JP2000171364A - Sample preparing device - Google Patents

Sample preparing device

Info

Publication number
JP2000171364A
JP2000171364A JP10342550A JP34255098A JP2000171364A JP 2000171364 A JP2000171364 A JP 2000171364A JP 10342550 A JP10342550 A JP 10342550A JP 34255098 A JP34255098 A JP 34255098A JP 2000171364 A JP2000171364 A JP 2000171364A
Authority
JP
Japan
Prior art keywords
probe
sample
substrate
sample piece
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10342550A
Other languages
Japanese (ja)
Other versions
JP3613039B2 (en
Inventor
Satoshi Tomimatsu
聡 富松
Kaoru Umemura
馨 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34255098A priority Critical patent/JP3613039B2/en
Publication of JP2000171364A publication Critical patent/JP2000171364A/en
Application granted granted Critical
Publication of JP3613039B2 publication Critical patent/JP3613039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To make easily identifiable a probe tip position by converting an inflow current to a sample piece carrying probe into data by being synchronized with a scanning signal of a charged corpuscular beam. SOLUTION: A substrate 2 of a semiconductor wafer or the like is placed on a sample stand 3, and the position of the sample stand 3 is controlled by a sample position controller 9 to specify an analytical position. A probe 11 is driven by a probe driving means 4, to be moved to the vicinity of the analytical position of the substrate 2, an ion beam 13 is radiated by an ion beam optical system 1, and a sample piece is fabricated. A secondary electron is detected by a secondary electron detector 12, the substrate 2, the probe 11 or the vicinity of a sample piece holder 19 are observed, and a gas for ion beam assist deposition is supplied from a deposition gas source 8. A preamplifier 32 amplifies an inflow current to the probe 11, and an image signal is synchronously found by using a deflecting scanning signal of an ion beam driving device 7 as a scanning signal of a probe-shaped information generating circuit to be binarized by a proper threshold to be formed as an image to find coordinates on the tip of the probe 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハやデ
バイスチップから所望の特定領域を含む試料片のみをイ
オンビームを用いて摘出して、微小領域分析や計測用の
試料片の作製を行う微小試料作製装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting a sample piece including a desired specific area from a semiconductor wafer or a device chip by using an ion beam to produce a sample piece for micro area analysis or measurement. The present invention relates to a sample preparation device.

【0002】[0002]

【従来の技術】分析装置に用いる微小試料片作製を容易
にする試料作製装置として、集束イオンビーム(以下FI
Bと略す)加工とマイクロマニピュレーション技術を組
み合わせて数μm〜数10μmオーダの微小試料を試料基板
から摘出する装置が考案されている。この手法に関して
は、特開平5−52721号公報(公知例1)に開示されてい
る。この公知例1では、プローブ先端位置決め法につい
て明記はされていないが、実施例からイオンビーム走査
と二次電子検出による走査イオン顕微鏡像(Scanning I
on Microscope、SIM像)によりプローブ先端位置を同定
しているものと考えられる。
2. Description of the Related Art A focused ion beam (hereinafter, referred to as FI) is used as a sample preparation device for facilitating the preparation of a small sample piece used in an analyzer.
An apparatus for extracting a micro sample of the order of several μm to several tens μm from a sample substrate by combining processing and micromanipulation technology has been devised. This technique is disclosed in JP-A-5-52721 (known example 1). In this known example 1, although there is no description about the probe tip positioning method, a scanning ion microscope image (Scanning I
It is considered that the position of the probe tip is identified by the on-microscope, SIM image).

【0003】[0003]

【発明が解決しようとする課題】上記の試料作製装置を
自動化する場合、プローブ先端位置を自動的に同定する
手法が必要となる。しかし、上記従来手法(公知例1)
ではSIM像を用いて操作者がプローブ先端を判断してい
るものと考えられ、この場合、装置の自動化は不可能で
ある。また、SIM像を用いてパターン認識によりプロー
ブ先端を同定する手法も考えられるが、以下の問題点が
存在する。
In order to automate the above-described sample preparation apparatus, a method for automatically identifying the probe tip position is required. However, the above conventional method (known example 1)
Then, it is considered that the operator judges the tip of the probe using the SIM image, and in this case, automation of the device is impossible. A method of identifying the probe tip by pattern recognition using a SIM image is also conceivable, but has the following problems.

【0004】試料表面構造(材質)によってはSIM像に
おいてプローブと同輝度の領域が存在する可能性がある
ため、プローブ境界が不鮮明になり、先端同定が困難に
なる可能性がある。また、プローブへの異物吸着やイオ
ンビーム照射によりプローブ形状が変化し、パターン認
識による照合が困難になる可能性がある。また、パター
ン認識の精度を高めるためには高価なパターン認識装置
を必要とする。
Depending on the surface structure (material) of the sample, there may be a region having the same brightness as the probe in the SIM image, so that the probe boundary may become unclear and the tip may be difficult to identify. In addition, the probe shape may change due to foreign substance adsorption or ion beam irradiation on the probe, which may make it difficult to perform verification by pattern recognition. In addition, an expensive pattern recognition device is required to improve the accuracy of pattern recognition.

【0005】本発明の目的は、自動化に適したプローブ
先端位置決めを、確実かつ容易に実現でき試料作製装置
を提供することにある。
An object of the present invention is to provide a sample preparation apparatus which can reliably and easily realize probe tip positioning suitable for automation.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の試料作製装置は、イオンビーム加工と、プ
ローブを用いた試料片の搬送技術、さらには試料片の試
料片ホルダへの固定技術を用いた試料作製装置におい
て、試料片搬送用プローブへの流入電流をイオンビー
ム、電子線ビームなどの荷電粒子線ビームの走査信号と
同期させ、データ化することでプローブ先端位置の同定
を容易にする。
In order to achieve the above object, a sample preparation apparatus according to the present invention uses ion beam processing, a technique for transporting a sample piece using a probe, and fixing a sample piece to a sample piece holder. In the sample preparation equipment using the technology, the inflow current to the probe for transporting the sample piece is synchronized with the scanning signal of the charged particle beam such as ion beam, electron beam, etc. To

【0007】[0007]

【発明の実施の形態】本発明による微小試料作製装置
は、半導体ウエハや半導体チップなどの基板を載置する
可動の試料台と、基板の分析位置近傍に接触させるプロ
ーブと、プローブを試料台と独立に駆動するプローブ駆
動手段と、プローブ駆動手段を制御し基板損傷を抑制し
てプローブ接触を行うマニピュレータ駆動装置と、プロ
ーブに流入する電流を検出するプローブ電流検出装置
と、プローブと基板の分析位置近傍部を接続する手段
と、基板の分析位置近傍にイオンビームを照射し基板の
分析位置を含む試料片の形成加工をするイオンビーム光
学系と、試料片を載置する試料片ホルダを可動に保持す
る手段と、試料片と試料片ホルダを固定する手段と、プ
ローブと試料片を分離する手段とを有する構成とした。
BEST MODE FOR CARRYING OUT THE INVENTION A micro sample preparation apparatus according to the present invention comprises a movable sample stage on which a substrate such as a semiconductor wafer or a semiconductor chip is placed, a probe for contacting the substrate in the vicinity of an analysis position, and a probe for the sample stage. Independently driven probe driving means, a manipulator driving device that controls the probe driving means and suppresses substrate damage to make probe contact, a probe current detection device that detects current flowing into the probe, and analysis positions of the probe and the substrate A means for connecting the vicinity, an ion beam optical system for irradiating an ion beam near the analysis position of the substrate to form and process a sample piece including the analysis position of the substrate, and a sample piece holder for mounting the sample piece movable. The apparatus has a means for holding, a means for fixing the sample piece and the sample piece holder, and a means for separating the probe and the sample piece.

【0008】また、本発明の試料作製装置のより好まし
い実施形態として、次のような構成がある。
Further, as a more preferred embodiment of the sample preparation apparatus of the present invention, there is the following configuration.

【0009】(1)上記プローブ電流検出装置により検
出される上記プローブ流入電流と上記イオンビームの走
査と同期した信号によりプローブ形状を認識して先端位
置同定を行う。
(1) A probe shape is recognized based on the probe inflow current detected by the probe current detection device and a signal synchronized with the ion beam scanning to identify a tip position.

【0010】(2)上記プローブ電流検出装置におい
て、上記プローブ流入電流を適当な閾値により2値化し
て先端位置同定を行うと、より容易に先端位置決めでき
る。
(2) In the probe current detection device, when the probe inflow current is binarized with an appropriate threshold value and the tip position is identified, the tip position can be more easily determined.

【0011】図1は、本発明による試料作製装置の一実
施形態を示す構成ブロック図である。試料作製装置は、
半導体ウエハや半導体チップ等の基板2を載置する可動
の試料台3と、基板2の分析しようとする位置を特定する
ため試料台3の位置を制御する試料位置制御装置9と、プ
ローブ11を基板2の分析位置近傍に移動させ、プローブ1
1を試料台3と独立に駆動するプローブ駆動手段4と、基
板2の分析位置近傍にイオンビーム13を照射し、基板2の
分析位置を含む試料片の成形加工をするイオンビーム光
学系1と、2次電子を検出し、基板2、プローブ11または
試料片ホルダ19の近傍を観察する観察手段を構成する2
次電子検出器12と、イオンビームアシストデポジション
用ガスを供給するためのデポジションガス源8とを持
つ。
FIG. 1 is a block diagram showing a configuration of an embodiment of a sample preparation apparatus according to the present invention. The sample preparation device
A movable sample stage 3 on which a substrate 2 such as a semiconductor wafer or a semiconductor chip is placed, a sample position controller 9 for controlling the position of the sample stage 3 for specifying a position of the substrate 2 to be analyzed, and a probe 11 Move to the vicinity of the analysis position on the substrate 2 and probe 1
A probe driving means 4 for driving 1 independently of the sample table 3; an ion beam optical system 1 for irradiating the ion beam 13 near the analysis position of the substrate 2 to form a sample piece including the analysis position of the substrate 2; Constituting an observation means for detecting secondary electrons and observing the vicinity of the substrate 2, the probe 11 or the sample piece holder 19.
It has a secondary electron detector 12 and a deposition gas source 8 for supplying an ion beam assisted deposition gas.

【0012】デポジションガス源8はプローブ11の先端
部と基板2の分析位置近傍部を接続したり、試料片と試
料片ホルダ19とを固定するために使用するための固定接
続手段を構成する。試料台3は分離摘出した試料片を固
定する試料片ホルダ19を載置するためのホルダ留め20を
持つ。イオンビーム光学系1の駆動装置7、デポジション
ガス源制御装置8'、試料位置制御装置9、表示装置5、マ
ニピュレータ駆動装置4'などは、中央処理装置6により
制御される。ここで、イオンビーム光学系1内の10は偏
向器である。また、プローブ11とプローブ駆動手段4は
マニピュレータを構成する。プリアンプ32はプローブ11
の流入(流出)電流を増幅し、中央処理装置6に送る。
The deposition gas source 8 constitutes a fixed connection means for connecting the tip of the probe 11 to a portion near the analysis position of the substrate 2 and for fixing the sample piece and the sample piece holder 19. . The sample stage 3 has a holder holder 20 for mounting a sample piece holder 19 for fixing a sample piece separated and extracted. The central processing unit 6 controls the driving device 7, the deposition gas source control device 8 ', the sample position control device 9, the display device 5, and the manipulator driving device 4' of the ion beam optical system 1. Here, 10 in the ion beam optical system 1 is a deflector. Further, the probe 11 and the probe driving means 4 constitute a manipulator. Preamplifier 32 is probe 11
The inflow (outflow) current is amplified and sent to the central processing unit 6.

【0013】本装置を用いることで、基板2からのイオ
ンビーム加工による試料片(図示せず)の摘出、プロー
ブ11およびその駆動手段4からなるマニピュレータによ
る上記試料片の搬送および上記試料片のホルダ19への固
定などの、分析装置用微小試料作製操作を確実かつ容易
に行うことができる。
By using the present apparatus, a sample piece (not shown) is extracted from the substrate 2 by ion beam processing, the sample piece is transported by the manipulator including the probe 11 and its driving means 4, and the sample piece holder is held. An operation for preparing a micro sample for an analyzer, such as fixation to 19, can be performed reliably and easily.

【0014】以下では、プローブ先端位置同定法の詳細
について述べる。本実施例で用いた回路のブロック図を
図2に示す。
The details of the probe tip position identification method will be described below. FIG. 2 shows a block diagram of a circuit used in this embodiment.

【0015】このブロック図は、図1におけるプローブ
11、プリアンプ32、マニピュレータ駆動装置4'、中央処
理装置6の一部に対応する。プリアンプ32はプローブ11
への流入電流Ip31を増幅し、プローブ形状情報生成回路
35の画像信号Sp33を生成する。またプローブ形状情報生
成回路35の走査信号には図1のイオンビーム駆動装置7
の偏向器10に用いるイオンビーム偏向走査信号Sd34を用
いる。
This block diagram corresponds to the probe shown in FIG.
11, corresponding to a part of the preamplifier 32, the manipulator driving device 4 ', and the central processing unit 6. Preamplifier 32 is probe 11
Amplifies the inflow current Ip31 into the probe and generates the probe shape information
35 image signals Sp33 are generated. The scanning signal of the probe shape information generating circuit 35 is supplied to the ion beam driving device 7 shown in FIG.
The ion beam deflection scanning signal Sd34 used for the deflector 10 is used.

【0016】上記走査信号Sdに同期して画像信号Sp33を
プローブ形状情報生成回路35において画像化する。すな
わちイオンビームがプローブに照射されていない領域は
Sp=0であり、イオンビームがプローブに照射されてい
る領域はSp≠0になるため、プローブの形状を取り出す
ことができる。
The image signal Sp33 is imaged in the probe shape information generating circuit 35 in synchronization with the scanning signal Sd. In other words, the area where the probe is not irradiated with the ion beam
Since Sp = 0 and the region where the ion beam is irradiated on the probe is Sp ≠ 0, the probe shape can be extracted.

【0017】この情報をメモリ36に貯え、表示装置37に
表示すると、図3に示すように、プローブが存在しない
領域はSp=0で暗(図3中斜線部)、プローブが存在す
る領域はSp≠0で明(図3中白色部)のように表示で
き、プローブ形状を認識することができる。また、一旦
メモリ36に取り込まなくても、直接プローブ形状情報生
成回路35から表示装置37に表示することも可能である。
When this information is stored in the memory 36 and displayed on the display device 37, as shown in FIG. 3, an area where no probe exists is dark at Sp = 0 (shaded area in FIG. 3), and an area where the probe exists is With Sp ≠ 0, it can be displayed as bright (white part in FIG. 3), and the probe shape can be recognized. Further, it is also possible to directly display the information on the display device 37 from the probe shape information generation circuit 35 without temporarily loading the data into the memory 36.

【0018】ここで、理想的にはプローブが存在してい
ない領域でSp=0、プローブが存在する領域でSp=Sb
(イオンビーム電流で決まる定数)≠0になるはずであ
るが、実際にはノイズや有限のイオンビーム径により必
ずしも理想通りにはならない。このような場合、プロー
ブ形状情報生成回路35において適当な閾値により画像信
号Spを2値化して画像化することで、プローブ境界をよ
り確実に取り出すことができる。
Here, ideally, Sp = 0 in a region where no probe exists, and Sp = Sb in a region where a probe exists.
(Constant determined by the ion beam current) should be ≠ 0, but it is not always ideal due to noise and finite ion beam diameter. In such a case, the probe boundary can be more reliably extracted by binarizing the image signal Sp with an appropriate threshold in the probe shape information generation circuit 35 and forming an image.

【0019】次にプローブ先端の座標を得る手法につい
て述べる。ここでは簡単のため、上述のように画像信号
Spが2値化(0と1とする)された状態を前提に説明す
る。
Next, a method for obtaining coordinates of the probe tip will be described. Here, for simplicity, the image signal is
The following description is based on the premise that Sp is binarized (0 and 1).

【0020】図4(a)は図3の画像に対応するメモリ
ー内容を示した図である。NはX方向視野のデジタル分割
数であり、MはY方向視野のデジタル分割数である。即
ち、この視野はN×M個のドットで構成されており、デー
タの座標は(Xi,Yj)(i,jは整数)で表される。各Y
にある横線は、画像信号Spを表しており、図4(b)に
示すように0か1かを表している。
FIG. 4A is a diagram showing the contents of the memory corresponding to the image of FIG. N is the digital division number of the X direction visual field, and M is the digital division number of the Y direction visual field. That is, this field of view is composed of N × M dots, and the coordinates of the data are represented by (Xi, Yj) (i and j are integers). Each Y
4 represents the image signal Sp, and represents 0 or 1 as shown in FIG. 4 (b).

【0021】図4(a)においてY0からYm−1までは画像
信号Sp33は全Xに対して0であり、YmからYMまではあるX
の範囲に対して画像信号Spが1である。この情報を元
に、プローブ先端座標抽出回路38が先端座標を取出す。
例えば図4(a)の場合はY0からYmへの画像信号Sp読出
しの中で立ち上がり(0→1)と立ち下がり(1→0)のX
間隔が最も小さいところが先端と判断され、(Xn,Ym)
がプローブ先端座標39(図2)となる。
In FIG. 4A, the image signal Sp33 is 0 with respect to all X from Y0 to Ym-1, and a certain X from Ym to YM.
Is 1 for the range of. Based on this information, the probe tip coordinate extraction circuit 38 extracts the tip coordinates.
For example, in the case of FIG. 4A, the rising (0 → 1) and falling (1 → 0) X in the image signal Sp reading from Y0 to Ym.
The point with the smallest interval is determined to be the tip, and (Xn, Ym)
Is the probe tip coordinate 39 (FIG. 2).

【0022】もし、図5(a)の様にプローブが横を向
いていることで立ち上がりと立ち下がりの間隔が存在し
ない場合(b)には、図5(c)(画像信号Spの0、1は図
5(d)の規則に従う)の様にX方向に画像信号Spを読出
し、同様に立ち上がりと立ち下がりのY間隔が最も小さ
いところを取出せば、その座標がプローブ先端座標とな
る。万が一、2値化によってもノイズが消せず、プロー
ブ以外の領域にSp=1の特異点が存在し、上記の先端位
置同定ができない場合には、メモリ内の全ドットに対し
てそのドットの周辺ドットとの平均をとり、スムージン
グ化を行うことで特異点を消すことができる。
If the rising and falling intervals do not exist because the probe is oriented sideways as shown in FIG. 5 (a) (b), FIG. 5 (c) (0, 0 of the image signal Sp) As shown in FIG. 5 (d), the image signal Sp is read out in the X direction, and if the portion where the Y interval between the rise and fall is the smallest is obtained, the coordinate becomes the probe tip coordinate. If the noise cannot be eliminated by binarization and the singular point of Sp = 1 exists in the area other than the probe, and if the above-described tip position cannot be identified, all the dots in the memory are By taking the average with the dots and performing smoothing, the singular points can be eliminated.

【0023】このプローブ先端位置同定法の場合は、プ
ローブ領域以外にプローブと同輝度の領域が存在する可
能性があるSIM像からの画像パターン認識の場合とは異
なり、プローブ領域以外ではプローブへの電流流入が無
いため、上記のように精度良く先端位置を同定すること
ができる。
In this probe tip position identification method, unlike in the case of image pattern recognition from a SIM image in which an area having the same brightness as the probe may exist in the area other than the probe area, the probe is not applied to the area other than the probe area. Since there is no current inflow, the tip position can be identified with high accuracy as described above.

【0024】上述のように、プローブ先端位置を自動的
に同定することができれば、図2のブロック図に示すと
おりプローブの目標位置座標41を入力し、現在のプロー
ブ位置との誤差情報Sc42を位置誤差計算回路40で計算し
てマニピュレータ駆動装置4'を駆動することで、自動的
にプローブを目標座標に駆動することができる。
As described above, if the probe tip position can be automatically identified, the target position coordinates 41 of the probe are input as shown in the block diagram of FIG. 2, and the error information Sc42 from the current probe position is obtained. The probe can be automatically driven to the target coordinates by calculating the error in the error calculation circuit 40 and driving the manipulator driving device 4 ′.

【0025】また、このプローブ先端位置同定法は、観
察手段としてイオンビーム光学系以外に電子ビーム光学
系を使用する場合にも走査信号Sdの代わりに電子ビーム
偏向走査信号を用いることで同様に使用することが可能
である。
This probe tip position identification method is also used when an electron beam optical system is used in addition to the ion beam optical system as the observation means, by using an electron beam deflection scanning signal instead of the scanning signal Sd. It is possible to

【0026】[0026]

【発明の効果】本発明によると、集積回路チップや半導
体ウエハから、人の手作業を介することなく、直接、分
析装置に導入可能な微小試料片を作製することできる。
特に、プローブ先端位置決めを容易に行うことができ、
自動化に適するため、容易かつ高速、確実に分析用試料
片を作製することが可能になる。
According to the present invention, a minute sample piece that can be directly introduced into an analyzer can be produced from an integrated circuit chip or a semiconductor wafer without manual intervention by humans.
In particular, the probe tip can be easily positioned,
Since it is suitable for automation, it is possible to easily and quickly produce a sample piece for analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による微小試料摘出装置の全
体概略構成図。
FIG. 1 is an overall schematic configuration diagram of a small sample extracting apparatus according to an embodiment of the present invention.

【図2】本発明によるプローブ先端位置同定のための機
能ブロック図。
FIG. 2 is a functional block diagram for identifying a probe tip position according to the present invention.

【図3】本発明の一実施例におけるプローブ形状情報生
成回路によるプローブ形状像を示す図。
FIG. 3 is a diagram showing a probe shape image by a probe shape information generation circuit in one embodiment of the present invention.

【図4】本発明の一実施例によるプローブ形状情報のメ
モリ情報とプローブ先端座標の関係を示す説明図。
FIG. 4 is an explanatory diagram showing the relationship between memory information of probe shape information and probe tip coordinates according to one embodiment of the present invention.

【図5】本発明の他の実施例によるプローブ形状情報の
メモリ情報とプローブ先端座標の関係を示す説明図。
FIG. 5 is an explanatory diagram showing a relationship between memory information of probe shape information and probe tip coordinates according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…イオンビーム光学系、2…基板、3…試料台、4…プロ
ーブ駆動手段、4'…マニピュレータ駆動装置、5…表示
装置、6…中央処理装置、7…イオンビーム駆動装置、8
…デポジションガス源、8'…デポジションガス源駆動装
置、9…試料位置制御装置、10…偏向器、11…プロー
ブ、12…2次電子検出器、13…イオンビーム、19…試料
片ホルダ、20…ホルダ留め、31…プローブ流入電流、32
…プリアンプ、33…画像信号、34…走査信号、35…プロ
ーブ形状情報生成回路、36…メモリ、37…表示装置、38
…プローブ先端座標抽出回路、39…プローブ先端座標、
40…位置誤差計算回路、41…目標座標、42…誤差情報。
1 ... Ion beam optical system, 2 ... Substrate, 3 ... Sample stage, 4 ... Probe driving means, 4 '... Manipulator driving device, 5 ... Display device, 6 ... Central processing unit, 7 ... Ion beam driving device, 8
... Deposition gas source, 8 '... Deposition gas source drive, 9 ... Sample position controller, 10 ... Deflector, 11 ... Probe, 12 ... Secondary electron detector, 13 ... Ion beam, 19 ... Sample piece holder , 20… Holder, 31… Probe inflow current, 32
... Preamplifier, 33 ... Image signal, 34 ... Scan signal, 35 ... Probe shape information generation circuit, 36 ... Memory, 37 ... Display device, 38
… Probe tip coordinate extraction circuit, 39… Probe tip coordinates,
40 position error calculation circuit, 41 target coordinates, 42 error information.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F063 AA03 BA30 DA01 DA05 DB05 EB23 FA20 LA30 2G001 AA03 BA07 CA03 DA02 FA10 GA01 GA06 GA11 HA01 HA09 HA13 HA16 HA20 JA02 JA03 JA06 JA13 KA01 LA11 MA05 PA01 PA02 PA11 PA16 QA02 5C001 AA01 BB06 BB07 CC08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F063 AA03 BA30 DA01 DA05 DB05 EB23 FA20 LA30 2G001 AA03 BA07 CA03 DA02 FA10 GA01 GA06 GA11 HA01 HA09 HA13 HA16 HA20 JA02 JA03 JA06 JA13 KA01 LA11 MA05 PA01 PA02 PA11 PA16 QA02 5C001 AA01 BB07 CC08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板を載置する可動の試料台と、上記基板
の所望領域近傍に接触させるプローブと、上記プローブ
を上記試料台と独立に駆動するプローブ駆動手段と、上
記プローブ駆動手段を制御するマニピュレータ駆動装置
と、上記プローブに流入する電流を検出するプローブ電
流検出装置と、上記プローブと上記基板の所望領域近傍
部を接続するプローブ・基板接続手段と、上記基板の所
望領域近傍にイオンビームを照射し上記基板の所望領域
を含む試料片を形成加工するイオンビーム光学系と、上
記試料片を載置する試料片ホルダを可動に保持する試料
片ホルダ保持手段と、上記試料片と上記試料片ホルダを
固定する試料片・試料片ホルダ固定手段と、上記プロー
ブと上記試料片を分離するプローブ・試料片分離手段と
を有することを特徴とする試料作製装置。
1. A movable sample stage on which a substrate is mounted, a probe for bringing the substrate into contact with a vicinity of a desired area of the substrate, a probe driving unit for driving the probe independently of the sample stage, and controlling the probe driving unit. A manipulator driving device, a probe current detecting device for detecting a current flowing into the probe, a probe / substrate connecting means for connecting the probe to a portion near a desired region of the substrate, and an ion beam near a desired region of the substrate. An ion beam optical system for forming and processing a sample piece including a desired region of the substrate, a sample piece holder holding means for movably holding a sample piece holder on which the sample piece is mounted, the sample piece and the sample It has a sample piece / sample piece holder fixing means for fixing the piece holder, and a probe / sample piece separating means for separating the probe from the sample piece. Sample preparation apparatus according to.
【請求項2】請求項1記載の試料作製装置において、上
記プローブ電流検出装置により検出される上記プローブ
流入電流と上記イオンビームの走査と同期した信号によ
りプローブ形状を認識して先端位置同定を行うことを特
徴とする試料作製装置。
2. A sample preparation apparatus according to claim 1, wherein a tip shape is identified by recognizing a probe shape based on a signal synchronized with the probe inflow current detected by the probe current detection device and the ion beam scanning. A sample preparation apparatus, characterized in that:
【請求項3】請求項2記載の上記プローブ電流検出装置
において、上記プローブ流入電流を適当な閾値により2
値化して先端位置同定を行うことを特徴とする試料作製
装置。
3. The probe current detecting device according to claim 2, wherein said probe inflow current is adjusted by an appropriate threshold value.
A sample preparation apparatus characterized in that a tip position is identified by digitizing.
JP34255098A 1998-12-02 1998-12-02 Sample preparation equipment Expired - Lifetime JP3613039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34255098A JP3613039B2 (en) 1998-12-02 1998-12-02 Sample preparation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34255098A JP3613039B2 (en) 1998-12-02 1998-12-02 Sample preparation equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004158631A Division JP4134951B2 (en) 2004-05-28 2004-05-28 Sample preparation equipment

Publications (2)

Publication Number Publication Date
JP2000171364A true JP2000171364A (en) 2000-06-23
JP3613039B2 JP3613039B2 (en) 2005-01-26

Family

ID=18354627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34255098A Expired - Lifetime JP3613039B2 (en) 1998-12-02 1998-12-02 Sample preparation equipment

Country Status (1)

Country Link
JP (1) JP3613039B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008774A1 (en) * 2000-07-24 2002-01-31 Hitachi, Ltd. Probe driving method, and probe apparatus
JP2005203383A (en) * 2005-04-04 2005-07-28 Hitachi Ltd Micro testpiece processing and observation method and device
JP2009139132A (en) * 2007-12-04 2009-06-25 Sii Nanotechnology Inc Sample processing method and apparatus
WO2011129315A1 (en) 2010-04-16 2011-10-20 株式会社日立ハイテクノロジーズ Ion beam apparatus and ion-beam processing method
WO2012132494A1 (en) 2011-03-31 2012-10-04 株式会社日立ハイテクノロジーズ Ion beam device and machining method
EP2991096A1 (en) 2014-08-29 2016-03-02 Hitachi High-Tech Science Corporation Charged particle beam apparatus
KR20160026752A (en) * 2014-08-29 2016-03-09 가부시키가이샤 히다치 하이테크 사이언스 Automatic sample strip manufacturing apparatus
EP3018693A1 (en) * 2014-11-07 2016-05-11 FEI Company Automated tem sample preparation
KR20160102113A (en) 2015-02-19 2016-08-29 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus
JP2016157671A (en) * 2014-08-29 2016-09-01 株式会社日立ハイテクサイエンス Charged particle beam apparatus
CN106217175A (en) * 2015-08-26 2016-12-14 成都森蓝光学仪器有限公司 ion beam polishing ion source coordinate position calibration system and calibration method
CN109211155A (en) * 2017-06-30 2019-01-15 株式会社三丰 The identification of self-configuring component and signal processing system for coordinate measuring machine
US10658147B2 (en) 2016-03-25 2020-05-19 Hitachi High-Tech Science Corporation Charged particle beam apparatus
US10677697B2 (en) 2014-06-30 2020-06-09 Hitachi High-Tech Science Corporation Automatic sample preparation apparatus
JP2020126852A (en) * 2020-04-30 2020-08-20 株式会社日立ハイテクサイエンス Charged particle beam device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008774A1 (en) * 2000-07-24 2002-01-31 Hitachi, Ltd. Probe driving method, and probe apparatus
US6960765B2 (en) 2000-07-24 2005-11-01 Hitachi, Ltd. Probe driving method, and probe apparatus
US7301146B2 (en) 2000-07-24 2007-11-27 Hitachi, Ltd. Probe driving method, and probe apparatus
JP2005203383A (en) * 2005-04-04 2005-07-28 Hitachi Ltd Micro testpiece processing and observation method and device
JP4507952B2 (en) * 2005-04-04 2010-07-21 株式会社日立製作所 Microsample processing observation method and apparatus
JP2009139132A (en) * 2007-12-04 2009-06-25 Sii Nanotechnology Inc Sample processing method and apparatus
EP2560186A4 (en) * 2010-04-16 2014-12-24 Hitachi High Tech Corp Ion beam apparatus and ion-beam processing method
WO2011129315A1 (en) 2010-04-16 2011-10-20 株式会社日立ハイテクノロジーズ Ion beam apparatus and ion-beam processing method
EP2560186A1 (en) * 2010-04-16 2013-02-20 Hitachi High-Technologies Corporation Ion beam apparatus and ion-beam processing method
JP5537653B2 (en) * 2010-04-16 2014-07-02 株式会社日立ハイテクノロジーズ Ion beam apparatus and ion beam processing method
US9202672B2 (en) 2010-04-16 2015-12-01 Hitachi High-Technologies Corporation Apparatus and method for probe shape processing by ion beam
WO2012132494A1 (en) 2011-03-31 2012-10-04 株式会社日立ハイテクノロジーズ Ion beam device and machining method
US9111721B2 (en) 2011-03-31 2015-08-18 Hitachi High-Technologies Corporation Ion beam device and machining method
US10677697B2 (en) 2014-06-30 2020-06-09 Hitachi High-Tech Science Corporation Automatic sample preparation apparatus
US11073453B2 (en) 2014-06-30 2021-07-27 Hitachi High-Tech Science Corporation Automatic sample preparation apparatus and automatic sample preparation method
US11835438B2 (en) 2014-06-30 2023-12-05 Hitachi High-Tech Science Corporation Automatic sample preparation apparatus
US10236159B2 (en) 2014-08-29 2019-03-19 Hitachi High-Tech Science Corporation Charged particle beam apparatus
KR102358551B1 (en) 2014-08-29 2022-02-04 가부시키가이샤 히다치 하이테크 사이언스 Automatic sample strip manufacturing apparatus
JP2016157671A (en) * 2014-08-29 2016-09-01 株式会社日立ハイテクサイエンス Charged particle beam apparatus
KR20160026752A (en) * 2014-08-29 2016-03-09 가부시키가이샤 히다치 하이테크 사이언스 Automatic sample strip manufacturing apparatus
EP2991096A1 (en) 2014-08-29 2016-03-02 Hitachi High-Tech Science Corporation Charged particle beam apparatus
US9620333B2 (en) 2014-08-29 2017-04-11 Hitachi High-Tech Science Corporation Charged particle beam apparatus
JP2016105077A (en) * 2014-11-07 2016-06-09 エフ・イ−・アイ・カンパニー Automated TEM sample preparation
US10340119B2 (en) 2014-11-07 2019-07-02 Fei Company Automated TEM sample preparation
US9601313B2 (en) 2014-11-07 2017-03-21 Fei Company Automated TEM sample preparation
EP3018693A1 (en) * 2014-11-07 2016-05-11 FEI Company Automated tem sample preparation
KR20160102113A (en) 2015-02-19 2016-08-29 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus
KR102489385B1 (en) * 2015-02-19 2023-01-17 가부시키가이샤 히다치 하이테크 사이언스 Charged particle beam apparatus
CN106217175A (en) * 2015-08-26 2016-12-14 成都森蓝光学仪器有限公司 ion beam polishing ion source coordinate position calibration system and calibration method
US10658147B2 (en) 2016-03-25 2020-05-19 Hitachi High-Tech Science Corporation Charged particle beam apparatus
CN109211155A (en) * 2017-06-30 2019-01-15 株式会社三丰 The identification of self-configuring component and signal processing system for coordinate measuring machine
JP2020126852A (en) * 2020-04-30 2020-08-20 株式会社日立ハイテクサイエンス Charged particle beam device

Also Published As

Publication number Publication date
JP3613039B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP2000171364A (en) Sample preparing device
US7301146B2 (en) Probe driving method, and probe apparatus
JP5537653B2 (en) Ion beam apparatus and ion beam processing method
US10236159B2 (en) Charged particle beam apparatus
US9111721B2 (en) Ion beam device and machining method
JPH11330186A (en) Wafer inspecting equipment
JP4091060B2 (en) Wafer inspection processing apparatus and wafer inspection processing method
JP4572934B2 (en) Sample preparation equipment
JP4134951B2 (en) Sample preparation equipment
JP4111227B2 (en) Sample preparation equipment
JP2001324459A (en) Charged particle beam apparatus and probe control method
JPH1164188A (en) Device and method for observing defect
CN103201819B (en) Pattern determination device and concavo-convex decision method
JPH0467550A (en) Electron beam device and image extracting method thereof
JP2007033461A (en) Wafer inspection device
JP2827109B2 (en) Processing method of focused ion beam processing equipment
JPH0712755A (en) Adjustment method and device for electron beam device
JP2005059104A (en) Manipulation device and manipulation method
JPH0997585A (en) Image reading method and device, and semiconductor manufacturing device using them
JPH039483A (en) Microorganism checking system
JP3052167B2 (en) Foreign matter analysis method
JP2009145184A (en) Probe control method and apparatus
JP2007049002A (en) Inspection device and foreign matter inspection method
JP2000076457A (en) Automatic fault inspecting device
JP2002031519A (en) Electron beam inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

EXPY Cancellation because of completion of term