JP2000169267A - Production of silicon carbide-based composite - Google Patents

Production of silicon carbide-based composite

Info

Publication number
JP2000169267A
JP2000169267A JP10344281A JP34428198A JP2000169267A JP 2000169267 A JP2000169267 A JP 2000169267A JP 10344281 A JP10344281 A JP 10344281A JP 34428198 A JP34428198 A JP 34428198A JP 2000169267 A JP2000169267 A JP 2000169267A
Authority
JP
Japan
Prior art keywords
silicon carbide
producing
wet
carbide composite
silica sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10344281A
Other languages
Japanese (ja)
Other versions
JP3847012B2 (en
Inventor
Tatsuo Nakano
辰夫 中野
Kazuyuki Hiruta
和幸 蛭田
Ryuichi Terasaki
隆一 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP34428198A priority Critical patent/JP3847012B2/en
Publication of JP2000169267A publication Critical patent/JP2000169267A/en
Application granted granted Critical
Publication of JP3847012B2 publication Critical patent/JP3847012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a lightweight composite having a high thermal conductivity and a low coefficient of thermal expansion close to that of a ceramics substrate and suitable for a heat radiating part such as a heat sink without any warpage by impregnating a porous silicon carbide compact formed by a wet forming method with a metal consisting essentially of aluminum. SOLUTION: A wet paper is used as a mold release material and further as a carrier for a compact and a slurry is obtained from a silicon carbide powder containing a silica sol and a gelling agent for the silica sol and then wet formed. A polyalkylene glycol derivative containing a styrene-maleic anhydride copolymer or its derivative is used as the gelling agent for the silica sol. In order to prevent a difference in local filling ratio caused by a difference in particle size of silicon carbide particles, the characteristic of the method is to contain a high-molecular weight unsaturated polycarboxylic acid or a long-chain amine salt of the high-molecular weight unsaturated polycarboxylic acid. Furthermore, a silicone resin compatible with the long-chain amine salt is preferably contained therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子等の電
子部品やデッキ部品を搭載する半導体回路基板、特にパ
ワーモジュール等に用いられるセラミックス基板の放熱
部品、ヒートシンクに好適な炭化珪素質複合体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide composite material suitable for a heat-radiating component and a heat sink of a semiconductor circuit board on which electronic components such as semiconductor elements and deck components are mounted, particularly a ceramic substrate used for a power module and the like. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】近年、回路基板の小型化、半導体素子の
高集積化が急速に進み、回路基板、特にセラミックスを
基板とするセラミックス回路基板、の放熱特性の一層の
向上が望まれている。前記セラミックス回路基板として
は、ベリリア(BeO)を添加した炭化珪素(SiC)、
窒化アルミニウム(AlN)、窒化珪素(Si34)な
どのセラミックスが注目されている。
2. Description of the Related Art In recent years, miniaturization of circuit boards and high integration of semiconductor elements have rapidly progressed, and further improvement in heat radiation characteristics of circuit boards, especially ceramic circuit boards using ceramics as substrates, has been desired. Silicon carbide (SiC) to which beryllia (BeO) is added,
Ceramics such as aluminum nitride (AlN) and silicon nitride (Si 3 N 4 ) have attracted attention.

【0003】上記セラミックスの基板を回路基板やパッ
ケージ用基体などに用いる場合には、半導体素子等の電
気・電子部品からの発熱を前記回路基板の裏面に設けら
れるヒートシンクと呼ばれる放熱部品を介して外部に発
散させることで、半導体素子の温度上昇による誤動作の
発生を防止し、回路基板の動作特性を確保している。
When the ceramic substrate is used as a circuit board or a package base, heat generated from electric / electronic parts such as semiconductor elements is externally radiated through a heat radiating component called a heat sink provided on the back surface of the circuit board. By doing so, the occurrence of malfunction due to a rise in the temperature of the semiconductor element is prevented, and the operating characteristics of the circuit board are ensured.

【0004】ヒートシンクとして代表的なものに銅が知
られているが、セラミックス回路基板に適用すると、銅
とセラミックス基板との熱膨張係数の相違に原因して、
加熱された時や半導体素子の動作時の熱サイクルを受け
て、セラミックス基板にクラックや割れ、或いはセラミ
ックス基板とヒートシンクとを接合している半田でクラ
ックを発生する等の問題がある。
[0004] Copper is known as a typical heat sink, but when applied to a ceramic circuit board, due to the difference in thermal expansion coefficient between copper and the ceramic board,
There are problems such as cracks and cracks in the ceramic substrate or cracks generated by the solder joining the ceramic substrate and the heat sink due to a thermal cycle when heated or during operation of the semiconductor element.

【0005】このために、特に高い信頼性が要求される
分野にはセラミックス基板と熱膨張係数の差が小さいM
o/Wがヒートシンクとして用いていた。しかし、Mo
/Wはそれぞれの金属の比重が大きく、ヒートシンク或
いはそれを接合したセラミックス回路基板の重量が重く
なるので、放熱部品の軽量化が強く望まれる用途、例え
ば自動車や車両等の移動機器搭載用途においては、好ま
しくない。更に、MoやWは、希少であり高価であると
いう欠点を有している。
[0005] For this reason, especially in the field where high reliability is required, the difference between the ceramic substrate and the thermal expansion coefficient is small.
o / W was used as a heat sink. But Mo
Since / W has a large specific gravity of each metal and a heat sink or a ceramic circuit board to which the heat sink is joined, the weight of the heat radiating component is strongly desired, for example, in a mobile device mounting application such as an automobile or a vehicle. Is not preferred. Furthermore, Mo and W have the disadvantage that they are scarce and expensive.

【0006】上記の事情から、近年、銅やアルミニウム
或いはこれらの合金を無機質粒子や繊維で強化したMM
C(Metal Matrix Composite)
と称される金属−セラミックス複合体が注目されてい
る。
In view of the above circumstances, in recent years, MM in which copper, aluminum, or an alloy thereof has been reinforced with inorganic particles or fibers has been developed.
C (Metal Matrix Composite)
Metal-ceramic composites, which are referred to as "metal-ceramic composites," are attracting attention.

【0007】MMCは、一般に、強化材である無機質粒
子や繊維を予め成形することで、プリフォームを形成
し、該プリフォームの強化材間に金属あるいは合金を含
浸させた複合体であり、強化材にはアルミナ、炭化珪
素、窒化アルミニウム、窒化珪素、シリカ、炭素などが
用いられる。
[0007] MMC is generally a composite in which a preform is formed by pre-forming inorganic particles or fibers as a reinforcing material, and a metal or an alloy is impregnated between the reinforcing materials of the preform. As the material, alumina, silicon carbide, aluminum nitride, silicon nitride, silica, carbon, and the like are used.

【0008】金属−セラミックス複合体の熱伝導率を上
げようとする場合、強化材および含浸する金属や合金に
熱伝導率の高い物質を選択する必要がある。加えて、強
化材と金属あるいは合金との濡れ性や界面の反応等が、
得られる金属−セラミックス複合体の熱伝導率や強度に
影響を与える。
In order to increase the thermal conductivity of the metal-ceramic composite, it is necessary to select a material having a high thermal conductivity for the reinforcing material and the metal or alloy to be impregnated. In addition, the wettability between the reinforcing material and the metal or alloy, the reaction at the interface, etc.,
It affects the thermal conductivity and strength of the obtained metal-ceramic composite.

【0009】上記用途に適用するためには、軽量で高熱
伝導率で、しかも各種セラミックス基板と同じ程度の低
い熱膨張率を兼ね備えた金属−セラミックス複合体を得
る組み合わせとして、強化材に炭化珪素を主成分とする
プリフォームにアルミニウムを主成分とした金属を用い
ることが注目されている。
In order to apply to the above-mentioned applications, silicon carbide is used as a reinforcing material as a combination to obtain a metal-ceramic composite which is lightweight, has a high thermal conductivity, and has a thermal expansion coefficient as low as that of various ceramic substrates. Attention has been paid to using a metal mainly composed of aluminum for a preform mainly composed of aluminum.

【0010】[0010]

【発明が解決しようとする課題】強化材に炭化珪素を、
含浸する金属にアルミニウムを主成分とする金属を用い
て得られる金属−セラミックス複合体(以下、炭化珪素
質複合体という)の熱伝導率、熱膨張率等の特性は、炭
化珪素質複合体中の炭化珪素の含有量により影響を受け
るが、前記含有量は金属を含浸される炭化珪素質成形体
(プリフォーム)の体積密度で決まる。然るに、プリフ
ォームの空隙部分に金属が含浸されるためである。従っ
て、プリフォームの特性制御が、所望の特性を有する炭
化珪素質複合体を得るのに重要である。
SUMMARY OF THE INVENTION Silicon carbide is used as a reinforcing material.
The properties of a metal-ceramic composite (hereinafter referred to as a silicon carbide composite) obtained by using a metal containing aluminum as a main component as a metal to be impregnated, such as thermal conductivity and thermal expansion coefficient, are different from those of the silicon carbide composite. Is affected by the content of silicon carbide, but the content is determined by the volume density of the silicon carbide-based compact (preform) impregnated with the metal. This is because the metal is impregnated into the voids of the preform. Therefore, control of the properties of the preform is important for obtaining a silicon carbide composite having desired properties.

【0011】炭化珪素質成形体を得る方法としては、セ
ラミックス焼結体を製造する公知の方法を適用すれば良
い。例えば、原料に炭化珪素粉末を用い、これに成形或
いは焼結時に強度を発現しやすい添加剤を配合し、プレ
ス等の方法で形状を付与し、しかる後の加熱する方法で
ある。しかし、成形時の添加剤としてメチルセルロース
などの結着剤を用いる方法では、結着剤の焼成部分が空
間となるから充填率が低下(複合材中の炭化珪素の含有
量が低下)する問題があるし、結着剤量を低下させる
と、成形時に炭化珪素粉の粒度差による沈降差を生じ、
局所的に大きな充填率に差の有る成形体しか得られない
という問題もある。
As a method for obtaining a silicon carbide-based molded body, a known method for producing a ceramic sintered body may be applied. For example, there is a method in which a silicon carbide powder is used as a raw material, an additive which easily develops strength during molding or sintering is blended with the powder, a shape is given by a method such as pressing, and then heating is performed. However, in the method using a binder such as methylcellulose as an additive at the time of molding, there is a problem that the filling rate is reduced (the content of silicon carbide in the composite material is reduced) because the baked portion of the binder becomes a space. In addition, when the amount of the binder is reduced, a sedimentation difference due to a particle size difference of the silicon carbide powder occurs during molding,
There is also a problem that only a compact having a locally large difference in the filling rate can be obtained.

【0012】このため、ヒートシンクを得ることを狙い
に、板状の成形体を得ようとすると、厚み方向で充填率
に差を有する成形体となり、該成形体より得られる炭化
珪素質複合体は、熱伝導率や熱膨張率という特性が表裏
で差があったり、また前記特性差が原因して反りが発生
する。
For this reason, if a plate-shaped molded body is to be obtained with the aim of obtaining a heat sink, the molded body will have a difference in the filling rate in the thickness direction, and the silicon carbide composite obtained from the molded body will be In addition, the characteristics such as thermal conductivity and coefficient of thermal expansion are different between the front and back sides, and warpage occurs due to the difference in the characteristics.

【0013】反りの発生は、放熱部品では回路基板や放
熱フィンなどとの接合ができなくなったり、接合できた
としても熱伝達を阻害してしまい、大きな問題となって
いる。また、この方法では、焼成後の成形体の強度が低
く含浸前の取扱い時、或いは含浸時の衝撃等により粉体
化し、所望の特性を有する炭化珪素質複合体が得難いと
いう問題がある。
[0013] The occurrence of warping is a serious problem because the heat dissipating component cannot be joined to a circuit board or a heat dissipating fin, or even if it can be joined, heat transfer is hindered. Further, in this method, there is a problem in that the strength of the molded body after firing is low, and powder is formed by handling before impregnation or by impact during impregnation, and it is difficult to obtain a silicon carbide composite having desired characteristics.

【0014】上記の事情から、一般的には、炭化珪素粉
末に高分子化合物とシリカ粉末等の焼結バインダーを添
加して、乾式成形法を適用して成形した後、焼結する方
法が採用されている。しかし、この方法は金型を用い、
数百kg/cm2の高圧力を負荷する高価な装置を必要
とすること、前記金型が摩耗しやすい等の問題がある。
また、原料粉末の金型中での流動を可能とするためには
多量の高分子化合物やシリカ粉末を添加する必要があ
り、炭化珪素の含有量が低下するために、得られる炭化
珪素質複合体の熱伝導率が低下してしまうなどの問題が
ある。
In view of the above circumstances, a method is generally employed in which a high molecular compound and a sintering binder such as silica powder are added to silicon carbide powder, molded by a dry molding method, and then sintered. Have been. However, this method uses a mold,
There are problems that an expensive apparatus for applying a high pressure of several hundred kg / cm 2 is required, and the mold is easily worn.
In addition, in order to allow the raw material powder to flow in the mold, it is necessary to add a large amount of a polymer compound or silica powder, and the content of silicon carbide is reduced. There is a problem that the thermal conductivity of the body is reduced.

【0015】本発明は、上記の事情に鑑みなされたもの
であって、軽量で高熱伝導率でしかもセラミックス基板
に近い低熱膨張率を有する炭化珪素質複合体、とくに反
りのないヒートシンク等の放熱部品に好適な炭化珪素質
複合体を、安価な方法で、安定して提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is a heat-dissipating component such as a silicon carbide composite having a light weight, a high thermal conductivity, and a low coefficient of thermal expansion close to that of a ceramic substrate, and in particular, a heat sink without a warp. It is an object of the present invention to stably provide a silicon carbide-based composite suitable for use in an inexpensive method.

【0016】[0016]

【課題を解決するための手段】即ち、本発明は、多孔質
炭化珪素成形体にアルミニウムを主成分とする金属を含
浸させてなる炭化珪素質複合体の製造方法であって、多
孔質炭化珪素成形体が湿式成形法により形成されてなる
ことを特徴とする炭化珪素質複合体の製造方法であり、
好ましくは、湿式成形法が湿式プレス法であり、注型法
であることを特徴とする前記の炭化珪素質複合体の製造
方法である。
That is, the present invention relates to a method for producing a silicon carbide composite in which a porous silicon carbide molded body is impregnated with a metal containing aluminum as a main component. A method for producing a silicon carbide-based composite, wherein the molded body is formed by a wet molding method,
Preferably, the method for producing a silicon carbide composite is characterized in that the wet forming method is a wet pressing method and a casting method.

【0017】本発明は、湿潤紙を離型材料とし、しかも
成形体のキャリアーとすることを特徴とする前記の炭化
珪素質複合体の製造方法であり、シリカゾルと該シリカ
ゾルのゲル化剤とを含有する炭化珪素粉末よりスラリー
を得て、更に湿式成形することを特徴とする前記の炭化
珪素質複合体の製造方法である。ことに、シリカゾルの
ゲル化剤が、スチレン−無水マレイン酸共重合体を含む
ポリアルキレングリコール誘導体もしくは該誘導体であ
ることを特徴とする前記の炭化珪素質複合体の製造方法
である。
The present invention relates to the above-mentioned method for producing a silicon carbide composite, wherein wet paper is used as a release material and as a carrier of a molded article, wherein silica sol and a gelling agent for the silica sol are used. The method for producing a silicon carbide composite according to the above, wherein a slurry is obtained from the silicon carbide powder to be contained, and further subjected to wet molding. In particular, the method for producing a silicon carbide composite described above, wherein the gelling agent for the silica sol is a polyalkylene glycol derivative containing a styrene-maleic anhydride copolymer or the derivative.

【0018】本発明は、高分子量不飽和ポリカルボン酸
もしくは高分子量不飽和ポリカルボン酸の長鎖アミン塩
を含有することを特徴とする前記の炭化珪素質複合体の
製造方法であり、前記の高分子量不飽和ポリカルボン酸
もしくは高分子量不飽和ポリカルボン酸の長鎖アミン塩
に相溶性のシリコン樹脂を更に含有することを特徴とす
る前記の炭化珪素質複合体の製造方法である。
The present invention relates to the above-mentioned method for producing a silicon carbide composite, which comprises a high molecular weight unsaturated polycarboxylic acid or a long chain amine salt of a high molecular weight unsaturated polycarboxylic acid. The method for producing a silicon carbide composite according to the above, further comprising a silicone resin compatible with the high molecular weight unsaturated polycarboxylic acid or the long-chain amine salt of the high molecular weight unsaturated polycarboxylic acid.

【0019】更に、本発明は、前記の炭化珪素質複合体
の製造方法で得られてなる炭化珪素質複合体からなるこ
とを特徴とする半導体回路基板用放熱部品である。
Further, the present invention is a heat dissipating component for a semiconductor circuit board, comprising a silicon carbide composite obtained by the method for producing a silicon carbide composite.

【0020】[0020]

【発明の実施の形態】本発明者らは、上記事情に鑑み、
炭化珪素質複合体の製造方法についていろいろ検討し、
その原料となる炭化珪素質成形体を詳細に制御して作成
することにより、高熱伝導率で低熱膨張率の特性を有す
る炭化珪素質複合体を安定して、特に、ヒートシンクに
好適な平板状の炭化珪素質複合体を得ることができるこ
とを見いだし、本発明に至ったものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In view of the above circumstances, the present inventors
Various studies were made on the method of producing the silicon carbide composite,
The silicon carbide-based composite having the characteristics of high thermal conductivity and low coefficient of thermal expansion is stably produced by forming the silicon carbide-based molded body as the raw material in detail by controlling it, and in particular, a flat plate suitable for a heat sink. The inventors have found that a silicon carbide composite can be obtained, and have reached the present invention.

【0021】即ち、本発明者らは、炭化珪素粉より成形
体を得るに際して、成形体の強度を確保するために炭化
珪素粉に配合されるシリカ分としてシリカゾルを選択
し、更にシリカゾルのゲル化剤を配合することにより、
従来の湿式成形法では得られなかった、ヒートシンク等
に好適な反りの極めて小さく、炭化珪素の充填率の差異
が小さい炭化珪素質成形体が得られること、更に、前記
の湿式成形法で得た炭化珪素質成形体を用いて高熱伝導
率で低熱膨張率の炭化珪素質複合体を安定して得ること
ができるという知見を得て、本発明に至ったものであ
る。
That is, the present inventors, when obtaining a molded body from silicon carbide powder, select silica sol as a silica component to be added to the silicon carbide powder in order to secure the strength of the molded body, and furthermore, gelation of the silica sol By blending the agent,
Very low warpage suitable for a heat sink or the like, which was not obtained by the conventional wet molding method, and a silicon carbide-based molded body having a small difference in the filling rate of silicon carbide can be obtained. The inventors have found that a silicon carbide composite having a high thermal conductivity and a low coefficient of thermal expansion can be stably obtained using a silicon carbide molded article, and the present invention has been accomplished.

【0022】前記したとおり、従来は炭化珪素質複合体
を得るために用いられる炭化珪素質成形体は、主に乾式
プレスなどの乾式成形法により作成されていたが、高価
な装置を用いなければならない、或いは金型の摩耗が著
しいなどの問題を抱えていたが、本発明では湿式成形法
を採用することを特徴としている。
As described above, conventionally, a silicon carbide-based molded body used for obtaining a silicon carbide-based composite is mainly produced by a dry molding method such as a dry press, but unless an expensive apparatus is used. However, the present invention is characterized by adopting a wet molding method.

【0023】前記湿式成形法については、押出成形法、
湿式プレス法、湿潤注型法等があるが、本発明者らの検
討によれば、炭化珪素の充填率を高め、所望特性を有す
る炭化珪素質複合体を得るには、平板状製品に対して平
板と垂直方向に原料を加圧し、成形することが可能な湿
潤注型法や湿式プレス法が望ましい方法である。
The wet molding method includes an extrusion molding method,
Although there are a wet press method, a wet casting method, and the like, according to the study of the present inventors, it is necessary to increase the filling rate of silicon carbide and obtain a silicon carbide composite having desired characteristics with respect to a flat product. A wet casting method and a wet press method, which are capable of pressing and molding the raw material in a direction perpendicular to the flat plate, are preferable methods.

【0024】以下、本発明の炭化珪素質複合体の製造方
法について、湿式プレス法の場合を例示しながら、詳細
に説明する。
Hereinafter, the method for producing a silicon carbide composite according to the present invention will be described in detail with reference to a wet press method.

【0025】原料の炭化珪素粉末については、それを構
成する粒子が高熱伝導性であることが望まれ、炭化珪素
成分が99重量%の高純度の、一般的に「緑色」を呈す
る炭化珪素粉末を用いることが好ましい。また、本発明
の目的を達成するためには、前記原料の炭化珪素粉末か
ら、充填率が50〜80体積%、好ましくは60〜75
体積%の炭化珪素質成形体が得られれば良い。成形体の
炭化珪素の充填率、従って炭化珪素質複合体中の炭化珪
素含有量を高めるためには、炭化珪素粉末は適当な粒度
分布を有するものが良く、この目的から2種以上の粉末
を適宜配合してもよい。
The silicon carbide powder as the raw material is desired to have high thermal conductivity in the particles constituting the silicon carbide powder, and the silicon carbide component has a high purity of 99% by weight and generally exhibits a "green" silicon carbide powder. It is preferable to use In order to achieve the object of the present invention, the filling rate of silicon carbide powder as a raw material is 50 to 80% by volume, preferably 60 to 75% by volume.
It suffices if a silicon carbide-based compact of volume% can be obtained. In order to increase the filling ratio of the silicon carbide in the compact, and hence the silicon carbide content in the silicon carbide composite, the silicon carbide powder should have an appropriate particle size distribution. For this purpose, two or more powders should be used. You may mix suitably.

【0026】本発明では、湿式成形法で高充填率を有す
る炭化珪素質成形体を得るために、原料炭化珪素粉末に
シリカゾルと前記シリカゾルのゲル化剤を添加すること
を特徴としている。シリカゾルとしては、市販されてい
る固形分濃度20重量%程度のもので構わない。シリカ
ゾルの配合量としては、炭化珪素100重量部に対し
て、固形分濃度で0.5〜10重量部程度で十分である
が、好ましくは1〜3重量部である。0.5重量部未満
では、得られる成形体の強度が、焼成したときにさえ十
分でないことがあるし、10重量部を超える場合には、
得られる成形体の炭化珪素の充填率が高くならず、本発
明の目的を達成できないことがあるからである。
The present invention is characterized in that a silica sol and a gelling agent for the silica sol are added to the raw silicon carbide powder in order to obtain a silicon carbide molded body having a high filling rate by a wet molding method. As the silica sol, a commercially available silica sol having a solid concentration of about 20% by weight may be used. The amount of the silica sol to be mixed is preferably about 0.5 to 10 parts by weight in terms of solid content concentration with respect to 100 parts by weight of silicon carbide, but is preferably 1 to 3 parts by weight. If it is less than 0.5 part by weight, the strength of the obtained molded article may not be sufficient even when fired, and if it exceeds 10 parts by weight,
This is because the filling rate of silicon carbide in the obtained molded body does not increase, and the object of the present invention may not be achieved.

【0027】本発明では、前記シリカゾルにゲル化剤を
添加することを特徴とする。シリカゾルを湿式成形、後
に続く乾燥、焼成工程を通じて、ゲル化することによ
り、成形時には原料の流動性を支配する水分量を多く保
ちながらも、その後の乾燥工程以降では成形体の強度を
強くすることができるので、作業性に富むと同時に、乾
燥速度や焼成時の昇温速度を早くすることができ、多量
生産に適するという実用上の効果が得られる。前記シリ
カゾルのゲル化剤としては、スチレン−無水マレイン酸
共重合体を含むポリアルキレングリコール並びにその誘
導体が知られており、本発明においても使用することが
できる。また、シリカゾルのゲル化剤の量としては、一
般的に、シリカゾルの固形分量100重量部に対して、
5〜20重量部であれば十分である。また、当然ではあ
るが、前記ゲル化剤として、いわゆる減水剤を用いるこ
とも出来る。
The present invention is characterized in that a gelling agent is added to the silica sol. By gelling silica sol through wet molding, subsequent drying and baking steps, it is necessary to increase the water content that governs the fluidity of the raw material during molding, but to increase the strength of the molded body after the subsequent drying step Therefore, the drying speed and the heating rate during firing can be increased at the same time as the workability is enhanced, and the practical effect of being suitable for mass production can be obtained. As the gelling agent for the silica sol, polyalkylene glycols containing a styrene-maleic anhydride copolymer and derivatives thereof are known and can be used in the present invention. Further, the amount of the gelling agent for silica sol, generally, based on 100 parts by weight of the solid content of silica sol,
5 to 20 parts by weight is sufficient. Also, needless to say, a so-called water reducing agent can be used as the gelling agent.

【0028】本発明では、前記原料に、更に水溶性高分
子物質を含有させることが好ましい。前記水溶性高分子
物質を更に含有させることにより、湿式成形時に存在さ
せる多量の水分の中で、炭化珪素粒子の沈降が起こり、
粒度の相違に原因した局所的な炭化珪素の充填率の差異
が発生することを防止するためである。前記水溶性高分
子物質としては、メチルセルロース、ポリビニルアルコ
ール或いは高分子量不飽和ポリカルボン酸、高分子量不
飽和ポリカルボン酸の長鎖アミン塩等が挙げられるが、
本発明者らの実験的検討によれば、高分子量不飽和ポリ
カルボン酸、高分子量不飽和ポリカルボン酸の長鎖アミ
ン塩が、炭化珪素成形体の炭化珪素充填率を低下するこ
とがなく、好ましい。また、水溶性高分子物質の添加量
については、炭化珪素粉100重量部に対して0.05
〜2.0重量部であれば良く、0.1〜1.0重量部が
好ましい範囲である。
In the present invention, it is preferable that the raw material further contains a water-soluble polymer substance. By further containing the water-soluble polymer substance, in a large amount of water present during wet molding, sedimentation of silicon carbide particles occurs,
This is to prevent a local difference in the filling rate of silicon carbide from occurring due to a difference in grain size. Examples of the water-soluble polymer substance include methyl cellulose, polyvinyl alcohol or high molecular weight unsaturated polycarboxylic acid, and a long chain amine salt of high molecular weight unsaturated polycarboxylic acid.
According to the experimental studies of the present inventors, high-molecular-weight unsaturated polycarboxylic acid, long-chain amine salt of high-molecular-weight unsaturated polycarboxylic acid, without lowering the silicon carbide filling rate of the silicon carbide molded body, preferable. Further, the amount of the water-soluble polymer substance added was 0.05% with respect to 100 parts by weight of the silicon carbide powder.
It is sufficient that the amount is from 2.0 to 2.0 parts by weight, and a preferable range is from 0.1 to 1.0 part by weight.

【0029】更に、本発明では、前記水溶性高分子物質
に相溶性のシリコン樹脂を添加することが好ましい。前
記シリコン樹脂は、湿式成形後の乾燥、焼成を経て、シ
リカゾルと同様な焼結バインダーとして機能するので、
実質的に、水溶性高分子物質等の有機物質が乾燥、焼成
工程で揮発し、得られる成形体の炭化珪素充填率が低下
することを防止するのに役立つ。シリコン樹脂の添加量
は、水溶性高分子物質の100重量部に対して1〜10
重量部が一般的である。
Further, in the present invention, it is preferable to add a compatible silicone resin to the water-soluble polymer substance. Since the silicon resin, after drying and sintering after wet molding, functions as a sintered binder similar to silica sol,
Substantially, organic substances such as water-soluble polymer substances are volatilized in the drying and firing steps, which helps to prevent the silicon carbide filling rate of the obtained molded article from decreasing. The addition amount of the silicone resin is 1 to 10 based on 100 parts by weight of the water-soluble polymer substance.
Parts by weight are common.

【0030】上記の添加剤を配合した炭化珪素粉末は、
水を炭化珪素100重量部に対して15〜80重量部を
含有する実施的にスラリーと呼ばれる粘性を示す状態を
呈している。前記スラリーを用いて、湿式成形するに際
しては、一定サイズの炭化珪素成形体を量産するために
は、型をもちいる湿式プレス、湿潤注型法が選択され
る。前記スラりーは、どちらの場合にもてきようできる
ものの、成形直後のもの(湿潤状態の炭化珪素質成形
体;以下、ウエットプリフォームという)の型離れが悪
いことがあり、量産上の問題となることがある。
The silicon carbide powder containing the above additives is
It shows a viscous state called a slurry which contains 15 to 80 parts by weight of water with respect to 100 parts by weight of silicon carbide. When performing wet molding using the slurry, a wet press using a mold and a wet casting method are selected in order to mass-produce a silicon carbide molded body of a certain size. Although the above-mentioned slurry can be obtained in either case, the mold immediately after molding (wet silicon carbide molded body; hereinafter, referred to as a wet preform) may have a poor mold release, which is a problem in mass production. May be.

【0031】本発明では、前記問題解決のために、湿潤
紙を型の内面に設けること、更に型から抜き出して得ら
れるウエットプリフォームのキャリヤーとすることを特
徴としている。これにより、安定して離型することがで
き、しかも得られた強度の弱いウエットプリフォームに
変形や破損することなく、次の乾燥工程へ運搬すること
ができる。
In order to solve the above-mentioned problems, the present invention is characterized in that a wet paper is provided on the inner surface of a mold, and a wet preform carrier obtained by extracting the wet paper from the mold is provided. As a result, the mold can be stably released, and can be transported to the next drying step without deforming or damaging the obtained weak wet preform.

【0032】前記湿式プレス法での主要な条件は、公知
の条件で十分であり、例えば、圧力2〜5kg/cm2
で加圧し、30秒程度脱水する。また、湿潤注型法での
条件も、公知の条件に基づけば良く、例えば3〜5分の
脱水条件で十分である。
As the main conditions in the wet press method, known conditions are sufficient, for example, a pressure of 2 to 5 kg / cm 2.
And dehydrate for about 30 seconds. The conditions in the wet casting method may be based on known conditions, and for example, dehydration conditions of 3 to 5 minutes are sufficient.

【0033】上記操作で得られたウエットプリフォーム
を、乾燥し、更に焼成して、炭化珪素質成形体とする。
乾燥条件としては、成形体中の遊離の水分を除去できれ
ばよく、一般的に、100℃以上に加熱すればよい。焼
成については、シリカゾルを焼結バインダーとしている
ことから、600℃〜1000℃の温度範囲で焼成する
ことが好ましい。600℃未満では、十分な強度を発現
できないことがあるし、1000℃を超える温度では、
焼成時の雰囲気の影響を受けて、炭化珪素が酸化された
り、シリカが飛散することがあるからである。焼成時の
雰囲気は、前記温度範囲ならばどのようなものであって
も構わず、大気、酸素、窒素、水素、アルゴン等のガス
雰囲気の他、真空であっても良い。
The wet preform obtained by the above operation is dried and further baked to obtain a silicon carbide molded body.
The drying condition may be any condition as long as free moisture in the molded body can be removed, and generally, the molded body may be heated to 100 ° C. or higher. Regarding the sintering, since the silica sol is used as the sintering binder, the sintering is preferably performed in a temperature range of 600 ° C to 1000 ° C. If the temperature is lower than 600 ° C., sufficient strength may not be exhibited.
This is because silicon carbide may be oxidized or silica may be scattered under the influence of the atmosphere during firing. The atmosphere at the time of firing may be any atmosphere within the above-mentioned temperature range, and may be air, oxygen, nitrogen, hydrogen, argon or other gas atmosphere, or may be vacuum.

【0034】上記操作で得られた炭化珪素質成形体は、
炭化珪素充填率が50〜80体積%、好ましい場合には
60〜75体積%である。
The silicon carbide compact obtained by the above operation is
The filling ratio of silicon carbide is 50 to 80% by volume, preferably 60 to 75% by volume.

【0035】次に、前記炭化珪素質成形体を用い、アル
ミニウムを主成分とする金属を含浸させて炭化珪素質複
合体を得る。アルミニウムを主成分とする金属を含浸す
る方法としては、溶湯鍛造法、ダイカスト法、或いはそ
れらを改良した方法等の公知の方法が適用できる。ま
た、前記の方法において、含浸操作の直前にプリフォー
ムを加熱することが好ましい。
Next, the silicon carbide-based composite is impregnated with a metal containing aluminum as a main component to obtain a silicon carbide-based composite. As a method of impregnating a metal containing aluminum as a main component, a known method such as a molten metal forging method, a die casting method, or a method obtained by improving them can be applied. In the above method, it is preferable to heat the preform immediately before the impregnation operation.

【0036】前記アルミニウムを主成分とする金属とし
ては、炭化珪素質複合体を作製する際に通常使用されて
いる珪素含有アルミニウム合金、珪素とマグネシウムを
含有するアルミニウム合金並びにマグネシウム含有アル
ミニウム合金が挙げられる。この中で、溶融金属の融点
が低くく作業性のよいことから珪素とマグネシウムを含
有するアルミニウム合金が好ましく、また得られる複合
体の熱伝導率向上の面からはマグネシウム含有アルミニ
ウム合金が好ましく選択される。本発明に於いては、前
者にあっては、珪素は熱伝導率を低下させる原因となる
ことから、その量を18重量%以下とするのがよい。ま
た、マグネシウム量については、その量が少ないと合金
の融点が低下せず作業性が悪化すること、その過量では
得られる複合体の熱伝導率が低下する原因となること等
を考慮し、0.5〜2.5重量%が好ましい。
Examples of the metal containing aluminum as a main component include a silicon-containing aluminum alloy, an aluminum alloy containing silicon and magnesium, and a magnesium-containing aluminum alloy which are generally used in producing a silicon carbide composite. . Among them, an aluminum alloy containing silicon and magnesium is preferable because the melting point of the molten metal is low and workability is good, and a magnesium-containing aluminum alloy is preferably selected from the viewpoint of improving the thermal conductivity of the obtained composite. You. In the present invention, in the former case, since silicon causes a decrease in thermal conductivity, its amount is preferably 18% by weight or less. Further, regarding the amount of magnesium, considering that if the amount is small, the melting point of the alloy is not lowered and the workability is deteriorated, and if the amount is too large, the thermal conductivity of the obtained composite is lowered. 0.5 to 2.5% by weight is preferred.

【0037】以下、実施例、比較例に基づいて、本発明
を更に詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

【0038】[0038]

【実施例】〔実施例1〕万能混合装置に、粗粒子SiC
粉(大平洋ランダム(株)製;NG−80)710gと
微粒子SiC粉(屋久島電工(株)社製;GC−100
0F)290gを投入して、5分間混合した。次いで、
シリカゾル水溶液(日産化学工業(株)社製スノーテッ
クス;固形分濃度20重量%)120gを投入して5分
間混合後、シリカゾルゲル化剤を(デンカグレース
(株)社製;SUPER−200)を35gと水15g
を投入して5分間混合した。更に、有機系添加剤(ビッ
クケミー・ジャパン(株)製;BYK−P104S;有
効成分50%)を1.5g投入して5分間混合した。前
記混合物(スラリー)をポリエチ製容器にて保管した。
このスラリーは、1週間後も炭化珪素粉末の沈降等の成
分分離は認められなかった。
[Example 1] Coarse particle SiC was added to a universal mixing device.
710 g of powder (manufactured by Taiheiyo Random Co., Ltd .; NG-80) and fine particle SiC powder (manufactured by Yakushima Electric Works Co., Ltd .; GC-100)
0F) 290 g and mixed for 5 minutes. Then
120 g of an aqueous silica sol solution (Snowtex, manufactured by Nissan Chemical Industries, Ltd .; solid content concentration: 20% by weight) was charged and mixed for 5 minutes, and then a silica sol gelling agent (supper-200, manufactured by Denka Grace Co., Ltd.) was added. 35g and water 15g
And mixed for 5 minutes. Further, 1.5 g of an organic additive (BYK-P104S; 50% active ingredient, manufactured by BYK Japan KK) was added and mixed for 5 minutes. The mixture (slurry) was stored in a polyethylene container.
In this slurry, no component separation such as sedimentation of silicon carbide powder was observed even after one week.

【0039】湿式プレス用の型に、水中で吸水させた紙
を貼り、1秒間吸引後に前記ペーストを投入し、2kg
/cm2の圧力でプレスして30秒間吸引した。次い
で、加圧を開放後、型に圧搾空気を瞬間的に導入して、
成形されたウエットプリフォームを回収した。前記ウエ
ットプリフォームを紙毎運搬して、平坦な板上で100
゜Cで1時間、更に150゜Cで1時間乾燥した。
[0039] A paper that has been absorbed in water is attached to a mold for wet press, and after sucking for 1 second, the paste is put into the mold.
/ Cm 2 and pressed for 30 seconds. Then, after releasing the pressurization, compressed air is instantaneously introduced into the mold,
The formed wet preform was recovered. The wet preform is transported together with the paper and placed on a flat plate at 100
It was dried at ゜ C for 1 hour and further at 150 ° C for 1 hour.

【0040】前記乾燥後の成形体を、大気雰囲気中で8
50゜Cで1時間焼成し、炭化珪素質成形体を得た。該
炭化珪素質成形体の全体での炭化珪素充填率は71体積
%であった。また、該炭化珪素質成形体の表面と裏面近
傍での炭化珪素充填率の差は0.5%以下で測定誤差範
囲内であった。
The molded body after drying is dried in an air atmosphere for 8 hours.
It was fired at 50 ° C. for 1 hour to obtain a silicon carbide molded body. The silicon carbide-based compact had a total silicon carbide filling rate of 71% by volume. Further, the difference between the filling rates of silicon carbide in the vicinity of the front surface and the back surface of the silicon carbide-based molded body was 0.5% or less and was within the measurement error range.

【0041】前記炭化珪素質成形体に、アルミニウム合
金を高圧含浸して得た炭化珪素質複合体の熱伝導率は2
20W/mKであり、熱膨張係数は6.5ppm/Kで
あり、反りは140mmに対して15μmであった。
The silicon carbide composite obtained by impregnating the silicon carbide molding with an aluminum alloy under high pressure has a thermal conductivity of 2
It was 20 W / mK, the coefficient of thermal expansion was 6.5 ppm / K, and the warpage was 15 μm for 140 mm.

【0042】〔実施例2〕実施例1のペースト100g
を用いて、更に水6g混合したペーストを原料とした。
図2に示すとおりに、湿潤した紙を吸引面に貼った湿潤
注型法の型にを用い、更に、注型条件として、吸引しな
がら1kg/cm2で加圧注入し、3分間吸引した。脱
型した後は、実施例1と同じ処理をして炭化珪素質複合
体を得た。この炭化珪素質複合体の熱伝導率は214W
/mK、熱膨張係数は6.7ppm/Kであり、反りは
140mm当たり22μmであった。
Example 2 100 g of the paste of Example 1
And a paste obtained by further mixing 6 g of water as a raw material.
As shown in FIG. 2, using a wet casting mold in which wet paper was stuck on the suction surface, as a casting condition, pressure was applied at 1 kg / cm 2 while suctioning, and suction was performed for 3 minutes. . After demolding, the same treatment as in Example 1 was performed to obtain a silicon carbide composite. The thermal conductivity of this silicon carbide composite is 214 W
/ MK, the coefficient of thermal expansion was 6.7 ppm / K, and the warpage was 22 μm per 140 mm.

【0043】〔比較例〕実施例1に用いた炭化珪素粉末
混合体1000gに、シリカゾル200gを配合し、3
0重量%ポリビニルアルコール水溶液150gを配合し
た後、ディスク噴霧方式造粒装置(大川原化工機(株)
社製)を用いて造粒、乾燥した。得られた造粒品を用い
て、内寸が36mm×51mmの金型を用い、1000
kg/cm2の圧力で乾式プレスし、得られたシート状
(厚さ6mm)の成形体を大気雰囲気中850℃で焼成
し炭化珪素充填率が58体積%の炭化珪素質成形体を得
た。更に、前記炭化珪素質成形体を用いて、実施例1と
同じ操作で炭化珪素質複合体を得た。得られた複合体は
Al合金の含浸操作で受けた衝撃により多数のひびを有
し、その熱伝導率は152W/mKと低くかった。
Comparative Example 200 g of silica sol was mixed with 1000 g of the silicon carbide powder mixture used in Example 1,
After mixing 150 g of a 0% by weight aqueous solution of polyvinyl alcohol, a disk spraying granulator (Okawara Kakoki Co., Ltd.)
And granulated using the following method. Using the obtained granulated product, using a mold having an inner size of 36 mm × 51 mm,
Dry pressing was performed at a pressure of kg / cm 2 , and the obtained sheet-shaped (thickness: 6 mm) compact was fired in an air atmosphere at 850 ° C. to obtain a silicon carbide-based compact having a silicon carbide filling rate of 58% by volume. . Further, a silicon carbide composite was obtained by the same operation as in Example 1 using the silicon carbide molding. The obtained composite had many cracks due to the impact received during the Al alloy impregnation operation, and its thermal conductivity was as low as 152 W / mK.

【0044】[0044]

【発明の効果】本発明の炭化珪素質複合体の製造方法に
よれば、200W/mKレベルの高熱伝導率を有し、し
かもセラミックス基板と同程度にまで熱膨張率が低く、
しかも反りの少ない平板状の炭化珪素質複合体を安定し
て得ることができる。
According to the method for producing a silicon carbide composite of the present invention, it has a high thermal conductivity of the order of 200 W / mK and a low coefficient of thermal expansion to the same extent as a ceramic substrate.
Moreover, a flat silicon carbide composite having little warpage can be stably obtained.

【0045】本発明の炭化珪素質複合体の製造方法によ
れば、従来の乾式成形法で必要とされた高圧力を必要と
する高価なプレス装置を必要としないし、また金型の摩
耗もないので、安価に炭化珪素質複合体を量産できる。
According to the method for producing a silicon carbide composite of the present invention, an expensive press machine requiring high pressure required by the conventional dry molding method is not required, and the wear of the mold is reduced. Since it is not available, the silicon carbide composite can be mass-produced at low cost.

【0046】本発明の放熱部品は、前記の製造方法で得
られる平板状の炭化珪素質複合体からなり、反りが少な
い特徴を持つので、半導体搭載用基板のヒートシンク等
の放熱部品に用いたときに、基板や放熱フィン等の他部
品との接合状況が良く、高い放熱性を発揮できる特徴を
有する。
The heat-dissipating component of the present invention is made of a flat silicon carbide composite obtained by the above-described manufacturing method and has a characteristic of less warpage, so that it can be used as a heat-dissipating component such as a heat sink of a semiconductor mounting substrate. In addition, it has a feature that the bonding state with other components such as a substrate and a radiation fin is good, and high heat dissipation can be exhibited.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】多孔質炭化珪素成形体にアルミニウムを主
成分とする金属を含浸させてなる炭化珪素質複合体の製
造方法であって、多孔質炭化珪素成形体が湿式成形法に
より形成されてなることを特徴とする炭化珪素質複合体
の製造方法。
1. A method for producing a silicon carbide composite in which a porous silicon carbide molded body is impregnated with a metal containing aluminum as a main component, wherein the porous silicon carbide molded body is formed by a wet molding method. A method for producing a silicon carbide composite.
【請求項2】湿式成形法が湿式プレス法であることを特
徴とする請求項1記載の炭化珪素質複合体の製造方法。
2. The method for producing a silicon carbide composite according to claim 1, wherein the wet forming method is a wet pressing method.
【請求項3】湿式成形法が湿潤注型法であることを特徴
とする請求項1記載の炭化珪素質複合体の製造方法。
3. The method for producing a silicon carbide composite according to claim 1, wherein the wet molding method is a wet casting method.
【請求項4】湿潤紙を離型材料とし、しかも成形体のキ
ャリアーとすることを特徴とする請求項2又は請求項3
記載の炭化珪素質複合体の製造方法。
4. The method according to claim 2, wherein the wet paper is used as a release material and as a carrier of a molded article.
The method for producing a silicon carbide composite according to the above.
【請求項5】シリカゾルと該シリカゾルのゲル化剤とを
含有する炭化珪素粉末よりスラリーを得て、更に湿式成
形することを特徴とする請求項1、請求項2、請求項3
又は請求項4記載の炭化珪素質複合体の製造方法。
5. The method according to claim 1, wherein a slurry is obtained from a silicon carbide powder containing silica sol and a gelling agent for said silica sol, and further subjected to wet molding.
A method for producing a silicon carbide composite according to claim 4.
【請求項6】シリカゾルのゲル化剤が、スチレン−無水
マレイン酸共重合体を含むポリアルキレングリコール誘
導体もしくは該誘導体であることを特徴とする請求項5
記載の炭化珪素質複合体の製造方法。
6. The gelling agent for silica sol is a polyalkylene glycol derivative containing a styrene-maleic anhydride copolymer or a derivative thereof.
The method for producing a silicon carbide composite according to the above.
【請求項7】高分子量不飽和ポリカルボン酸もしくは高
分子量不飽和ポリカルボン酸の長鎖アミン塩を含有する
ことを特徴とする請求項5又は請求項6記載の炭化珪素
質複合体の製造方法。
7. The method for producing a silicon carbide composite according to claim 5, which comprises a high molecular weight unsaturated polycarboxylic acid or a long chain amine salt of a high molecular weight unsaturated polycarboxylic acid. .
【請求項8】前記の高分子量不飽和ポリカルボン酸もし
くは高分子量不飽和ポリカルボン酸の長鎖アミン塩に相
溶性のシリコン樹脂を更に含有することを特徴とする請
求項7記載の炭化珪素質複合体の製造方法。
8. The silicon carbide material according to claim 7, further comprising a silicone resin compatible with said high molecular weight unsaturated polycarboxylic acid or a long chain amine salt of said high molecular weight unsaturated polycarboxylic acid. A method for producing a composite.
【請求項9】請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6、請求項7または請求項8記載
の炭化珪素質複合体の製造方法で得られてなる炭化珪素
質複合体からなることを特徴とする半導体回路基板用放
熱部品。
9. A method for producing a silicon carbide composite according to claim 1, claim 2, claim 3, claim 3, claim 4, claim 5, claim 6, claim 7, or claim 8. A heat radiating component for a semiconductor circuit board, comprising a silicon carbide composite.
JP34428198A 1998-12-03 1998-12-03 Method for producing silicon carbide composite Expired - Fee Related JP3847012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34428198A JP3847012B2 (en) 1998-12-03 1998-12-03 Method for producing silicon carbide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34428198A JP3847012B2 (en) 1998-12-03 1998-12-03 Method for producing silicon carbide composite

Publications (2)

Publication Number Publication Date
JP2000169267A true JP2000169267A (en) 2000-06-20
JP3847012B2 JP3847012B2 (en) 2006-11-15

Family

ID=18368032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34428198A Expired - Fee Related JP3847012B2 (en) 1998-12-03 1998-12-03 Method for producing silicon carbide composite

Country Status (1)

Country Link
JP (1) JP3847012B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2301905A1 (en) * 2009-09-28 2011-03-30 ABC Taiwan Electronics Corp. Porous ceramic preparation method
WO2016098681A1 (en) * 2014-12-18 2016-06-23 デンカ株式会社 Method for producing silicon carbide composite material
US10919811B2 (en) 2015-07-31 2021-02-16 Denka Company Limited Aluminum-silicon-carbide composite and method of manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2301905A1 (en) * 2009-09-28 2011-03-30 ABC Taiwan Electronics Corp. Porous ceramic preparation method
WO2016098681A1 (en) * 2014-12-18 2016-06-23 デンカ株式会社 Method for producing silicon carbide composite material
CN107207361A (en) * 2014-12-18 2017-09-26 电化株式会社 The manufacture method of aluminum-silicon carbide composite body
US20180025919A1 (en) * 2014-12-18 2018-01-25 Denka Company Limited Method for producing silicon carbide composite material
US10529591B2 (en) 2014-12-18 2020-01-07 Denka Company Limited Method for producing silicon carbide composite material
TWI699346B (en) * 2014-12-18 2020-07-21 日商電化股份有限公司 Manufacturing method of silicon carbide composite
US10919811B2 (en) 2015-07-31 2021-02-16 Denka Company Limited Aluminum-silicon-carbide composite and method of manufacturing same

Also Published As

Publication number Publication date
JP3847012B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
JP6623173B2 (en) Method for producing silicon carbide composite
JP3960933B2 (en) High thermal conductive heat dissipation material and method for manufacturing the same
JPWO2020013300A1 (en) Method for Producing Metal-Silicon Carbide Composite and Metal-Silicon Carbide Composite
US6399187B1 (en) Metal-ceramics composite, heat dissipation device employing it, and processes for producing them
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JP2000169267A (en) Production of silicon carbide-based composite
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP3913130B2 (en) Aluminum-silicon carbide plate composite
JP4416920B2 (en) Method for producing silicon carbide molded body
JP6617153B2 (en) Method for producing aluminum alloy-silicon carbide composite
JPH09209058A (en) Composite material with high thermal conductivity and its production
JP2000141022A (en) Silicon carbide composite body and its manufacture
JP3948797B2 (en) Method for producing silicon carbide composite
JP4244210B2 (en) Aluminum-ceramic composite and method for producing the same
JP4407858B2 (en) Module structure
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JP2002294358A (en) Thermally conductive composite material
JPH02221162A (en) Production of aluminum nitride-based sintered body
JPH11157964A (en) Tabular composite and heat dissipating component using the same
JP2004055761A (en) Aluminum-silicon carbide composite and its manufacturing method
JPH11116363A (en) Silicon carbide-based composite and heat radiating part using the same
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production
JPH11171673A (en) Composite and heat sink using the same, and their production
JP2004225149A (en) Method of producing aluminum-ceramics composite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees