜を多
孔質にした。この皮膜は、粒径が約20nmの酸化チタ
ン微粒子から構成されていた。次に、大気中500℃で
30分間加熱処理し、100℃に冷却されたら、ただち
にルテニウム錯体のエタノ−ル溶液に浸漬し、エタノー
ルの沸点である80℃で1時間還流した。その結果、皮
膜を構成する酸化チタン微粒子上に、増感色素であるル
テニウム錯体が吸着、コ−ティングされた。
Next, the anodized titanium is heated at 180 ° C. in high-pressure water for 2 days using an autoclave to elute strontium and phosphorus contained in the anodized film, thereby obtaining fine particles. Pores were formed, and the coating was made porous. This film was composed of titanium oxide fine particles having a particle size of about 20 nm. Next, it was heat-treated at 500 ° C. for 30 minutes in the atmosphere, and immediately cooled to 100 ° C., immediately immersed in an ethanol solution of a ruthenium complex, and refluxed at 80 ° C., which is the boiling point of ethanol, for 1 hour. As a result, a ruthenium complex as a sensitizing dye was adsorbed and coated on the titanium oxide fine particles constituting the film.

【0023】また、一方の面にITO薄膜が形成された
ガラスを用意し、そのITO薄膜上に約数十Åの膜厚の
白金をスパッタ法により成膜した。図1に示すように、
ITO薄膜2上に白金が蒸着されたガラス基板1と色素
増感半導体電極が形成されたチタン基板を重ね合わせ、
その隙間にヨウ素電解液3をしみ込ませた。ヨウ素電解
液3としては、テトラプロピルアンモニウムヨ−ジドと
ヨウ素を炭酸エチレンとアセトニトリルの混合溶液に溶
解したものを用いた。次に、断面が縦1mm、横2mm
で長さ5cmのガラスの角棒を、シリコンゴムを用いて
ガラス基板1の表面とチタン基板5の断面の両方に面接
触するように接着し、色素増感型太陽電池を作製した。
Further, a glass having an ITO thin film formed on one surface was prepared, and platinum having a thickness of about several tens of mm was formed on the ITO thin film by a sputtering method. As shown in FIG.
A glass substrate 1 on which platinum is deposited on an ITO thin film 2 and a titanium substrate on which a dye-sensitized semiconductor electrode is formed,
The iodine electrolyte 3 was impregnated into the gap. As the iodine electrolyte 3, a solution prepared by dissolving tetrapropylammonium iodide and iodine in a mixed solution of ethylene carbonate and acetonitrile was used. Next, the cross section is 1 mm long and 2 mm wide.
Then, a square rod of glass having a length of 5 cm was adhered to both the surface of the glass substrate 1 and the cross section of the titanium substrate 5 using silicon rubber so as to make a dye-sensitized solar cell.

【0024】この色素増感型太陽電池に、500Wのキ
セノンランプを照射して起電力を測定したところ、1c
2あたりの短絡電流は約4mA、開放電圧は0.6Vで
あった。色素増感型太陽電池を作製してから1年後に確
認すると、電解液の漏れなどは全く見られず、完全に封
入されていた。
The dye-sensitized solar cell was irradiated with a 500 W xenon lamp to measure the electromotive force.
The short-circuit current per m 2 was about 4 mA, and the open-circuit voltage was 0.6 V. One year after the preparation of the dye-sensitized solar cell, it was confirmed that no leakage of the electrolytic solution was observed and the cell was completely sealed.

【0025】[0025]

【発明の効果】以上説明した通り、本発明にかかる色素
増感型太陽電池は、樹脂で封止するとともに封止用固形
物を用いて固定したので、樹脂と基板断面(基板周辺)
との密着性を長期に保持することができ、樹脂と基板断
面に電解液が入り込むことがないので、電解液が漏れ出
ることがなく、電解液を色素増感型太陽電池の中に長期
間安定して封入することが可能になる。
As described above, the dye-sensitized solar cell according to the present invention is sealed with a resin and fixed using a solid material for sealing.
Adhesion to the resin and the substrate cross section for a long time, so that the electrolyte does not leak into the cross section of the substrate. It becomes possible to stably enclose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる色素増感型太陽電池の概略断面
図である。
FIG. 1 is a schematic sectional view of a dye-sensitized solar cell according to the present invention.

【図2】従来の色素増感型太陽電池の概略断面図であ
る。
FIG. 2 is a schematic sectional view of a conventional dye-sensitized solar cell.

【符号の説明】[Explanation of symbols]

1・・・透明基板 2・・・透明導電膜 3・・・ヨウ素電解液 4・・・色素増感半導体電極 5・・・導電性基板 6・・・シリコンゴム層 7・・・封止用固形物 DESCRIPTION OF SYMBOLS 1 ... Transparent substrate 2 ... Transparent conductive film 3 ... Iodine electrolyte 4 ... Dye-sensitized semiconductor electrode 5 ... Conductive substrate 6 ... Silicon rubber layer 7 ... For sealing Solid matter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一方の面に透明導電膜が形成された透明基
板と、前記透明基板と対極をなす色素増感半導体電極が
形成された導電性基板とを重ね合わせ、その周囲に樹脂
を塗って封止するとともに封止用固形物で固定してなる
色素増感型太陽電池。
1. A transparent substrate having a transparent conductive film formed on one surface thereof and a conductive substrate having a dye-sensitized semiconductor electrode formed thereon as a counter electrode to the transparent substrate are overlapped with each other, and a resin is applied to the periphery thereof. Dye-sensitized solar cell that is sealed with a solid material for sealing.
【請求項2】前記封止用固形物がガラス、金属又はプラ
スチックの角柱であることを特徴とする色素増感型太陽
電池。
2. A dye-sensitized solar cell, wherein said solid for sealing is a prism of glass, metal or plastic.
【請求項3】一方の面に透明導電膜が形成された透明基
板を用意する或いは透明基板の一方の面に透明導電膜を
形成する工程と、 導電性基板を用意し、その基板に金属酸化膜を形成し、
該金属酸化膜を多孔質構造にする工程と、 前記金属酸化膜に増感色素を付着する工程と、 前記透明基板に形成された透明導電膜と、前記導電性基
板に形成された増感色素を担持した金属酸化膜とを向か
いあわせて電解液を含ませた状態で樹脂により封止する
とともに封止用固形物により固定する工程と、 を有する色素増感型太陽電池の製造方法。
3. A step of preparing a transparent substrate having a transparent conductive film formed on one surface or a step of forming a transparent conductive film on one surface of the transparent substrate; and preparing a conductive substrate and forming a metal oxide on the substrate. Forming a film,
A step of forming the metal oxide film into a porous structure; a step of attaching a sensitizing dye to the metal oxide film; a transparent conductive film formed on the transparent substrate; and a sensitizing dye formed on the conductive substrate. A method for producing a dye-sensitized solar cell, comprising: a step of sealing with a resin in a state in which an electrolytic solution is contained while facing a metal oxide film carrying the same and fixing with a solid substance for sealing.
JP10345483A 1998-12-04 1998-12-04 Coloring matter sensitizing solar battery and manufacture thereof Pending JP2000173680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10345483A JP2000173680A (en) 1998-12-04 1998-12-04 Coloring matter sensitizing solar battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10345483A JP2000173680A (en) 1998-12-04 1998-12-04 Coloring matter sensitizing solar battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000173680A true JP2000173680A (en) 2000-06-23

Family

ID=18376901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10345483A Pending JP2000173680A (en) 1998-12-04 1998-12-04 Coloring matter sensitizing solar battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000173680A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280849A (en) * 2006-04-10 2007-10-25 Fujikura Ltd Photoelectric conversion element
JP2008021429A (en) * 2006-07-11 2008-01-31 Meidensha Corp Dye-sensitized solar cell, and its manufacturing method
US7351359B2 (en) 2003-10-08 2008-04-01 The Yokohama Rubber Co., Ltd. Method for producing conductive polyaniline and organic polymer composition
US7915524B2 (en) 2003-02-20 2011-03-29 Nippon Kayaku Kabushiki Kaisha Sealing agent for photoelectric conversion device and photoelectric conversion device using the same
US20110174352A1 (en) * 2010-01-19 2011-07-21 Nam-Choul Yang Photoelectric conversion module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915524B2 (en) 2003-02-20 2011-03-29 Nippon Kayaku Kabushiki Kaisha Sealing agent for photoelectric conversion device and photoelectric conversion device using the same
US7351359B2 (en) 2003-10-08 2008-04-01 The Yokohama Rubber Co., Ltd. Method for producing conductive polyaniline and organic polymer composition
US7497975B2 (en) 2003-10-08 2009-03-03 The Yokohama Rubber Co., Ltd. Method for producing conductive polyaniline
US7875209B2 (en) 2003-10-08 2011-01-25 The Yokohama Rubber Co., Ltd. Photovoltaic device comprising conductive polyaniline
JP2007280849A (en) * 2006-04-10 2007-10-25 Fujikura Ltd Photoelectric conversion element
JP2008021429A (en) * 2006-07-11 2008-01-31 Meidensha Corp Dye-sensitized solar cell, and its manufacturing method
US20110174352A1 (en) * 2010-01-19 2011-07-21 Nam-Choul Yang Photoelectric conversion module
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module

Similar Documents

Publication Publication Date Title
JPH11288745A (en) Flexible wet solar battery and its manufacture
JP4414036B2 (en) Method for producing dye-sensitized solar cell
JPH10112337A (en) Wet solar cell
JP2000231942A (en) Pigment sensitization solar battery
KR100947371B1 (en) Dye-sensitized solar cells using wide wavelength range absorption nanostructure and method for preparing the same
JP2000348783A (en) Manufacture of pigment-sensitized type solar cell
Seo et al. Faster dye-adsorption of dye-sensitized solar cells by applying an electric field
JP5675636B2 (en) Glass sealing method for dye-sensitized solar cell
WO2011001815A1 (en) Wet type solar battery module
JP4881600B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP2000030767A (en) Manufacture of wet solar battery
JP2007066874A (en) Dye-sensitized solar cell
JP2009245782A (en) Dye-sensitized solar cell
JP2001210390A (en) Dye-sensitization type solar battery which uses solid electrolyte and its preparation method
JPWO2011068058A1 (en) Dye-sensitized solar cell
WO2005122321A1 (en) Dye sensitized solar cell and process for producing the same
JP2004311355A (en) Manufacturing method of substrate for electrode
JP5397585B2 (en) Dye-sensitized solar cell and partition forming method
JP2000173680A (en) Coloring matter sensitizing solar battery and manufacture thereof
JP2000200627A (en) Pigment sensitized solar battery and its manufacture
JP2000150005A (en) Manufacture of coloring material sensitizing solar battery
JPH11307141A (en) Wet type solar battery and manufacture thereof
EP1596462A1 (en) Photoelectrode substrate of dye sensitizing solar battery, and method for producing same
CN101593632B (en) Encapsulation method for dye-sensitized solar cell
JP2002314108A (en) Solar cell