JP2000155431A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP2000155431A
JP2000155431A JP10333031A JP33303198A JP2000155431A JP 2000155431 A JP2000155431 A JP 2000155431A JP 10333031 A JP10333031 A JP 10333031A JP 33303198 A JP33303198 A JP 33303198A JP 2000155431 A JP2000155431 A JP 2000155431A
Authority
JP
Japan
Prior art keywords
components
degenerated
electric charge
charge transport
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10333031A
Other languages
Japanese (ja)
Inventor
Yukihisa Tamura
幸久 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10333031A priority Critical patent/JP2000155431A/en
Publication of JP2000155431A publication Critical patent/JP2000155431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrophotographic photoreceptor having good characteristics and capable of exhibiting expected performance by reducing the content of degenerated components formed by the decomposition of an electric charge transferring material in an electric charge transferring layer to a prescribed value or below. SOLUTION: Since it is actually difficult to perfectly prevent the formation of degenerated components by the decomposition of an electric charge transferring material in a coating fluid for an electric charge transferring layer, it is important that the content of degenerated components is made reasonably low. In order to inhibit the formation of degenerated components, light shielding, preservation and handling at low temperature, the addition of an antioxidant and a UV absorber and the use of a dehydrating agent are effective. The formation of degenerated components is thus inhibited and the amount of degenerated components included in the electric charge transferring layer is reduced to <=1.0% to the electric charge transferring material with respect to peak area ratio in chromatogram by liquid chromatography. It is also important in the production control of a photoreceptor that the amount of degenerated components incorporated by coating into the photosensitive layer of the photoreceptor, in particular the electric charge transferring layer is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子写真用感光体
(以下、単に「感光体」とも称する)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoconductor for electrophotography (hereinafter, also simply referred to as "photoconductor").

【0002】[0002]

【従来の技術】電子写真技術は、即時性、高速性、高解
像度性を兼ね備えた画像が得られることから、複写機、
プリンター、ファックスなどの分野で広く使用されてい
る。かかる電子写真に用いられる感光体は、従来、セレ
ン、セレン合金、酸化亜鉛、硫化カドミウムなどの無機
系の光導電材料を使用したものが多かったが、最近で
は、無公害性、成膜性、軽量性などの利点を生かし、有
機系の光導電材料を使用した感光体の開発が盛んに進め
られている。
2. Description of the Related Art In electrophotographic technology, an image having both immediateness, high speed, and high resolution can be obtained.
Widely used in fields such as printers and faxes. The photoreceptor used in such electrophotography has conventionally used many inorganic photoconductive materials such as selenium, a selenium alloy, zinc oxide, and cadmium sulfide. Exploiting advantages such as light weight, the development of photoreceptors using organic photoconductive materials has been actively pursued.

【0003】かかる有機感光体の中でも、電荷発生層と
電荷輸送層とを分離した、いわゆる機能分離積層型有機
感光体は、各層をそれぞれの機能に最適な材料で形成し
てこれらを組み合わせることにより、感度を大幅に向上
させることが可能となる。また、希望する露光光の波長
に応じた分光感度を設定できるなどの利点が多く、複写
機、プリンター、ファックスなどの電子写真装置に使用
されている。情報化の進展に伴い、これらの電子写真装
置にはより一層の高速化、高解像度化が求められてい
る。
Among such organic photoconductors, a so-called function-separated laminated organic photoconductor in which a charge generation layer and a charge transport layer are separated from each other is formed by forming each layer with a material optimal for each function and combining them. , The sensitivity can be greatly improved. Further, it has many advantages such as setting of spectral sensitivity according to a desired wavelength of exposure light, and is used in electrophotographic apparatuses such as copiers, printers, and faxes. With the progress of computerization, these electrophotographic apparatuses are required to have higher speed and higher resolution.

【0004】現在実用化されている機能分離積層型有機
感光体の多くは、導電性基体上に電荷発生層と電荷輸送
層とを順次積層したものである。このような感光体は、
まず、基体上に電荷発生材をバインダーと共に有機溶媒
に分散、溶解させた塗布液を塗布、乾燥させることによ
り電荷発生層を形成し、次いでその上に電荷輸送材をバ
インダーと共に有機溶媒に溶解した塗布液を塗布、乾燥
させることにより電荷輸送層を形成して作製される。基
本的にはこのような層構成で、感光体としての画像形成
のための基本性能を発揮させることができる。
Many of the function-separated laminated organic photoreceptors that are currently in practical use are obtained by sequentially laminating a charge generation layer and a charge transport layer on a conductive substrate. Such a photoreceptor
First, a charge generation material was dispersed and dissolved in an organic solvent together with a binder on a substrate, and a coating solution in which the charge generation material was dissolved was applied and dried to form a charge generation layer, and then the charge transport material was dissolved in the organic solvent together with the binder. The charge transport layer is formed by applying and drying a coating liquid. Basically, with such a layer configuration, basic performance for image formation as a photoreceptor can be exhibited.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな層形成用塗布液は変質を起こし易く、所期の性能を
発揮する感光体が作製できなくなることが多かった。か
かる塗布液の変質は、熱、光、吸湿などの作用により液
中の構成成分が分解することに伴い、分解生成物や反応
生成物が生成して起こることが多く、これらの変質成分
のために、感光体が所期の性能を発揮できなくなる。
However, such a coating solution for forming a layer is liable to be deteriorated, and it is often impossible to produce a photoreceptor exhibiting the desired performance. Such alteration of the coating solution is often caused by the decomposition of components in the solution by the action of heat, light, moisture absorption, etc., resulting in the generation of decomposition products and reaction products. In addition, the photoconductor cannot exhibit its intended performance.

【0006】本発明は、このような実情に鑑み、感光体
作製時における変質成分の生成と感光体特性との関係を
明らかにすることにより、良好な特性を有する電子写真
用感光体を提供することを目的とするものである。
In view of the above circumstances, the present invention provides an electrophotographic photoreceptor having good characteristics by clarifying the relationship between the generation of a deteriorated component and the characteristics of the photoreceptor during the production of the photoreceptor. The purpose is to do so.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意検討した結果、電荷輸送層中の電荷輸送
材料の分解に伴う変質成分の含有量を所定量以下とする
ことにより上記目的を達成し得ることを見出し、本発明
を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, by reducing the content of the altered component accompanying the decomposition of the charge transport material in the charge transport layer to a predetermined amount or less. The inventors have found that the above object can be achieved, and have completed the present invention.

【0008】すなわち、本発明の電子写真用感光体は、
少なくとも電荷輸送層を備えた電子写真用感光体におい
て、前記電荷輸送層の構成成分中の電荷輸送材料の分解
に伴う変質成分の含有量が、液体クロマトグラフィー法
により分析を行ったときのピーク面積比で、該電荷輸送
材料に対して1.0%以下であることを特徴とするもの
である。
That is, the electrophotographic photoreceptor of the present invention comprises:
In the electrophotographic photoreceptor having at least the charge transport layer, the content of the altered component accompanying the decomposition of the charge transport material in the components of the charge transport layer has a peak area when analyzed by a liquid chromatography method. It is characterized by a ratio of not more than 1.0% based on the charge transporting material.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施の形態であ
る機能分離積層型電子写真用感光体を例にとって説明す
る。機能分離積層型感光体は、一般に、導電性基体上に
電荷発生層と電荷輸送層とを順次積層することにより作
製され、所望に応じて基体と電荷発生層との間に下引層
を設けることもでき、更に最外層表面に保護層を設ける
こともできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to an example of a function-separated laminated electrophotographic photosensitive member. Function-separated laminated photoreceptors are generally produced by sequentially laminating a charge generation layer and a charge transport layer on a conductive substrate, and optionally providing an undercoat layer between the substrate and the charge generation layer. Alternatively, a protective layer may be provided on the outermost layer surface.

【0010】積層型感光体の場合、その電荷発生層に使
用される電荷発生材料としては、例えばセレン及びその
合金、硫化カドミウム、その他の無機系光導電材料、フ
タロシアニン顔料、アゾ顔料、キナクリドン顔料、イン
ジゴ顔料、ペリレン顔料、多環キノン顔料、アンタント
ロン顔料、ベンズイミダゾール顔料などの有機顔料など
各種光導電材料を使用でき、これらの微粒子を、例えば
ポリエステル樹脂、ポリビニルアセテート、ポリアクリ
ル酸エステル、ポリメタクリル酸エステル、ポリカーボ
ネート、ポリビニルアセトアセタール、ポリビニルプロ
ピオナール、ポリビニルブチラール、フェノキシ樹脂、
エポキシ樹脂、ウレタン樹脂、セルロースエステル、セ
ルロースエーテルなどの各種バインダー樹脂で粘着した
形で使用される。この場合の電荷発生材料の使用比率
は、バインダー樹脂100重量部に対して30〜500
重量部の範囲内が一般的であり、その膜厚は通常0.1
5μm〜0.6μmが好適である。
In the case of a laminated photoreceptor, examples of the charge generating material used for the charge generating layer include selenium and its alloys, cadmium sulfide, other inorganic photoconductive materials, phthalocyanine pigments, azo pigments, quinacridone pigments, and the like. Various photoconductive materials such as organic pigments such as indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments can be used.These fine particles can be used, for example, polyester resin, polyvinyl acetate, polyacrylate, polymethacrylic Acid ester, polycarbonate, polyvinyl acetoacetal, polyvinyl propional, polyvinyl butyral, phenoxy resin,
It is used in a form adhered with various binder resins such as epoxy resin, urethane resin, cellulose ester and cellulose ether. In this case, the usage ratio of the charge generation material is 30 to 500 parts by weight with respect to 100 parts by weight of the binder resin.
It is generally within the range of parts by weight, and the film thickness is usually 0.1%.
5 μm to 0.6 μm is preferred.

【0011】次に、電荷輸送層は、エナミン系化合物、
スチリル系化合物、ヒドラゾン系化合物、アミン系化合
物、ブタジエン系化合物を、これらと相溶性のあるバイ
ンダー樹脂、例えば、ポリエステル、ポリカーボネー
ト、ポリスチレン、ポリアクリル酸エステル、ポリメタ
クリル酸エステルなどと共に溶液とし、乾燥膜厚10〜
40μmの厚さで塗布することにより形成される。電荷
輸送層には必要に応じ、酸化防止剤、紫外線吸収剤、レ
ベリング剤などの各種添加剤を含ませることもできる。
Next, the charge transport layer comprises an enamine compound,
A styryl compound, a hydrazone compound, an amine compound, and a butadiene compound are formed into a solution together with a binder resin compatible with these, for example, polyester, polycarbonate, polystyrene, polyacrylate, polymethacrylate, and the like. Thick 10
It is formed by coating with a thickness of 40 μm. If necessary, the charge transport layer may contain various additives such as an antioxidant, an ultraviolet absorber, and a leveling agent.

【0012】電荷輸送層用塗布液中の電荷輸送材料の分
解に伴う変質成分の生成を完全に抑えることは現実的に
は困難である。このため、工業的には、感光体中におけ
る当該変質成分の含有量が多くなり過ぎないようにする
ことが重要となる。かかる変質成分の生成を抑制するに
は、遮光、低温での保管及び取扱い、酸化防止剤や紫外
線吸収剤の添加、脱水剤の使用などが有効である。この
ようにして変質成分の生成を具体的に抑制することがで
き、該変質成分の混入量を、電荷輸送材料に対して、液
体クロマトグラフィー法によるクロマトグラムのピーク
面積比で1.0%以下に抑えることが必要である。ま
た、塗布により感光体の感光層中、特には電荷輸送層中
に取り込まれる変質成分の量を抑制することも、感光体
の製造管理において重要である。
[0012] It is practically difficult to completely suppress the formation of altered components due to the decomposition of the charge transport material in the charge transport layer coating solution. Therefore, it is industrially important that the content of the altered component in the photoreceptor is not excessively increased. In order to suppress the formation of such altered components, it is effective to shade, store and handle at a low temperature, add an antioxidant and an ultraviolet absorber, and use a dehydrating agent. In this way, the generation of the altered component can be specifically suppressed, and the amount of the altered component mixed with the charge transporting material is 1.0% or less in the peak area ratio of the chromatogram by the liquid chromatography method. It is necessary to suppress it. It is also important in the production control of the photoreceptor to suppress the amount of altered components taken into the photosensitive layer of the photoreceptor by coating, in particular, into the charge transport layer.

【0013】[0013]

【実施例】以下、本発明を実施例及び比較例により詳述
するが、本発明がこれらの実施例により限定されないこ
とは言うまでもない。実施例1 X型無金属フタロシアニン1重量部と、塩化ビニル共重
合樹脂(MR110、日本ゼオン(株)製)1重量部と
を、ジクロロメタン100重量部に分散、溶解させた塗
布液を調製して、この塗布液を、アルマイト処理したア
ルミニウム製円筒状基体上に浸漬塗工法により塗工、乾
燥させることにより電荷発生層を形成した。乾燥後の膜
厚は0.2μmであった。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to these Examples. Example 1 A coating solution was prepared by dispersing and dissolving 1 part by weight of an X-type metal-free phthalocyanine and 1 part by weight of a vinyl chloride copolymer resin (MR110, manufactured by Zeon Corporation) in 100 parts by weight of dichloromethane. The charge generation layer was formed by applying this coating solution on an alumite-treated aluminum cylindrical substrate by dip coating and drying. The film thickness after drying was 0.2 μm.

【0014】次に、次式(1)、 の化合物1重量部と、ポリカーボネート樹脂(パンライ
トL1225、帝人化成(株)製)1重量部とをジクロ
ロメタン10重量部に溶解した。この溶液を上記電荷発
生層上に直ちに塗布し乾燥することにより、電荷輸送層
を形成した。乾燥後の膜厚は20μmであった。この感
光体の電荷輸送層中の成分を液体クロマトグラフィー法
により分析すると、電荷輸送材料の分解に伴う変質成分
は、検出できなかった。
Next, the following equation (1): Was dissolved in 10 parts by weight of dichloromethane. This solution was immediately applied on the charge generation layer and dried to form a charge transport layer. The film thickness after drying was 20 μm. When the components in the charge transport layer of this photoreceptor were analyzed by liquid chromatography, no altered components due to the decomposition of the charge transport material could be detected.

【0015】実施例2 電荷輸送層形成用塗布液を、蛍光灯点灯下の室内にて1
日露光して該塗布液の変質を加速させた後塗工した以外
は、実施例1と同様の方法で感光体を作製した。この感
光体の電荷輸送層中の成分を液体クロマトグラフィー
法、スペクトル分析法、質量分析法および核磁気共鳴法
により分析したところ、下記式(2)〜(4) の変質成分が検出された。これらの含有量を液体クロマ
トグラフィー法により分析すると、電荷輸送材料の分解
に伴う変質成分は、元の電荷輸送材料に対してピーク面
積比で合計0.3%であった。
Example 2 A coating solution for forming a charge transport layer was applied to a room under a fluorescent lamp.
A photoconductor was prepared by the same method as that of Example 1 except that the coating was performed after accelerated deterioration of the coating solution by sun exposure. The components in the charge transport layer of this photoreceptor were analyzed by liquid chromatography, spectrum analysis, mass spectrometry and nuclear magnetic resonance, and the following formulas (2) to (4) were obtained. Altered components were detected. When these contents were analyzed by liquid chromatography, the total amount of altered components accompanying the decomposition of the charge transporting material was 0.3% in the peak area ratio with respect to the original charge transporting material.

【0016】実施例3 電荷輸送層形成用塗布液を、蛍光灯点灯下の室内にて3
日露光して該塗布液の変質を加速させた後塗工した以外
は、実施例1と同様の方法で感光体を作製した。この感
光体の電荷輸送層中の成分を液体クロマトグラフィー法
により分析すると、電荷輸送材料の分解に伴う変質成分
は、元の電荷輸送材料に対してピーク面積比で合計0.
8%であった。
Example 3 A coating solution for forming a charge transport layer was applied to a room under a fluorescent lamp.
A photoconductor was prepared by the same method as that of Example 1 except that the coating was performed after accelerated deterioration of the coating solution by sun exposure. When the components in the charge transport layer of the photoreceptor are analyzed by liquid chromatography, the altered components accompanying the decomposition of the charge transport material have a total peak area ratio of 0.1 to the original charge transport material.
8%.

【0017】比較例1 電荷輸送層形成用塗布液を、蛍光灯点灯下の室内にて7
日露光して変質を加速させた後塗工した以外は、実施例
1と同様の方法で感光体を作製した。この感光体の電荷
輸送層中の成分を液体クロマトグラフィー法により分析
すると、電荷輸送材料の分解に伴う変質成分は、元の電
荷輸送材料に対してピーク面積比で合計1.5%であっ
た。
COMPARATIVE EXAMPLE 1 A coating solution for forming a charge transport layer was applied to a room under a fluorescent lamp.
A photoreceptor was prepared in the same manner as in Example 1, except that coating was performed after accelerated deterioration by daylight exposure. When the components in the charge transport layer of this photoreceptor were analyzed by liquid chromatography, the altered components accompanying the decomposition of the charge transport material were 1.5% in total in terms of peak area ratio with respect to the original charge transport material. .

【0018】実施例4 電荷輸送材料を次式(5)、 に示す化合物1重量部としたこと以外は、実施例1と同
様の方法で感光体を作製した。この感光体の電荷輸送層
中の成分を液体クロマトグラフィー法により分析する
と、電荷輸送材料の分解に伴う変質成分は検出できなか
った。
Example 4 The charge transport material was represented by the following formula (5): A photoconductor was prepared by the same method as that of Example 1 except that the amount of compound was 1 part by weight. When the components in the charge transport layer of the photoreceptor were analyzed by liquid chromatography, no altered components due to the decomposition of the charge transport material could be detected.

【0019】実施例5 電荷輸送層形成用塗布液を、蛍光灯点灯下の室内にて1
日露光して該塗布液の変質を加速させた後塗工した以外
は、実施例4と同様の方法で感光体を作製した。この感
光体の電荷輸送層中の成分を液体クロマトグラフィー
法、スペクトル分析法、質量分析法、核磁気共鳴法によ
り分析したところ、下記式(6)〜(8) の変質成分が検出された。これらの含有量を液体クロマ
トグラフィー法により分析すると、電荷輸送材料の分解
に伴う変質成分は、元の電荷輸送材料に対してピーク面
積比で合計0.2%であった。
Example 5 A coating solution for forming a charge transport layer was applied to a room under a fluorescent lamp.
A photoconductor was prepared by the same method as that of Example 4 except that coating was performed after accelerated deterioration of the coating solution by sun exposure. The components in the charge transport layer of this photoreceptor were analyzed by liquid chromatography, spectrum analysis, mass spectrometry, and nuclear magnetic resonance, and the following formulas (6) to (8) were obtained. Altered components were detected. When these contents were analyzed by a liquid chromatography method, the total amount of altered components accompanying the decomposition of the charge transporting material was 0.2% in the peak area ratio with respect to the original charge transporting material.

【0020】実施例6 電荷輸送層形成用塗布液を、蛍光灯点灯下の室内にて3
日露光して該塗布液の変質を加速させた後塗工した以外
は、実施例4と同様の方法で感光体を作製した。この感
光体の電荷輸送層中の成分を液体クロマトグラフィー法
により分析すると、電荷輸送材料の分解に伴う変質成分
は、元の電荷輸送材料に対してピーク面積比で合計0.
7%であった。
Example 6 A coating solution for forming a charge transport layer was applied to a room under a fluorescent lamp.
A photoconductor was prepared by the same method as that of Example 4 except that coating was performed after accelerated deterioration of the coating solution by sun exposure. When the components in the charge transport layer of the photoreceptor are analyzed by a liquid chromatography method, the altered components accompanying the decomposition of the charge transport material have a total peak area ratio of 0.1 to the original charge transport material.
7%.

【0021】比較例2 電荷輸送層形成用塗布液を、蛍光灯点灯下の室内にて7
日露光して該塗布液の変質を加速させた後塗工した以外
は、実施例4と同様の方法で感光体を作製した。この感
光体の電荷輸送層中の成分を液体クロマトグラフィー法
により分析すると、電荷輸送材料の分解に伴う変質成分
は、元の電荷輸送材料に対してピーク面積比で合計1.
3%であった。
COMPARATIVE EXAMPLE 2 A coating solution for forming a charge transport layer was applied to a room under a fluorescent lamp.
A photoconductor was prepared by the same method as that of Example 4 except that coating was performed after accelerated deterioration of the coating solution by sun exposure. When the components in the charge transport layer of this photoreceptor are analyzed by liquid chromatography, the altered components accompanying the decomposition of the charge transport material have a total peak area ratio to the original charge transport material of 1.
3%.

【0022】上述のようにして得られた感光体の特性の
評価を行った。各感光体を感光体特性試験機により−6
00Vに帯電させた後、780nmの波長の露光光を1
μW/cmの強度で照射し、5μJ/cmにおいて
露光した後の表面電位(残留電位)を評価した。得られ
た結果を下記の表1に示す。
The characteristics of the photoreceptor obtained as described above were evaluated. Each photoreceptor was tested for -6
After charging to 00 V, exposure light having a wavelength of 780 nm
Irradiation was performed at an intensity of μW / cm 2 , and the surface potential (residual potential) after exposure at 5 μJ / cm 2 was evaluated. The results obtained are shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】残留電位は絶対値が50Vを超えると実用
上画像に不具合が生じるので不良となるが、上記結果か
ら、本発明における実施例1〜6は、比較例1および2
と比較して良好な感光体特性を有していることが分か
る。
When the residual potential exceeds 50 V, practically, a defect occurs in an image, which results in a failure. However, from the above results, Examples 1 to 6 according to the present invention show Comparative Examples 1 and 2
It can be seen that the photosensitive member has better photoreceptor characteristics as compared with.

【0025】[0025]

【発明の効果】以上説明してきたように、本発明の感光
体においては、電荷輸送層の構成成分中の電荷輸送材料
の分解に伴う変質成分の含有量を、液体クロマトグラフ
ィー法により分析を行ったときのピーク面積比で該電荷
輸送材料に対して1.0%以下としたことにより、良好
な電気特性が得られる。
As described above, in the photoreceptor of the present invention, the content of the altered component accompanying the decomposition of the charge transport material in the components of the charge transport layer is analyzed by liquid chromatography. By setting the peak area ratio to 1.0% or less with respect to the charge transport material, good electric characteristics can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも電荷輸送層を備えた電子写真
用感光体において、前記電荷輸送層の構成成分中の電荷
輸送材料の分解に伴う変質成分の含有量が、液体クロマ
トグラフィー法により分析を行ったときのピーク面積比
で、該電荷輸送材料に対して1.0%以下であることを
特徴とする電子写真用感光体。
1. An electrophotographic photoreceptor having at least a charge transport layer, wherein the content of an altered component accompanying the decomposition of the charge transport material in the components of the charge transport layer is analyzed by a liquid chromatography method. A charge transfer material having a peak area ratio of 1.0% or less.
JP10333031A 1998-11-24 1998-11-24 Electrophotographic photoreceptor Pending JP2000155431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10333031A JP2000155431A (en) 1998-11-24 1998-11-24 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10333031A JP2000155431A (en) 1998-11-24 1998-11-24 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2000155431A true JP2000155431A (en) 2000-06-06

Family

ID=18261505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10333031A Pending JP2000155431A (en) 1998-11-24 1998-11-24 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2000155431A (en)

Similar Documents

Publication Publication Date Title
JPH0727243B2 (en) Photosensitive imaging member containing chloroindium phthalocyanine
JPH05158258A (en) Electrophotographic sensitive body
JP2010145506A (en) Electrophotographic photoreceptor, and image forming apparatus using the same
JP4276959B2 (en) Novel amine-bisdiene and -bistriene compounds, and electrophotographic photoreceptors and image forming apparatuses using the same
JPH0862862A (en) Electrophotographic image forming device
JP2000155431A (en) Electrophotographic photoreceptor
JP3281968B2 (en) Negatively charged single-layer type electrophotographic photoreceptor
US5376487A (en) Photosensitive member containing specified arylamine compound and electron-accepting compound
JPH07199486A (en) Electrophotographic photoreceptor
US6022657A (en) Methods of making charge generation layers containing charge transport compound, and photoconductors containing the same
JPH0477907B2 (en)
JPH11109666A (en) Electrophotographic photoreceptor
JPH10228121A (en) Electrophotographic photoreceptor
JPH06118678A (en) Electrophotographic sensitive body
US5994013A (en) Dual layer photoconductors with charge generation layer containing charge transport compound
JP4228334B2 (en) Electrophotographic photoreceptor
JPH08123055A (en) Electrophotographic photoreceptor
US6946225B2 (en) Electrophotographic element protected from photofatigue induced by visible light
JP2762962B2 (en) Electrophotographic photoreceptor
EP1073936B1 (en) Methods of making charge generation layers containing charge transport compound, and photoconductors containing the same
JP2008250079A (en) Electrophotographic photoreceptor
JPS62121460A (en) Electrophotographic sensitive body
JPH0254942B2 (en)
JPH05333572A (en) Electrophotographic sensitive body
JP2003029436A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124