JP2000150319A - Manufacture of electric double layer capacitor and using method therefor - Google Patents

Manufacture of electric double layer capacitor and using method therefor

Info

Publication number
JP2000150319A
JP2000150319A JP10325522A JP32552298A JP2000150319A JP 2000150319 A JP2000150319 A JP 2000150319A JP 10325522 A JP10325522 A JP 10325522A JP 32552298 A JP32552298 A JP 32552298A JP 2000150319 A JP2000150319 A JP 2000150319A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
metal
electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10325522A
Other languages
Japanese (ja)
Inventor
Kazuya Hiratsuka
和也 平塚
Naoki Yoshida
直樹 吉田
Katsuharu Ikeda
克治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10325522A priority Critical patent/JP2000150319A/en
Publication of JP2000150319A publication Critical patent/JP2000150319A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To improve reliability in long-term performance and to raise voltage- resistance and energy density by allowing an element body to be impregnated with an organic electrolyte comprising a fourth class onium salt before positive and negative poles are electrically shorted to a metal lithium. SOLUTION: An element body wherein an electrode which is, whose main component is carbon-nature material of surface area 100-3000 m2/g, formed on the surface of a metal current-collector is used as positive and negative poles which are faced each other through a porous separator, is housed in a metal case wherein its inside surface is connected electrically to a metal lithium while electrically insulated from the positive and negative poles. An organic electrolyte comprising a fourth class onium salt is injected into the metal case so that the metal lithium is submerged in the electrolyte, and, related to such electric double layer capacitor wherein an element body is impregnated with the electrolyte, the metal case and the positive and negative poles are electrically shorted during use for correction of operational electric potential of the positive and negative poles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、性能の長期的信頼
性に優れ、かつ耐電圧が高くエネルギ密度が大きい電気
二重層キャパシタの製造方法及びその使用方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an electric double layer capacitor having excellent long-term reliability of performance, high withstand voltage and high energy density, and a method of using the same.

【0002】[0002]

【従来の技術】電気二重層キャパシタは、充放電サイク
ルによる長期的信頼性や出力密度の点で優れた特性を有
しているが、エネルギ密度が低い問題がある。キャパシ
タに蓄積されるエネルギ量は、キャパシタの静電容量に
比例し、印加電圧の2乗に比例する。したがって、キャ
パシタの耐電圧を向上させると効果的にエネルギ密度を
高められる。電気二重層キャパシタの耐電圧は、主に用
いる電解液の電気化学的な分解電圧によって制限され
る。この点で分解電位幅の広い有機電解液を用いた電気
二重層キャパシタが注目されている。
2. Description of the Related Art Electric double layer capacitors have excellent characteristics in terms of long-term reliability and output density due to charge / discharge cycles, but have a problem of low energy density. The amount of energy stored in the capacitor is proportional to the capacitance of the capacitor and proportional to the square of the applied voltage. Therefore, the energy density can be effectively increased by improving the withstand voltage of the capacitor. The withstand voltage of an electric double layer capacitor is mainly limited by an electrochemical decomposition voltage of an electrolytic solution used. At this point, an electric double layer capacitor using an organic electrolytic solution having a wide decomposition potential width has attracted attention.

【0003】上記の分解反応は、貴側に分極される正極
側と卑側に分極される負極側のどちらでも起こる可能性
があり、いずれか一方でも上記分解電位を超えると電気
二重層キャパシタの性能劣化が進行する。
[0003] The above decomposition reaction may occur on either the positive side polarized on the noble side or the negative side polarized on the base side. Performance degradation proceeds.

【0004】一般に、電気二重層キャパシタに用いられ
る高表面積の炭素材料は、有機電解液中において自然電
位が貴側に位置しており、通常、リチウム金属電極に対
し約+3V程度である。したがって、この自然電位から
正極及び負極に対し同じクーロン量で充電を行い、電気
二重層キャパシタのセル電圧を上昇させると、正極側が
先に分解電位に到達し、この時点でセルの耐電圧が制限
されることが多い。これに対し、正極の容量と負極の容
量を異ならせる方法が提案されている(特開昭61−2
03614)が、この方法では正極と負極との直列合成
容量として取り出せるセル容量が低下する欠点がある。
In general, a carbon material having a high surface area used for an electric double layer capacitor has a noble potential in an organic electrolytic solution, and is usually about +3 V with respect to a lithium metal electrode. Therefore, when the positive and negative electrodes are charged from the natural potential with the same amount of coulomb and the cell voltage of the electric double layer capacitor is increased, the positive electrode reaches the decomposition potential first, and the withstand voltage of the cell is limited at this point. Often done. On the other hand, a method has been proposed in which the capacity of the positive electrode is made different from the capacity of the negative electrode (JP-A-61-2).
However, this method has a disadvantage in that the cell capacity which can be taken out as a series combined capacity of the positive electrode and the negative electrode is reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点を解決し、長期的な性能の信頼性に優れ、
かつ耐電圧が高くエネルギ密度が高い電気二重層キャパ
シタの製造方法及びその使用方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and has excellent long-term performance reliability.
Another object of the present invention is to provide a method of manufacturing an electric double layer capacitor having a high withstand voltage and a high energy density and a method of using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、金属集電体の
表面に形成された比表面積100〜3000m2 /gの
炭素質材料を主成分とする電極を正極及び負極とし、該
正極と該負極とを多孔質セパレータを介して対向させて
素子体を形成し、該素子体と金属リチウムを金属ケース
に収容し、該金属ケース内に第4級オニウム塩を含む有
機電解液を前記金属リチウムが該電解液に浸漬されるよ
うに注入し、該電解液を前記素子体に含浸させた後、前
記正極と前記負極とを前記金属リチウムと電気的に短絡
させて前記正極及び前記負極の炭素質材料にリチウムイ
オンを電気化学的にドーピングさせ、正極の作動電位と
負極の作動電位をシフトさせることを特徴とする電気二
重層キャパシタの製造方法を提供する。
SUMMARY OF THE INVENTION The present invention provides a positive electrode and a negative electrode comprising an electrode mainly composed of a carbonaceous material having a specific surface area of 100 to 3000 m 2 / g formed on the surface of a metal current collector. An element body is formed by facing the negative electrode through a porous separator, the element body and metallic lithium are accommodated in a metal case, and an organic electrolytic solution containing a quaternary onium salt in the metal case is mixed with the metal. After injecting lithium so as to be immersed in the electrolytic solution, and impregnating the element body with the electrolytic solution, the positive electrode and the negative electrode are electrically short-circuited with the metallic lithium to form the positive electrode and the negative electrode. Provided is a method for manufacturing an electric double layer capacitor, characterized in that a carbonaceous material is electrochemically doped with lithium ions to shift an operating potential of a positive electrode and an operating potential of a negative electrode.

【0007】また、本発明は、金属集電体の表面に形成
された比表面積100〜3000m2 /gの炭素質材料
を主成分とする電極を正極及び負極とし、該正極と該負
極とを多孔質セパレータを介して対向させて形成した素
子体を、内面に金属リチウムを電気的に接続させており
かつ正極及び負極とは電気的に絶縁されている金属ケー
スに収容し、該金属ケース内に第4級オニウム塩を含む
有機電解液を前記金属リチウムが該電解液に浸漬される
ように注入し、該電解液を前記素子体に含浸させてなる
電気二重層キャパシタを、使用中において金属ケースと
正極及び/又は負極とを電気的に短絡させることによ
り、正極及び/又は負極の作動電位の補正を行うことを
特徴とする電気二重層キャパシタの使用方法を提供す
る。
Further, the present invention provides a positive electrode and a negative electrode comprising an electrode mainly formed of a carbonaceous material having a specific surface area of 100 to 3000 m 2 / g formed on the surface of a metal current collector. The element body formed so as to be opposed via the porous separator is accommodated in a metal case in which metallic lithium is electrically connected to the inner surface and which is electrically insulated from the positive electrode and the negative electrode. An electric double layer capacitor obtained by injecting an organic electrolytic solution containing a quaternary onium salt so that the metallic lithium is immersed in the electrolytic solution, and impregnating the element body with the electrolytic solution, Provided is a method for using an electric double layer capacitor, wherein the operating potential of a positive electrode and / or a negative electrode is corrected by electrically shorting a case and a positive electrode and / or a negative electrode.

【0008】本発明における電極は、正極、負極とも電
解液との界面に電気二重層を形成する比表面積100〜
3000m2 /gの炭素質材料を主体としてなる。この
炭素質材料はリチウムイオンの電気化学的ドーピングが
可能な材料である。電気二重層キャパシタの容量を大き
くするには炭素質材料の比表面積は大きいことが好まし
く、特に500〜2500m2 /gが好ましい。
The electrode according to the present invention has a specific surface area of 100 to 100 which forms an electric double layer at the interface between the positive electrode and the negative electrode with the electrolyte.
It is mainly composed of 3000 m 2 / g of carbonaceous material. This carbonaceous material is a material that can be electrochemically doped with lithium ions. In order to increase the capacity of the electric double layer capacitor, the specific surface area of the carbonaceous material is preferably large, particularly preferably 500 to 2500 m 2 / g.

【0009】炭素質材料は具体的にはフェノール等の樹
脂系、やしがら系、コークス系又はピッチ系の活性炭か
らなることが好ましい。また、カーボンナノチューブ、
カーボンエアロゲル、カーボンブラック、ポリアセン等
も好ましく使用できる。電極はこれらの炭素質材料の1
種以上にポリテトラフルオロエチレン、ポリフッ化ビニ
リデン等のバインダを加えてシート状に成形して集電体
に接合、又は集電体上に塗工して形成されることが好ま
しい。
The carbonaceous material is preferably made of a resin such as phenol, coconut, coke or pitch activated carbon. Also, carbon nanotubes,
Carbon aerogel, carbon black, polyacene and the like can also be preferably used. The electrode is one of these carbonaceous materials.
It is preferably formed by adding a binder such as polytetrafluoroethylene, polyvinylidene fluoride, or the like to the seeds, forming the sheet into a sheet, joining the sheet to the current collector, or coating the current collector.

【0010】本発明における炭素質材料は、電気化学的
に還元することにより炭素質材料中の黒鉛構造又は擬黒
鉛構造へのリチウムイオンのドーピングが進行し、炭素
質材料の自然電位は卑側にシフトする。本発明では、こ
のドーピング反応を電解液中に炭素質材料とともに浸漬
させた金属リチウムと炭素質材料との電位差による駆動
力で行わせる。
In the carbonaceous material of the present invention, the graphite structure or pseudo-graphite structure in the carbonaceous material is doped with lithium ions by electrochemical reduction, and the natural potential of the carbonaceous material is reduced to a lower side. shift. In the present invention, this doping reaction is performed by a driving force due to a potential difference between lithium metal immersed in the electrolytic solution together with the carbonaceous material and the carbonaceous material.

【0011】この電気化学的ドーピング処理としては、
製造工程において、セパレータを介して正極と負極とを
対向させてなる素子体を金属ケースに収容し、電解液を
該金属ケース内に注入して前記素子体に含浸させ、金属
リチウムを前記電解液に浸漬して正極と負極を同時に金
属リチウムと短絡させる方法が最も効率的である。
The electrochemical doping process includes:
In the manufacturing process, an element body in which a positive electrode and a negative electrode are opposed to each other via a separator is accommodated in a metal case, an electrolytic solution is injected into the metal case to impregnate the element body, and metal lithium is added to the electrolytic solution. The most efficient method is to immerse the anode in the electrode and short-circuit the positive electrode and the negative electrode simultaneously with metallic lithium.

【0012】上記金属リチウムを銅、ニッケル、ステン
レス鋼等の金属集電体に貼りつけ、該金属集電体から引
き出されたリード部と、正極及び負極から引き出された
リード部とを短絡することにより上記ドーピング処理は
実施できる。
The above metal lithium is attached to a metal current collector made of copper, nickel, stainless steel, or the like, and a lead portion drawn from the metal current collector is short-circuited to a lead portion drawn from a positive electrode and a negative electrode. The above doping process can be performed.

【0013】しかし、より効率的かつ低コストで処理す
るには、金属ケースを正極及び負極と電気的に絶縁させ
て、金属ケース内面で電解液が浸漬される部分に金属リ
チウムを圧着等により接合させて金属ケースと金属リチ
ウムを電気的に接続させ、この状態で正極及び負極から
引き出されたそれぞれのリード部と金属ケースとを短絡
させることが好ましい。この方法で電気化学的ドーピン
グ処理をした後は、金属リチウムを除去してもよく、そ
のまま金属ケース内面に電気的に接続させた状態で使用
してもよい。
However, for more efficient and low-cost treatment, the metal case is electrically insulated from the positive electrode and the negative electrode, and metal lithium is bonded to the portion of the inner surface of the metal case where the electrolyte is immersed by pressure bonding or the like. Then, it is preferable that the metal case and the metal lithium are electrically connected, and in this state, the respective lead portions drawn from the positive electrode and the negative electrode are short-circuited to the metal case. After performing the electrochemical doping treatment by this method, the metallic lithium may be removed, or the metallic case may be used as it is electrically connected to the inner surface.

【0014】金属リチウムを金属ケース内面に接合した
まま配置して残してある電気二重層キャパシタの場合
は、キャパシタの使用中でも正極及び/又は負極と金属
ケースとを短絡させることにより、正極及び/又は負極
の作動電位を初期の作動電位に補正できる。すなわち、
キャパシタの使用によりずれが生じた正極及び/又は負
極の作動電位を再度適正な値に補正しながら使用するこ
とができる。そして、この操作は何度でも実施できる。
[0014] In the case of an electric double layer capacitor in which metallic lithium is disposed while being joined to the inner surface of the metal case, the positive electrode and / or the negative electrode and / or the negative electrode and / or the metal case are short-circuited even during use of the capacitor. The operating potential of the negative electrode can be corrected to the initial operating potential. That is,
It is possible to use the positive electrode and / or the negative electrode, which has shifted due to the use of the capacitor, while correcting the operating potential again to an appropriate value. This operation can be performed any number of times.

【0015】ただし、金属リチウムを金属ケース内面に
接合させる方法は、金属ケースが正極又は負極の端子を
兼ねている場合は採用できない。金属ケースを端子と兼
ねさせている極が、金属リチウムと常に電気的に接続さ
れた状態となるためである。
However, the method of bonding metallic lithium to the inner surface of the metallic case cannot be adopted when the metallic case also serves as a positive or negative terminal. This is because the pole that also serves as the terminal of the metal case is always electrically connected to the metal lithium.

【0016】電気化学的ドーピング処理により正極電位
及び負極電位が卑側にシフトする量は、用いる有機電解
液の分解電位、電気二重層キャパシタに要求される耐電
圧、及び正極と負極の炭素質材料に依存するが、通常
0.3〜1.0V程度が効果的で好ましく、特に、0.
4〜0.6Vが好ましい。また、この電気化学的ドーピ
ング処理は室温で実施してもよいが、イオンの拡散を促
進し電気伝導度を高める目的から、30〜70℃の範囲
で行ってもよい。
The amount by which the positive electrode potential and the negative electrode potential shift to the base side by the electrochemical doping treatment depends on the decomposition potential of the organic electrolyte used, the withstand voltage required for the electric double layer capacitor, and the carbonaceous material of the positive electrode and the negative electrode. However, it is usually effective and preferably about 0.3 to 1.0 V.
4-0.6V is preferable. This electrochemical doping treatment may be performed at room temperature, but may be performed at a temperature in the range of 30 to 70 ° C. for the purpose of promoting diffusion of ions and increasing electric conductivity.

【0017】本発明で使用される金属集電体は、機械的
強度、導電性、加工性に優れ、作動電位の範囲において
電気化学的にそれ自体が不活性である材料であれば特に
限定されないが、貴側に分極される正極側には電気化学
的溶解に耐えうるアルミニウム又はステンレス鋼が好ま
しい。
The metal current collector used in the present invention is not particularly limited as long as it is a material which is excellent in mechanical strength, conductivity and workability and is electrochemically inert itself within a range of operating potential. However, aluminum or stainless steel that can withstand electrochemical dissolution is preferable on the positive electrode side polarized on the noble side.

【0018】一方、負極側の金属集電体は耐食性は必要
としないが、金属リチウムと合金を形成しにくい金属が
好ましく、銅、ニッケル、ステンレス鋼が好ましい。金
属リチウムと合金を形成しやすい金属を負極側の集電体
に用いると、負極と金属リチウムとの短絡により負極の
炭素質材料にリチウムイオンがドーピングされるだけで
はなく、負極集電体が金属リチウムと電気化学的に合金
化するので好ましくない。
On the other hand, the metal current collector on the negative electrode side does not require corrosion resistance, but is preferably a metal which hardly forms an alloy with metallic lithium, and is preferably copper, nickel or stainless steel. When a metal which easily forms an alloy with metallic lithium is used for the current collector on the negative electrode side, not only the carbon material of the negative electrode is doped with lithium ions due to a short circuit between the negative electrode and the metal lithium, but also the negative electrode current collector It is not preferable because it is electrochemically alloyed with lithium.

【0019】本発明で使用される金属ケースは、機械的
強度、加工性、耐食性に優れた材料であれば特に限定さ
れないが、鉄、ステンレス鋼、アルミニウム又はアルミ
ニウム合金、耐食性メッキが施された鉄等が好ましい。
The metal case used in the present invention is not particularly limited as long as it is a material excellent in mechanical strength, workability, and corrosion resistance. Iron, stainless steel, aluminum or an aluminum alloy, and iron plated with corrosion resistance are used. Are preferred.

【0020】本発明において、電気二重層形成のために
有機電解液中に含まれる溶質は、電気伝導性、溶解度、
電気化学的安定性の点で第4級オニウム塩が使用され
る。特にR1234+ 又はR1234
+ (R1 、R2 、R3 、R4 はそれぞれ独立に炭素数1
〜6のアルキル基又は炭素数6〜10のアリール基であ
る。また、R3 とR4 とは共同して炭素数2以上の2価
炭化水素基を形成していてもよい。)で表されるカチオ
ンを有することが好ましい。前記カチオンとBF4 -、P
6 -、CF3 SO3 -、AsF6 -、N(SO2 CF
32 -、ClO4 -等のアニオンとからなる塩であるとさ
らに好ましい。
In the present invention, the solute contained in the organic electrolyte for forming the electric double layer has electric conductivity, solubility,
Quaternary onium salts are used in terms of electrochemical stability. In particular, R 1 R 2 R 3 R 4 N + or R 1 R 2 R 3 R 4 P
+ (R 1 , R 2 , R 3 , and R 4 each independently have 1 carbon atom
Or an alkyl group having 6 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms. Further, R 3 and R 4 may together form a divalent hydrocarbon group having 2 or more carbon atoms. It is preferred to have a cation represented by the formula: The cation and BF 4 , P
F 6 , CF 3 SO 3 , AsF 6 , N (SO 2 CF
3) 2 -, ClO 4 - more preferably a salt comprising an anion such as.

【0021】電解液中の上記オニウム塩の濃度は、電気
二重層形成に必要なイオン量を確保し、充分な電気伝導
性を得る目的から、0.5mol/L以上であることが
好ましく、特に1.0mol/L以上であることが好ま
しい。
The concentration of the onium salt in the electrolytic solution is preferably 0.5 mol / L or more, for the purpose of securing the amount of ions necessary for forming the electric double layer and obtaining sufficient electric conductivity. It is preferably at least 1.0 mol / L.

【0022】本発明では、正極及び負極の炭素質材料へ
金属リチウムがイオン化して電気化学的にドーピングさ
れる。ドーピングの効率を上げるために、電解液中にリ
チウム塩を含有させてもよい。リチウム塩としては、電
気伝導性、電気化学的安定性の点から、BF4 -、P
6 -、CF3 SO3 -、AsF6 -、N(SO2 CF
32 -、ClO4 -等のアニオンを有するリチウム塩が好
ましい。
In the present invention, metallic lithium is ionized and electrochemically doped into the carbonaceous materials of the positive electrode and the negative electrode. In order to increase the efficiency of doping, a lithium salt may be contained in the electrolytic solution. As lithium salts, BF 4 , P
F 6 , CF 3 SO 3 , AsF 6 , N (SO 2 CF
3) 2 -, ClO 4 - lithium salt having an anion such as is preferred.

【0023】電解液中に上記リチウム塩が含まれる場
合、その濃度は正極及び負極の炭素質材料の電位をシフ
トさせるために必要な最低限のリチウムイオン量を存在
させるように選択することが好ましい。電気二重層キャ
パシタを構成する炭素質材料や有機電解液の溶媒やオニ
ウム塩の種類、電極の空隙率にもよるが、0.05〜
0.3mol/L、特には0.1〜0.2mol/Lが
好ましい。電気化学的ドーピング処理後に電解液中にリ
チウムイオンが存在すると、電圧印加状態で電気二重層
キャパシタを使用している最中にさらなる正極及び負極
の電位のシフトが引き起こされるおそれがあり、その結
果性能信頼性が低下するおそれがある。
When the above-mentioned lithium salt is contained in the electrolytic solution, its concentration is preferably selected so that the minimum amount of lithium ions necessary for shifting the potential of the carbonaceous material of the positive electrode and the negative electrode is present. . Depending on the type of carbonaceous material or organic electrolyte solvent or onium salt constituting the electric double layer capacitor, and the porosity of the electrode, 0.05 to
0.3 mol / L, particularly preferably 0.1 to 0.2 mol / L. The presence of lithium ions in the electrolyte after the electrochemical doping process may cause a further shift in the potential of the positive and negative electrodes during use of the electric double layer capacitor under voltage application, resulting in poor performance Reliability may be reduced.

【0024】有機電解液に使用される有機溶媒として
は、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート等の環状カーボネート、ジメチル
カーボネート、エチルメチルカーボネート、ジエチルカ
ーボネート等の直鎖状カーボネート、スルホラン、スル
ホラン誘導体、及びアセトニトリル、グルタロニトリル
等のニトリル類からなる群から選ばれる1種以上の溶媒
が好ましい。
The organic solvents used in the organic electrolyte include ethylene carbonate, propylene carbonate,
One or more solvents selected from the group consisting of cyclic carbonates such as butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, linear carbonates such as diethyl carbonate, sulfolane, sulfolane derivatives, and nitriles such as acetonitrile and glutaronitrile. preferable.

【0025】本発明におけるセパレータは特に限定され
ないが、電気絶縁性、電解液に対する化学的安定性、電
解液の吸液性及び保液性に優れる多孔質材料からなるこ
とが好ましい。具体的には、ガラス繊維、シリカやアル
ミナのファイバやウィスカ等の無機繊維からなることが
好ましい。また、マニラ麻等の天然繊維、ポリオレフィ
ン、ポリエステル等の合成ポリマー繊維等の有機繊維か
らなることも好ましい。そして、それらを抄造したシー
ト、延伸操作によって微孔を設けたマイクロポーラスフ
ィルム等であるとさらに好ましい。
The separator in the present invention is not particularly limited, but is preferably made of a porous material having excellent electrical insulation properties, chemical stability with respect to the electrolytic solution, and liquid absorbing and retaining properties of the electrolytic solution. Specifically, it is preferable to use glass fiber, silica or alumina fiber, or inorganic fiber such as whisker. It is also preferable to use organic fibers such as natural fibers such as manila hemp and synthetic polymer fibers such as polyolefin and polyester. And it is more preferable that they are a sheet formed from them, a microporous film provided with micropores by a stretching operation, or the like.

【0026】本発明の電気二重層キャパシタの構造は特
に限定されず、円盤状の正極及び負極をセパレータを介
して対向させたコイン型構造、矩形状の正極と負極とを
セパレータを介して複数交互に積層し電解液を含浸させ
て角型ケースに収容してなる積層型構造、一対の帯状の
正極と負極とをセパレータを介して対向させて巻回し電
解液を含浸させて円筒型ケースに収容してなる巻回型構
造等いずれも好ましく採用できる。
The structure of the electric double layer capacitor of the present invention is not particularly limited. A coin-shaped structure in which a disk-shaped positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and a plurality of rectangular positive and negative electrodes are alternately arranged with a separator interposed therebetween. Laminated structure in which the electrolyte solution is impregnated and accommodated in a square case, a pair of strip-shaped positive and negative electrodes are wound facing each other via a separator, impregnated with the electrolyte solution, and accommodated in a cylindrical case Any of the above-mentioned wound structures can be preferably employed.

【0027】[0027]

【実施例】つぎに、実施例(例1〜6)と比較例(例
7、8)により本発明をさらに具体的に説明するが、本
発明はこれらにより限定されない。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples (Examples 1 to 6) and Comparative Examples (Examples 7 and 8), but the present invention is not limited thereto.

【0028】[例1]比表面積1800m2 /g、平均
粒径10μmの高純度フェノール樹脂系活性炭粉末80
重量部、導電材としてカーボンブラック10重量部、バ
インダとしてポリテトラフルオロエチレン粉末10重量
部を混合した後、エタノールを滴下しながら混練し、ロ
ール圧延して厚さ140μmの電極シートを作製した。
Example 1 High-purity phenolic resin-based activated carbon powder 80 having a specific surface area of 1800 m 2 / g and an average particle size of 10 μm
After mixing 10 parts by weight of carbon black as a conductive material and 10 parts by weight of polytetrafluoroethylene powder as a binder, the mixture was kneaded while dripping ethanol, and roll-rolled to prepare an electrode sheet having a thickness of 140 μm.

【0029】これを200℃で30分乾燥してエタノー
ルを除去した後、リード引き出し部を有する厚さ40μ
mのアルミニウム箔集電体の幅6cm×長さ13cmの
部分の両面に導電性接着剤を用いて接合した。これをさ
らにロールプレスして電極と集電体とが一体化された厚
さ330μmの電極体を作製し、これを正極とした。金
属集電体の材質を銅に変更した以外は正極と同様にして
負極を作製した。
This was dried at 200.degree. C. for 30 minutes to remove ethanol, and then a 40 .mu.
An aluminum foil current collector having a width of 6 cm and a length of 13 cm was joined to both sides of the aluminum foil current collector using a conductive adhesive. This was further roll-pressed to produce a 330 μm-thick electrode body in which the electrode and the current collector were integrated, and this was used as a positive electrode. A negative electrode was produced in the same manner as the positive electrode except that the material of the metal current collector was changed to copper.

【0030】ガラス繊維抄造シートを幅6.6cm、長
さ13.6cmの長方形状に打ち抜いてセパレータと
し、上記正極18枚と上記負極18枚とをセパレータを
介して交互に積層し、素子体を得た。この素子体を20
0℃で24時間真空乾燥した後、高さ15cm、幅7c
m、厚さ2.2cmの有底角型のアルミニウム製金属ケ
ースに収容した。次いで1.5mol/Lの(C2
53 (CH3 )NBF4を溶解したプロピレンカーボ
ネート溶液からなる有機電解液を前記金属ケース内に注
入して素子体に含浸させた。
The glass fiber sheet was punched out into a rectangular shape having a width of 6.6 cm and a length of 13.6 cm to form a separator. The 18 positive electrodes and the 18 negative electrodes were alternately laminated with a separator interposed therebetween. Obtained. This element body is
After vacuum drying at 0 ° C for 24 hours, height 15cm, width 7c
m, 2.2 cm thick and housed in a bottomed square aluminum metal case. Then, 1.5 mol / L of (C 2 H
5 ) An organic electrolyte composed of a propylene carbonate solution in which 3 (CH 3 ) NBF 4 was dissolved was injected into the metal case to impregnate the element body.

【0031】幅1cm、長さ17cm、厚さ0.2mm
のニッケル箔の片面にそれと同じ大きさの金属リチウム
箔(厚さ0.2mm)を圧着し、ニッケル箔の裏面に幅
1cm、厚さ0.2mmのリード箔を電気溶接した(以
下、リチウム電極という)。このリチウム電極を方形筒
状に折り曲げて前記金属ケース内面で電解液が浸漬して
いる部分の上方部に配置し、電解液に浸漬した。この状
態で正極及び負極のリチウム電極に対する電位はともに
3.2Vであった。次に、正極、負極及びリチウム電極
の3極のリードを同時に短絡させ、30分開放した後の
正極と負極のリチウム電極に対する電位が2.7Vに達
するまで短絡操作を繰り返した。
[0031] Width 1cm, length 17cm, thickness 0.2mm
A metallic lithium foil (0.2 mm thick) of the same size was crimped on one side of the nickel foil of Example 1 and a lead foil 1 cm wide and 0.2 mm thick was electrically welded to the back of the nickel foil (hereinafter referred to as lithium electrode). ). The lithium electrode was bent into a rectangular cylindrical shape, placed on the inner surface of the metal case above the portion where the electrolyte was immersed, and immersed in the electrolyte. In this state, the potentials of the positive electrode and the negative electrode with respect to the lithium electrode were both 3.2 V. Next, the three-electrode leads of the positive electrode, the negative electrode, and the lithium electrode were simultaneously short-circuited, and the short-circuit operation was repeated until the potential of the positive electrode and the negative electrode reached 2.7 V after being opened for 30 minutes.

【0032】次いで、アルミニウム蓋体に気密性を保ち
つつ絶縁して取り付けられた正極端子と負極端子に正
極、負極それぞれの電極リードをそれぞれまとめて超音
波溶接した後、前記蓋体を前記金属ケースの開口部には
め込み、周辺部をレーザー溶接して封口し、電気二重層
キャパシタを得た。
Next, the positive electrode terminal and the negative electrode terminal, which are insulated and attached to the aluminum lid while maintaining the airtightness, are ultrasonically welded together to the positive and negative electrode leads, respectively. And the peripheral portion was sealed by laser welding to obtain an electric double layer capacitor.

【0033】得られた電気二重層キャパシタの初期の放
電容量、内部直流抵抗を測定した後、性能信頼性の加速
試験として、このキャパシタを75℃の恒温槽中にて
3.0Vの電圧を印加しながら1000時間保持し、耐
久試験を実施した。耐久試験後の放電容量と内部抵抗を
測定し、初期特性に対する耐久試験後の容量変化率及び
抵抗上昇率を算出した。結果を表1に示す。
After measuring the initial discharge capacity and internal DC resistance of the obtained electric double layer capacitor, a voltage of 3.0 V was applied to the capacitor in a constant temperature bath at 75 ° C. as an acceleration test of performance reliability. While holding for 1000 hours, a durability test was performed. The discharge capacity and the internal resistance after the durability test were measured, and the capacity change rate and the resistance increase rate after the durability test with respect to the initial characteristics were calculated. Table 1 shows the results.

【0034】[例2]リチウム電極との短絡処理後の正
極及び負極のリチウム電極に対する電位を2.9Vとし
た以外は例1と同様にして電気二重層キャパシタを得
て、例1と同様に評価した。結果を表1に示す。
Example 2 An electric double layer capacitor was obtained in the same manner as in Example 1 except that the potential of the positive electrode and the negative electrode after the short-circuit treatment with the lithium electrode was changed to 2.9 V with respect to the lithium electrode. evaluated. Table 1 shows the results.

【0035】[例3]リチウム電極との短絡処理後の正
極及び負極のリチウム電極に対する電位を2.5Vとし
た以外は例1と同様にして電気二重層キャパシタを得
て、例1と同様に評価した。結果を表1に示す。
[Example 3] An electric double layer capacitor was obtained in the same manner as in Example 1 except that the potential of the positive electrode and the negative electrode after the short-circuit treatment with the lithium electrode was changed to 2.5 V with respect to the lithium electrode. evaluated. Table 1 shows the results.

【0036】[例4]電解液中に1.5mol/Lの
(C253 (CH3 )NBF4 のほかに0.15m
ol/LのLiBF4 を溶解させて使用した以外は例1
と同様にして電気二重層キャパシタを得て、例1と同様
に評価した。結果を表1に示す。
Example 4 In addition to 1.5 mol / L of (C 2 H 5 ) 3 (CH 3 ) NBF 4 , 0.15 m
Example 1 except that ol / L LiBF 4 was dissolved and used.
An electric double-layer capacitor was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0037】[例5]金属ケースの内面で電解液が浸漬
する上方部にあたる部分の内周に沿って、厚さ0.15
mm、幅1cmの金属リチウムを金属ケースと金属リチ
ウムが電気的に接続されるように貼り付けた。この金属
ケースを用いた以外は例1と同様にして素子体を金属ケ
ースに収容し、電解液を素子体に含浸させた。
[Example 5] A thickness of 0.15 mm along the inner circumference of the upper portion of the inner surface of the metal case where the electrolyte is immersed.
Metal lithium having a width of 1 mm and a width of 1 mm was attached so that the metal case and the metal lithium were electrically connected. The element body was housed in a metal case in the same manner as in Example 1 except that this metal case was used, and the electrolytic solution was impregnated in the element body.

【0038】次いで、アルミニウム蓋体に気密性を保ち
つつ絶縁して取り付けられた正極端子と負極端子に正
極、負極それぞれの電極リードをそれぞれまとめて超音
波溶接した後、前記蓋体を前記金属ケースの開口部には
め込み、周辺部をレーザー溶接して封口し、電気二重層
キャパシタを得た。
Next, the positive electrode terminal and the negative electrode terminal, which are insulated and attached to the aluminum lid while maintaining the airtightness, are ultrasonically welded together to the positive and negative electrode leads, respectively. And the peripheral portion was sealed by laser welding to obtain an electric double layer capacitor.

【0039】次に金属ケースと正極端子と負極端子とを
同時に短絡させ、30分開放後の正極と負極のリチウム
電極に対する電位が2.7Vに達するまで短絡操作を繰
り返した。この電気二重層キャパシタを用い、例1と同
様に評価した。結果を表1に示す。
Next, the metal case, the positive electrode terminal, and the negative electrode terminal were simultaneously short-circuited, and the short-circuit operation was repeated until the potential of the positive electrode and the negative electrode after opening for 30 minutes reached 2.7 V. Using this electric double layer capacitor, evaluation was made in the same manner as in Example 1. Table 1 shows the results.

【0040】[例6]例5と同様にして電気二重層キャ
パシタを作製し、得られたキャパシタの初期の放電容
量、内部直流抵抗を測定した後、実際の使用状態を想定
してこのキャパシタを室温にて3.0Vの電圧から1.
5Vまでの間で50Aにて定電流充放電を10000回
繰り返した。次いで、キャパシタを完全放電させた後、
正極及び負極と金属ケースとの電位差を測定すると、
2.79Vであった。
[Example 6] An electric double layer capacitor was manufactured in the same manner as in Example 5, and the initial discharge capacity and internal DC resistance of the obtained capacitor were measured. From a voltage of 3.0 V at room temperature to 1.
Constant current charging and discharging at 50 A up to 5 V was repeated 10,000 times. Then, after completely discharging the capacitor,
When measuring the potential difference between the positive and negative electrodes and the metal case,
It was 2.79V.

【0041】この状態で正極と負極と金属ケースとを同
時に再度短絡処理して、正極と負極のリチウム電極に対
する電位を初期の2.7Vまで補正して作動電位をシフ
トさせた。この電気二重層キャパシタを用い、例1と同
様に評価した。結果を表1に示す。
In this state, the positive electrode, the negative electrode and the metal case were simultaneously short-circuited again, and the operating potential was shifted by correcting the potential of the positive electrode and the negative electrode with respect to the lithium electrode to the initial 2.7V. Using this electric double layer capacitor, evaluation was made in the same manner as in Example 1. Table 1 shows the results.

【0042】[例7]リチウム電極と正極と負極との短
絡操作を実施しなかった以外は例1と同様にして電気二
重層キャパシタを作製し、例1と同様に評価した。結果
を表1に示す。
Example 7 An electric double layer capacitor was produced in the same manner as in Example 1 except that the operation of short-circuiting the lithium electrode, the positive electrode and the negative electrode was not performed, and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0043】[例8]リチウム電極と正極と負極との短
絡操作を実施しなかった以外は例1と同様にして電気二
重層キャパシタを作製し、耐久試験において印加する電
圧を2.5Vに変更した以外は例1と同様にして評価し
た。結果を表1に示す。
[Example 8] An electric double layer capacitor was manufactured in the same manner as in Example 1 except that the operation of short-circuiting the lithium electrode, the positive electrode and the negative electrode was not performed, and the voltage applied in the durability test was changed to 2.5V. The evaluation was performed in the same manner as in Example 1 except that the evaluation was performed. Table 1 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明によれば、製造工程中に電気二重
層キャパシタセル内において正極と負極とリチウム金属
とを電解液に浸漬した状態で短絡させるというきわめて
簡単な操作により、性能信頼性に優れ、かつ耐電圧が高
くエネルギ密度が高い電気二重層キャパシタが得られ
る。
According to the present invention, the performance reliability can be improved by a very simple operation of short-circuiting the positive electrode, the negative electrode and the lithium metal in the electric double layer capacitor cell in a state of being immersed in the electrolytic solution during the manufacturing process. An electric double layer capacitor which is excellent, has a high withstand voltage and a high energy density can be obtained.

【0046】また、本発明の使用方法によって正極及び
負極の作動電位を補正することにより、長期的に使用し
た電気二重層キャパシタの性能信頼性を初期の性能信頼
性と近い状態まで容易に回復できる。
Further, by correcting the operating potentials of the positive electrode and the negative electrode by the use method of the present invention, the performance reliability of the electric double layer capacitor used for a long time can be easily restored to a state close to the initial performance reliability. .

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属集電体の表面に形成された比表面積1
00〜3000m2 /gの炭素質材料を主成分とする電
極を正極及び負極とし、該正極と該負極とを多孔質セパ
レータを介して対向させて素子体を形成し、該素子体と
金属リチウムを金属ケースに収容し、該金属ケース内に
第4級オニウム塩を含む有機電解液を前記金属リチウム
が該電解液に浸漬されるように注入し、該電解液を前記
素子体に含浸させた後、前記正極と前記負極とを前記金
属リチウムと電気的に短絡させて前記正極及び前記負極
の炭素質材料にリチウムイオンを電気化学的にドーピン
グさせ、正極の作動電位と負極の作動電位をシフトさせ
ることを特徴とする電気二重層キャパシタの製造方法。
1. A specific surface area 1 formed on a surface of a metal current collector.
An electrode mainly composed of a carbonaceous material of 100 to 3000 m 2 / g is defined as a positive electrode and a negative electrode, and the positive electrode and the negative electrode are opposed to each other via a porous separator to form an element body. Was contained in a metal case, and an organic electrolyte containing a quaternary onium salt was injected into the metal case so that the metal lithium was immersed in the electrolyte, and the element was impregnated with the electrolyte. Thereafter, the positive electrode and the negative electrode are electrically short-circuited with the metallic lithium, and the carbonaceous materials of the positive electrode and the negative electrode are electrochemically doped with lithium ions to shift the operating potential of the positive electrode and the operating potential of the negative electrode. A method of manufacturing an electric double layer capacitor.
【請求項2】前記金属ケースは正極及び負極と電気的に
絶縁されており、前記金属リチウムは有機電解液と接触
した状態で前記金属ケースの内面に電気的に接続して配
置され、前記短絡は、正極と負極と前記金属ケースとの
直接的な短絡による請求項1に記載の電気二重層キャパ
シタの製造方法。
2. The metal case is electrically insulated from a positive electrode and a negative electrode, and the metal lithium is electrically connected to an inner surface of the metal case in contact with an organic electrolyte, and The method according to claim 1, wherein a direct short circuit between the positive electrode, the negative electrode, and the metal case occurs.
【請求項3】正極はアルミニウム又はステンレス鋼から
なる金属集電体上に形成され、負極は銅、ニッケル又は
ステンレス鋼からなる金属集電体上に形成される請求項
1又は2に記載の電気二重層キャパシタの製造方法。
3. The electric device according to claim 1, wherein the positive electrode is formed on a metal current collector made of aluminum or stainless steel, and the negative electrode is formed on a metal current collector made of copper, nickel or stainless steel. A method for manufacturing a double-layer capacitor.
【請求項4】前記第4級オニウム塩は、カチオンがR1
234+ 又はR1234+ (R1 、R2
、R3 及びR4 はそれぞれ独立に炭素数1〜6のアル
キル基又は炭素数6〜10のアリール基である。また、
3 とR4 とは共同して炭素数2以上の2価炭化水素基
を形成していてもよい。)で表される請求項1、2又は
3に記載の電気二重層キャパシタの製造方法。
4. The quaternary onium salt has a cation of R 1
R 2 R 3 R 4 N + or R 1 R 2 R 3 R 4 P + (R 1 , R 2
, R 3 and R 4 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms. Also,
R 3 and R 4 may jointly form a divalent hydrocarbon group having 2 or more carbon atoms. 4. The method for manufacturing an electric double layer capacitor according to claim 1, 2 or 3, wherein
【請求項5】有機電解液中にリチウム塩が含まれる請求
項1、2、3又は4に記載の電気二重層キャパシタの製
造方法。
5. The method for producing an electric double layer capacitor according to claim 1, wherein the organic electrolyte contains a lithium salt.
【請求項6】リチウムイオンが電気化学的にドーピング
されることにより、正極の作動電位と負極の作動電位を
いずれも0.3〜1.0V卑側にシフトさせる請求項
1、2、3、4又は5に記載の電気二重層キャパシタの
製造方法。
6. An operating potential of a positive electrode and an operating potential of a negative electrode are both shifted by 0.3 to 1.0 V base side by electrochemically doping lithium ions. 6. The method for manufacturing an electric double layer capacitor according to 4 or 5.
【請求項7】金属集電体の表面に形成された比表面積1
00〜3000m2 /gの炭素質材料を主成分とする電
極を正極及び負極とし、該正極と該負極とを多孔質セパ
レータを介して対向させて形成した素子体を、内面に金
属リチウムを電気的に接続させておりかつ正極及び負極
とは電気的に絶縁されている金属ケースに収容し、該金
属ケース内に第4級オニウム塩を含む有機電解液を前記
金属リチウムが該電解液に浸漬されるように注入し、該
電解液を前記素子体に含浸させてなる電気二重層キャパ
シタを、使用中において金属ケースと正極及び/又は負
極とを電気的に短絡させることにより、正極及び/又は
負極の作動電位の補正を行うことを特徴とする電気二重
層キャパシタの使用方法。
7. A specific surface area 1 formed on a surface of a metal current collector.
A positive electrode and a negative electrode are each composed of an electrode mainly composed of a carbonaceous material of 100 to 3000 m 2 / g, and an element body formed by opposing the positive electrode and the negative electrode with a porous separator interposed therebetween is provided with metal lithium on the inner surface. And a positive electrode and a negative electrode are housed in a metal case that is electrically insulated from the positive electrode and the negative electrode, and the metal lithium is immersed in the metal case in an organic electrolytic solution containing a quaternary onium salt. The electric double-layer capacitor obtained by injecting the electrolyte solution into the element body is electrically short-circuited between the metal case and the positive electrode and / or the negative electrode during use. A method of using an electric double layer capacitor, comprising correcting the operating potential of a negative electrode.
JP10325522A 1998-11-16 1998-11-16 Manufacture of electric double layer capacitor and using method therefor Pending JP2000150319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10325522A JP2000150319A (en) 1998-11-16 1998-11-16 Manufacture of electric double layer capacitor and using method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10325522A JP2000150319A (en) 1998-11-16 1998-11-16 Manufacture of electric double layer capacitor and using method therefor

Publications (1)

Publication Number Publication Date
JP2000150319A true JP2000150319A (en) 2000-05-30

Family

ID=18177824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10325522A Pending JP2000150319A (en) 1998-11-16 1998-11-16 Manufacture of electric double layer capacitor and using method therefor

Country Status (1)

Country Link
JP (1) JP2000150319A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338963A (en) * 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2007266064A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Electric double layer capacitor
JP2008243888A (en) * 2007-03-26 2008-10-09 Matsushita Electric Ind Co Ltd Manufacturing method of electrochemical capacitor, and electrochemical capacitor obtained thereby
JP2008311363A (en) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc Method for predoping lithium ion and method for manufacturing lithium ion capacitor storage element
JP2009200302A (en) * 2008-02-22 2009-09-03 Fuji Heavy Ind Ltd Method of manufacturing electricity storage device, and electricity storage device
KR101098240B1 (en) * 2010-04-09 2011-12-23 비나텍주식회사 Manufacturing method of supercapacitor cell
KR101098236B1 (en) * 2010-04-09 2011-12-27 비나텍주식회사 Manufacturing method of supercapacitor cell array
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
KR101137723B1 (en) * 2010-11-15 2012-04-24 비나텍주식회사 Lithium ion capacitor cell using current collector coated with carbon and manufacturing method of the same
KR101137707B1 (en) * 2010-11-19 2012-04-25 한국세라믹기술원 Hybrid supercapacitor cell and manufacturing method of the same
KR101137714B1 (en) * 2010-11-19 2012-04-25 한국세라믹기술원 Hybrid supercapacitor cell using current collector coated with carbon and manufacturing method of the same
KR101157500B1 (en) 2010-11-15 2012-06-20 비나텍주식회사 Lithium ion capacitor cell and manufacturing method of the same
US8379368B2 (en) 2010-07-07 2013-02-19 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing lithium ion capacitor and lithium ion capacitor manufactured using the same
JP2014017286A (en) * 2012-07-05 2014-01-30 Asahi Kasei Corp Nonaqueous lithium type storage element
WO2020193875A1 (en) * 2019-03-25 2020-10-01 Nawatechnologies Process for producing electrochemical capacitors

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338963A (en) * 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2007266064A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Electric double layer capacitor
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
JP2008243888A (en) * 2007-03-26 2008-10-09 Matsushita Electric Ind Co Ltd Manufacturing method of electrochemical capacitor, and electrochemical capacitor obtained thereby
JP2008311363A (en) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc Method for predoping lithium ion and method for manufacturing lithium ion capacitor storage element
JP2009200302A (en) * 2008-02-22 2009-09-03 Fuji Heavy Ind Ltd Method of manufacturing electricity storage device, and electricity storage device
KR101098240B1 (en) * 2010-04-09 2011-12-23 비나텍주식회사 Manufacturing method of supercapacitor cell
KR101098236B1 (en) * 2010-04-09 2011-12-27 비나텍주식회사 Manufacturing method of supercapacitor cell array
US8379368B2 (en) 2010-07-07 2013-02-19 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing lithium ion capacitor and lithium ion capacitor manufactured using the same
KR101157500B1 (en) 2010-11-15 2012-06-20 비나텍주식회사 Lithium ion capacitor cell and manufacturing method of the same
KR101137723B1 (en) * 2010-11-15 2012-04-24 비나텍주식회사 Lithium ion capacitor cell using current collector coated with carbon and manufacturing method of the same
KR101137707B1 (en) * 2010-11-19 2012-04-25 한국세라믹기술원 Hybrid supercapacitor cell and manufacturing method of the same
KR101137714B1 (en) * 2010-11-19 2012-04-25 한국세라믹기술원 Hybrid supercapacitor cell using current collector coated with carbon and manufacturing method of the same
JP2014017286A (en) * 2012-07-05 2014-01-30 Asahi Kasei Corp Nonaqueous lithium type storage element
WO2020193875A1 (en) * 2019-03-25 2020-10-01 Nawatechnologies Process for producing electrochemical capacitors
FR3094555A1 (en) * 2019-03-25 2020-10-02 Nawatechnologies Manufacturing process of electrochemical capacitors

Similar Documents

Publication Publication Date Title
JP3496338B2 (en) Electric double layer capacitor
US20100027193A1 (en) Coated electrode and organic electrolyte capacitor
JP5637858B2 (en) Electric double layer capacitor
JP5392355B2 (en) Electric double layer capacitor
JP2007005717A (en) Electrochemical element
JP2000150319A (en) Manufacture of electric double layer capacitor and using method therefor
US20020089807A1 (en) Polymer electrochemical capacitors
WO2019163896A1 (en) Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode
US7656645B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP2008182212A (en) Faraday capacitive type capacitor
US6496357B2 (en) Metal oxide electrochemical psedocapacitor employing organic electrolyte
JP4527821B2 (en) Electrochemical capacitor
KR20140010039A (en) Electrolyte synthesis for ultracapacitors
JPH1097956A (en) Electric double-layer capacitor
JP4487540B2 (en) Electrochemical capacitor
JP6966276B2 (en) Electrolytes for electrochemical devices and electrochemical devices
JPWO2013146464A1 (en) Electrode material, capacitor using the electrode material, and secondary battery
JP2013089606A (en) Electrode sheet, method of manufacturing the same and power storage device using the same
JP2012028366A (en) Power storage device
JP2001217149A (en) Electrical energy storing device and method of manufacturing the same
JP2013197535A (en) Electrolytic solution and electric double-layer capacitor
JP6718905B2 (en) Lithium ion capacitor
JP3800810B2 (en) Electric double layer capacitor
JP2010141065A (en) Electric storage device
KR20160117994A (en) High voltage electric double layer capacitor