JP2000146836A - Refractive index measuring method utilizing transmission phenomenon of evanescent wave and its measuring device - Google Patents

Refractive index measuring method utilizing transmission phenomenon of evanescent wave and its measuring device

Info

Publication number
JP2000146836A
JP2000146836A JP32175398A JP32175398A JP2000146836A JP 2000146836 A JP2000146836 A JP 2000146836A JP 32175398 A JP32175398 A JP 32175398A JP 32175398 A JP32175398 A JP 32175398A JP 2000146836 A JP2000146836 A JP 2000146836A
Authority
JP
Japan
Prior art keywords
refractive index
substance
light
sample
evanescent wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32175398A
Other languages
Japanese (ja)
Inventor
Tomoko Seyama
倫子 瀬山
Iwao Sugimoto
岩雄 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32175398A priority Critical patent/JP2000146836A/en
Publication of JP2000146836A publication Critical patent/JP2000146836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refractive index measuring method and its measuring device utilizing a transmission phenomenon of an evanescent wave, capable of measuring the refractive index of a substance in a thin film state without using thickness data of a sample and without needing complicated arithmetic processing that uses data actually measured. SOLUTION: A substance B of a refractive index lower than that of a substance A is brought into close contact with a flat surface of the substance A of a known refractive index, the substance B is adapted to be a thin film of a known refractive index and a known film thickness smaller than an ooze-out distance D of an evanescent wave 3 generated when measuring light 1 incoming from the side of the substance A is totally reflected by an interface 2 bordering the substance B, a sample (substance C) whose refractive index is to be found is brought into close contact with the substance B, an evanescent wave 3 is generated by totally reflecting measuring light 1 by the interface 2 between the substance A and the substance B, and the refractive index of the substance C is found by finding the size of a part of the evanescent wave 3, passing through the substance B, oozed out into the substance C, and changed to transmitted light 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に光通信デバイ
スや光センシングの分野で用いられる材料の屈折率測定
に有効な、エバネセント波の透過現象を利用する屈折率
測定方法およびその測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring a refractive index utilizing a transmission phenomenon of an evanescent wave, which is particularly effective for measuring the refractive index of a material used in the field of optical communication devices and optical sensing. It is.

【0002】[0002]

【従来の技術】通常、材料の屈折率を測定する場合、エ
リプソメータや屈折率計が用いられている。アッベの屈
折率計では、サンプルより屈折率の高いプリズムをサン
プルに押し当て、プリズム側から光を入射して臨界角を
測定する事でサンプルの屈折率を測定することが可能で
あるが、バルク材料以外には適用できない。また、他の
屈折率測定法として、膜厚既知のサンプルの場合、ある
特定の波長の光を被測定物質に入射し、その透過光や反
射光について計算処理をすることで求めることができ
る。また、全反射における滲み出しであるエバネセント
波を用いて測定する方法として、表面プラズモンセン
サ、光導波路センサ、光漏洩モードセンサといった屈折
率計があり、これらの方法では、サンプルの厚さが既知
である必要はない。
2. Description of the Related Art Usually, when measuring the refractive index of a material, an ellipsometer or a refractometer is used. Abbe's refractometer can measure the refractive index of a sample by pressing a prism with a higher refractive index than the sample onto the sample and irradiating light from the prism side and measuring the critical angle. It cannot be applied to materials other than materials. Further, as another method of measuring the refractive index, in the case of a sample having a known film thickness, it can be obtained by making light of a specific wavelength incident on the substance to be measured and calculating the transmitted light and reflected light. In addition, as a method of measuring using an evanescent wave which is a seepage in total reflection, there are refractometers such as a surface plasmon sensor, an optical waveguide sensor, and a light leakage mode sensor, and in these methods, the thickness of a sample is known. No need to be.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような従
来の屈折率測定方法およびその測定装置においては、被
測定物質の正確な厚さデータが必要な測定法の場合、測
定光の波長に合わせた厚さを持つサンプル(試料)が必
要となる。そのため、屈折率を測定する前段階として、
膜厚を測定したり、厚さ調整のためにサンプルを研磨す
る作業が必要であった。また、膜厚測定が非常に困難な
形状の物質を測定する場合には、形状の作り替えを行う
必要があり、作り替えた物質の屈折率が、実際に求めた
い物質の値と異なっている恐れもあった。
However, in such a conventional method of measuring the refractive index and its measuring apparatus, in the case of a measuring method which requires accurate thickness data of the substance to be measured, it is necessary to adjust the wavelength to the wavelength of the measuring light. A sample having a different thickness is required. Therefore, as a step before measuring the refractive index,
Work to measure the film thickness and polish the sample for thickness adjustment was required. Also, when measuring a material having a shape that is very difficult to measure the film thickness, it is necessary to reshape the shape, and the refraction index of the reshaped material is different from the value of the material that is actually required. I was afraid.

【0004】また、屈折率を測定する際にエバネセント
波を用いる方法では、膜厚測定は必要でないが、光導波
部分に直接被測定試料を押しつけて測定するため、必ず
複雑な計算処理および装置構成が必要である。さらに、
表面プラズモンセンサの場合には測定光の導入部分や検
出器部分に角度可変機構を設置する必要があること、光
導波路センサの場合には光の位相を求めなくてはならな
いため特別な光学系を必要とすることから、測定装置に
大がかりな特殊な装置が必要であった。また光漏洩モー
ドセンサにおいては、直接サンプルに測定光を導入する
ため、サンプルによる吸収がない場合には測定が不可能
となってしまう問題があった。
In the method of using an evanescent wave for measuring the refractive index, it is not necessary to measure the film thickness. However, since the measurement is performed by directly pressing the sample to be measured on the optical waveguide portion, complicated calculation processing and device configuration are always required. is necessary. further,
In the case of a surface plasmon sensor, it is necessary to install an angle variable mechanism in the part where the measuring light is introduced and in the detector.In the case of an optical waveguide sensor, a special optical system must be used because the phase of the light must be obtained. Because of the necessity, a large-scale special device was required for the measuring device. Further, in the light leakage mode sensor, since the measurement light is directly introduced into the sample, there is a problem that the measurement becomes impossible if there is no absorption by the sample.

【0005】また近年の通信や環境センシングの分野で
は、波長の長い赤外光領域の光の利用に注目が集まって
きている。これに伴い、材料の赤外領域の光に対する屈
折率や、赤外光透過材料自身の屈折率、また、バルク材
料ではなく薄膜化された材料そのままの状態で屈折率を
知りたいという欲求がある。しかし、赤外光領域の光に
対する屈折率の測定や、特に長波長の赤外光透過材料の
屈折率測定のための測定系は、従来の測定法をベースに
構築することには困難がともなった。その原因は、長波
長の赤外光を測定光とする場合、測定光導入用の光学材
料の屈折率が高いこと、またサンプルに直接、測定光を
導入することにある。さらに、数μm以上の長い波長の
赤外光を透過させる材料の中には人体への毒性を持つも
のがあるため、厚さ調整のための加工作業は避けたいと
いう欲求もあり、また、プロセスモニタとして利用する
ときや、屈折率センサとして他の装置類に組み込む際
に、小型化したいという要求があったが、それらに答え
られないという問題がある。
In recent years, in the field of communication and environmental sensing, attention has been focused on the use of light in a long wavelength infrared light region. Along with this, there is a desire to know the refractive index of light in the infrared region of the material, the refractive index of the infrared light transmitting material itself, and the refractive index of the material as a thin film rather than a bulk material. . However, it is difficult to construct a measurement system for measuring the refractive index of light in the infrared light region, and particularly for measuring the refractive index of a long-wavelength infrared light transmitting material, based on a conventional measurement method. Was. This is because, when long wavelength infrared light is used as the measurement light, the refractive index of the optical material for introducing the measurement light is high, and the measurement light is directly introduced into the sample. Furthermore, since some materials that transmit infrared light having a long wavelength of several μm or more have toxicity to the human body, there is also a desire to avoid processing work for adjusting the thickness, When used as a monitor or when incorporated as a refractive index sensor into other devices, there has been a demand to reduce the size, but there is a problem that they cannot be answered.

【0006】本発明は上述の課題を解決するためになさ
れたもので、試料の厚さデータを用いずに、また実測し
たデータを用いる複雑な計算処理を要さずに、薄膜状態
の試料の屈折率を測定することが可能なエバネセント波
の透過現象を利用する屈折率測定法およびその測定装置
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it has been proposed that a thin film sample can be obtained without using thickness data of the sample and without complicated calculation processing using actually measured data. An object of the present invention is to provide a refractive index measuring method using an evanescent wave transmission phenomenon capable of measuring a refractive index, and a measuring device therefor.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明においては、測定光を透過する屈折率が既知
の第1の物質の平坦な面に、前記測定光を透過し前記第
1の物質よりも低屈折率の第2の物質からなり前記第1
の物質側から入射した前記測定光が前記第2の物質との
界面で全反射するときに生ずるエバネセント波の滲み出
し距離よりも小さな膜厚を有する屈折率と膜厚が既知の
薄膜を密着させ、該薄膜上に屈折率を求めたい試料を密
着させ、前記第1の物質と前記薄膜との界面で測定光を
全反射させてエバネセント波を発生させ、前記エバネセ
ント波のうち、前記薄膜を越えて前記試料中に滲み出し
て透過光に変化したエバネセント波の大きさを求めて前
記試料の屈折率を求める。
In order to achieve the above object, according to the present invention, a first material having a known refractive index through which a measurement light is transmitted is provided on a flat surface of the first material, and the first light is transmitted through the first material. The second material having a lower refractive index than that of the first material.
A thin film having a known refractive index and a known film thickness smaller than the exudation distance of an evanescent wave generated when the measurement light incident from the material side is totally reflected at the interface with the second material is brought into close contact. A sample whose refractive index is to be obtained is brought into close contact with the thin film, and an evanescent wave is generated by totally reflecting measurement light at an interface between the first substance and the thin film. Then, the magnitude of the evanescent wave that oozes into the sample and changes into transmitted light is determined to determine the refractive index of the sample.

【0008】また、前記試料がないときに前記第1の物
質と前記薄膜との界面で全反射して戻ってくる測定光の
強度と、前記試料を設置したときに前記第1の物質と前
記薄膜との界面で全反射して戻ってくる測定光の強度と
の差から、前記試料中に滲み出して透過光に変化したエ
バネセント波の大きさを求める。
[0008] Further, the intensity of the measurement light which is totally reflected back at the interface between the first substance and the thin film when the sample is not present, and the intensity of the first substance and the first substance when the sample is set. The magnitude of the evanescent wave that oozes into the sample and changes into transmitted light is determined from the difference from the intensity of the measurement light that returns after being totally reflected at the interface with the thin film.

【0009】また、前記第1の物質と前記薄膜との界面
での前記測定光の全反射を多数回繰り返すように、前記
測定光を前記第1の物質中を導波させ、その後前記第1
の物質より出射させて強度を測定する。
Further, the measuring light is guided through the first material so that total reflection of the measuring light at the interface between the first material and the thin film is repeated many times.
And the intensity is measured.

【0010】また、赤外光源、マイケルソン干渉計、検
出器、試料室を有するフーリエ変換赤外光光度計の試料
室内に、測定光の光路を誘導するプリズムと、上記プリ
ズム上に密着させた屈折率が既知の第1の物質と、上記
第1の物質上に密着させた上記第1の物質よりも低屈折
率でエバネセント波の滲み出し距離よりも小さな膜厚の
第2の物質からなる薄膜とを有する屈折率測定装置を用
いる。
A prism for guiding an optical path of measurement light is provided in a sample chamber of a Fourier transform infrared photometer having an infrared light source, a Michelson interferometer, a detector, and a sample chamber, and the prism is brought into close contact with the prism. A first substance having a known refractive index and a second substance having a lower refractive index than the first substance adhered on the first substance and having a film thickness smaller than a seepage distance of an evanescent wave. A refractive index measuring device having a thin film is used.

【0011】また、上記第1の物質にシリコンを用い、
上記第2の物質にSiO2を用いる。
Further, silicon is used for the first substance,
SiO 2 is used as the second substance.

【0012】[0012]

【発明の実施の形態】図1は本発明に係るエバネセント
波の透過現象を利用する屈折率測定法の実施の形態を示
す概念図である。図1(a)に示すように、測定光1を
透過する屈折率が既知の第1の物質(物質A)と物質A
よりも低屈折率の第2の物質(物質B)との界面2にお
いて測定光1が全反射するとき、エバネセント波3が生
じ、物質B中に滲み出す。このエバネセント波3は、数
1式に示すように、指数関数的に減衰しながら、界面2
から物質B内に入り込む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual diagram showing an embodiment of a refractive index measuring method using an evanescent wave transmission phenomenon according to the present invention. As shown in FIG. 1A, a first substance (substance A) having a known refractive index that transmits the measuring light 1 and a substance A
When the measurement light 1 is totally reflected at the interface 2 with the second substance (substance B) having a lower refractive index, an evanescent wave 3 is generated and seeps into the substance B. The evanescent wave 3 is exponentially attenuated while the interface 2
From the substance B.

【0013】[0013]

【数1】 (Equation 1)

【0014】ここで、Eは界面2からの距離がdの時の
エバネセント波3の強度、E0はd=0の時の強度、
1、n2は物質Aおよび物質Bの屈折率で、nijはni
/njで表される相対屈折率を示している。Dは、エバ
ネセント波3の強度が1/e(自然対数の底)まで減衰
したときの距離(滲み出し距離)であり、数2式によっ
て定義される。これは入射する光の波長λに依存する値
となる。
Here, E is the intensity of the evanescent wave 3 when the distance from the interface 2 is d, E 0 is the intensity when d = 0,
n 1 and n 2 are the refractive indices of substance A and substance B, and n ij is n i
/ N j indicates a relative refractive index. D is the distance (leaching distance) when the intensity of the evanescent wave 3 has attenuated to 1 / e (the base of the natural logarithm), and is defined by Expression 2. This is a value that depends on the wavelength λ of the incident light.

【0015】[0015]

【数2】 (Equation 2)

【0016】更に、図1(b)に示すように、物質Bを
エバネセント波3の滲み出し距離Dよりも小さい膜厚の
薄膜とし、エバネセント波3の到達範囲内に、もう一つ
の物質C(屈折率n3)が存在する場合、エバネセント
波3がさらに外側の物質Cへと到達し、物質Cが測定さ
れるサンプル(試料)となる。これがエバネセント波の
透過現象であり、この物質Cへ透過する光の入射光に対
する強度比Tは、数3式によって表現される。
Further, as shown in FIG. 1B, the substance B is formed into a thin film having a thickness smaller than the seeping distance D of the evanescent wave 3, and another substance C ( When the refractive index n 3 ) exists, the evanescent wave 3 reaches the further outer material C, and becomes a sample (material) from which the material C is measured. This is the transmission phenomenon of the evanescent wave, and the intensity ratio T of the light transmitted to the substance C with respect to the incident light is expressed by Expression 3.

【0017】[0017]

【数3】 (Equation 3)

【0018】ここで、TsとTpは、それぞれ、入射光
のs偏光成分(入射面に対して垂直な成分)とp偏光成
分(入射面内に含まれる成分)であることを示してお
り、次の数4式によって求められる。
Here, Ts and Tp represent the s-polarized component (the component perpendicular to the incident surface) and the p-polarized component (the component included in the incident surface) of the incident light, respectively. It is obtained by the following equation (4).

【0019】[0019]

【数4】 (Equation 4)

【0020】ただし、ps、po、qs、qo、は数5式に
表すとおりであり、またmp11、mp12、mp21、
p22、ms11、ms12、ms21、ms22は、数
6式の特性行列MpとMsの因子である。
Here, p s , p o , q s , q o are as shown in Formula 5, and m p 11, m p 12, m p 21,
m p 22, m s 11, m s 12, m s 21, m s 22 is a factor of characteristic matrix Mp and Ms of equation (6).

【0021】[0021]

【数5】 (Equation 5)

【0022】[0022]

【数6】 (Equation 6)

【0023】ただし、γd、p、qは数7式で表され、
zは物質Bの厚さ、またiは虚数根である。
Here, γ d , p and q are expressed by the following equation (7).
z is the thickness of the substance B, and i is the imaginary root.

【0024】[0024]

【数7】 (Equation 7)

【0025】ここで、n1、n2、z、入射角θ1が既知
のとき、数3式のTp、Tsは物質Cの屈折率(n3
の関数となる。したがって、n3を求めるために物質C
の厚さを知る必要がない。測定光の波長λには、物質B
による強い吸収が無い範囲にあるものを適用する必要が
ある。また、利用できる光の波長範囲は、物質A、物質
Bとして用いる材料によって制限され、さらに、測定可
能なn3の範囲は、n1、n2、z、θ1によって制限され
る。したがって、測定系の設計において、用いる光学材
料とその組み合わせの選定作業が重要である。また、物
質Bの厚さであるzの値は、エバネセント波の進入深さ
の基準であるDの値よりも十分小さくしておく必要があ
る。透過光強度比Tと屈折率n3の関係について、λ=
2.0(μm)、n1=3.45(シリコン)、n2
1.46(SiO2)、z=100(Å)、入射角θ1
45゜を代入して求めると、図2の様になる。図に示す
ように、Tとn3との間に相関が認められるため、Tを
実測すれば物質Cの屈折率n3が求められることにな
る。
Here, when n 1 , n 2 , z and the incident angle θ 1 are known, Tp and Ts in the equation 3 are the refractive index (n 3 ) of the substance C.
Is a function of Therefore, to determine n 3 ,
You don't need to know the thickness. The substance B is included in the wavelength λ of the measurement light.
It is necessary to apply one that is in a range where strong absorption due to is not caused. The wavelength range of light that can be used is limited by the materials used as the substances A and B, and the range of n 3 that can be measured is limited by n 1 , n 2 , z, and θ 1 . Therefore, in designing a measurement system, it is important to select an optical material to be used and a combination thereof. Further, the value of z, which is the thickness of the substance B, needs to be sufficiently smaller than the value of D, which is a reference of the penetration depth of the evanescent wave. Regarding the relationship between the transmitted light intensity ratio T and the refractive index n 3 , λ =
2.0 (μm), n 1 = 3.45 (silicon), n 2 =
1.46 (SiO 2 ), z = 100 (Å), incident angle θ 1 =
FIG. 2 shows a result obtained by substituting 45 °. As shown in the figure, since a correlation is recognized between T and n 3 , if T is measured, the refractive index n 3 of the substance C can be obtained.

【0026】次に測定方法について述べる。まず、屈折
率既知の物質Aと物質Bを用意し、このとき物質Bは十
分厚さが小さく、かつ物質Aと密着しているものとす
る。この時、測定光1が物質Aと物質Bとの界面2で全
反射する角度θ1で導入されるように設置しておく。こ
こで、n1、n2、z、θ1の値を数3〜7式に代入し、
図2にあるようなTとn3の関係を表す曲線を求める。
Tの実測値であるQの値は、物質Cで透過光4へ変化し
た光の量であり、検出器5が光を検知したときの出力値
Pから求める。屈折率既知の標準試料を物質Cとして測
定し、その時の検出器5の出力値Pを求める。検出器の
出力値Pの最大値Pmax(物質Cがない時の検出器5
の出力値)から出力値Pを引いた値(Pmax−P)
を、実測値Qとする。標準試料の実測値Qiを、図2の
様にして求めた曲線に当てはめ、曲線のTの値と実測値
Qiとの相関を表す検量線を作成する。検量線が作成で
きたら、未知試料であるサンプルを物質Cとして設置
し、その時の検出器5の出力値PをPmaxから差し引
き、実測値Qsを求める。この実測値Qsを、先に求め
た検量線にあてはめ、その横軸から屈折率が求められ
る。ただし、物質Cが、物質Aと接触させたときに全反
射条件をみたす屈折率である場合には、実測値はゼロに
近い値を示す。図2で用いた様なパラメータの値の測定
装置においては、屈折率が2.4以下の場合に、物質A
との全反射がおこる。よって、図2において実測値がゼ
ロに近い値の場合、屈折率を求める事はできないが、n
3は2.4より小さい値である、ということが分かる。
Next, the measuring method will be described. First, a substance A and a substance B having a known refractive index are prepared. At this time, it is assumed that the substance B has a sufficiently small thickness and is in close contact with the substance A. At this time, it is set so that the measurement light 1 is introduced at an angle θ 1 at which the measurement light 1 is totally reflected at the interface 2 between the substance A and the substance B. Here, the values of n 1 , n 2 , z, and θ 1 are substituted into Expressions 3 to 7, and
A curve representing the relationship between T and n 3 as shown in FIG. 2 is obtained.
The value of Q, which is the actual measured value of T, is the amount of light that has changed into the transmitted light 4 by the substance C, and is determined from the output value P when the detector 5 detects the light. A standard sample with a known refractive index is measured as the substance C, and the output value P of the detector 5 at that time is obtained. The maximum value Pmax of the output value P of the detector (the detector 5 when there is no substance C)
Output value) minus output value P (Pmax-P)
Is an actual measurement value Q. The measured value Qi of the standard sample is applied to the curve obtained as shown in FIG. 2, and a calibration curve representing the correlation between the T value of the curve and the measured value Qi is created. After the calibration curve has been created, a sample, which is an unknown sample, is set as the substance C, and the output value P of the detector 5 at that time is subtracted from Pmax to obtain an actually measured value Qs. The actually measured value Qs is applied to the previously obtained calibration curve, and the refractive index is obtained from the horizontal axis. However, when the substance C has a refractive index that satisfies the condition of total reflection when brought into contact with the substance A, the measured value shows a value close to zero. In the apparatus for measuring parameter values as used in FIG. 2, when the refractive index is 2.4 or less, the substance A
And total reflection occurs. Therefore, when the measured value is close to zero in FIG. 2, the refractive index cannot be obtained, but n
It can be seen that 3 is a value smaller than 2.4.

【0027】近年、赤外光通信および近赤外・中赤外光
によるセンシング分野で注目されている、長波長の赤外
光を透過する材料について、屈折率測定を行った例を示
す。
An example in which the refractive index of a material that transmits infrared light of a long wavelength, which has recently attracted attention in the field of infrared light communication and sensing using near-infrared light and mid-infrared light, is described.

【0028】図3は本発明に係るエバネセント波の透過
現象を利用する屈折率測定装置の実施の形態を示す構成
図である。図に示すように、赤外光源6、マイケルソン
干渉計7、検出器8、試料室9を有するフーリエ変換赤
外光光度計の試料室9内に、測定光1の光路を誘導する
セレン化亜鉛のプリズム10と、プリズム10上に密着
させた屈折率が既知の第1の物質(物質A)と、物質A
上に密着させた物質Aよりも低屈折率でエバネセント波
の滲み出し距離Dよりも小さな膜厚の第2の物質(物質
B)と、物質B上に測定サンプル(物質C)を固定して
いる。
FIG. 3 is a block diagram showing an embodiment of a refractive index measuring apparatus utilizing the transmission phenomenon of an evanescent wave according to the present invention. As shown in the figure, selenization for guiding the optical path of the measurement light 1 into a sample chamber 9 of a Fourier transform infrared photometer having an infrared light source 6, a Michelson interferometer 7, a detector 8, and a sample chamber 9. A prism 10 made of zinc, a first substance (substance A) having a known refractive index adhered on the prism 10, and a substance A
A second sample (substance B) having a lower refractive index than the substance A adhered thereon and having a film thickness smaller than the exudation distance D of the evanescent wave, and a measurement sample (substance C) fixed on the substance B I have.

【0029】赤外光透過材料は屈折率が大きいため、屈
折率が2.0以上の物質を測定する測定系を構築する。
フーリエ変換赤外光度計は、赤外光源6から赤外光を発
射し、スリットを通過してマイケルソン干渉計7に導入
され、ここから試料室9内におかれたサンプル(物質
C)に導入されて、この試料室9を通過した測定光1を
検出器8で検知し、その強度を測定する事ができる。つ
まり、サンプル内で測定光1が透過光4へ変換される
と、検出器8にて検知する測定光1の強度は小さくな
る。
Since the infrared light transmitting material has a large refractive index, a measuring system for measuring a substance having a refractive index of 2.0 or more is constructed.
The Fourier transform infrared photometer emits infrared light from an infrared light source 6, passes through a slit and is introduced into a Michelson interferometer 7, from which a sample (material C) placed in a sample chamber 9 is provided. The measuring light 1 introduced and passed through the sample chamber 9 is detected by the detector 8 and its intensity can be measured. That is, when the measuring light 1 is converted into the transmitted light 4 in the sample, the intensity of the measuring light 1 detected by the detector 8 decreases.

【0030】そこで、図3にあるような測定装置を構成
した。フーリエ変換赤外光光度計の試料室9に、入射角
45度のセレン化亜鉛のプリズム10をそのカット面に
対して測定光1が垂直に導入できるように設置し、Si
2が形成されたシリコンウェハーをセレン化亜鉛のプ
リズム10上に、上面がSiO2となるようにシリコン
ウェハーを固定してある。すなわち、シリコンウェハー
が物質A、SiO2が物質Bとなる。次に、屈折率を求
めたい物質CをSiO2の上に押しつける。したがっ
て、物質C部分で透過光4が生じると、検出器8の検知
する強度が小さくなる。シリコンウェハーを透過できる
赤外光の波長は1.0〜6.2μmであるので、図3の
測定系の場合、Dの値(エバネセント波の滲み出し距
離)は0.18〜1.15μmとなる。物質BのSiO
2は、熱酸化法により膜厚制御を行いながら作製し、厚
さを上記Dの値より十分小さな150Å(屈折率1.4
6)とした。この時、物質Aから物質Bへの測定光1の
入射角θ1は約29度となり、これは、シリコンウェハ
ーとSiO2の屈折率によって規定される臨界角より大
きい。よって、シリコンウェハーとSiO2の界面2で
の全反射条件は満たされている。測定可能な屈折率範囲
は、また、この場合の物質A(シリコン)の上部界面2
における全反射条件が屈折率1.7以下の物質であるか
ら、1.7以上である。測定光として適用可能な赤外光
は、シリコンを透過可能な波長範囲にあるものでなけれ
ばならないため、6.2μmまで長い波長のものであ
る。
Therefore, a measuring apparatus as shown in FIG. 3 was constructed. A zinc selenide prism 10 having an incident angle of 45 degrees was set in a sample chamber 9 of a Fourier transform infrared photometer so that the measurement light 1 could be introduced perpendicularly to the cut surface thereof.
A silicon wafer on which O 2 is formed is fixed on a prism 10 of zinc selenide so that the upper surface becomes SiO 2 . That is, the silicon wafer becomes the substance A, and the SiO 2 becomes the substance B. Next, a substance C whose refractive index is to be obtained is pressed onto SiO 2 . Therefore, when the transmitted light 4 occurs in the material C portion, the intensity detected by the detector 8 decreases. Since the wavelength of the infrared light that can pass through the silicon wafer is 1.0 to 6.2 μm, the value of D (the oozing distance of the evanescent wave) is 0.18 to 1.15 μm in the measurement system of FIG. Become. Material B SiO
2 is manufactured while controlling the film thickness by a thermal oxidation method, and the thickness is set to 150 ° (refractive index 1.4) sufficiently smaller than the value of D.
6). At this time, the incident angle θ 1 of the measurement light 1 from the substance A to the substance B is about 29 degrees, which is larger than the critical angle defined by the refractive indexes of the silicon wafer and SiO 2 . Therefore, the condition of total reflection at the interface 2 between the silicon wafer and SiO 2 is satisfied. The measurable refractive index range also depends on the upper interface 2 of the substance A (silicon) in this case.
Is a substance having a refractive index of 1.7 or less, and therefore is 1.7 or more. The infrared light applicable as the measurement light must be in a wavelength range that can transmit silicon, and therefore has a long wavelength up to 6.2 μm.

【0031】次に、具体的な測定手順を説明する。始め
に検量線を作成するための、標準試料の吸収エネルギー
値を測定する。標準試料を物質CとしてSiO2の上に
設置した測定系を、フーリエ変換赤外分光装置の試料室
9内に設置する。標準試料には、鏡面研磨がなされたシ
リコン結晶(屈折率≒3.4)、ゲルマニウム結晶(屈
折率≒4.0)、セレン化亜鉛結晶(屈折率≒2.4)
を適用した。フーリエ変換赤外分光装置を用いて吸収測
定を行うと、図4のように赤外光の広い波長範囲にわた
ってエネルギー出力値を求めることができる。そこで、
屈折率を求めたい光の波長を任意に選び、ある波長での
出力値Pを読みとって、この値を検出器出力値の最大値
Pmax=100から差し引いて透過光強度比の実測値
Qiを求める。このようにして得られた3つの標準試料
の実測値Qiを、数7式から得られる曲線とフィッティ
ングし、検量線を決定する。
Next, a specific measurement procedure will be described. First, the absorption energy value of a standard sample for preparing a calibration curve is measured. A measurement system in which a standard sample is set as a substance C on SiO 2 is set in a sample chamber 9 of a Fourier transform infrared spectrometer. The standard samples include mirror-polished silicon crystal (refractive index ≒ 3.4), germanium crystal (refractive index ≒ 4.0), and zinc selenide crystal (refractive index ≒ 2.4).
Was applied. When an absorption measurement is performed using a Fourier transform infrared spectrometer, an energy output value can be obtained over a wide wavelength range of infrared light as shown in FIG. Therefore,
The wavelength of the light whose refractive index is to be obtained is arbitrarily selected, the output value P at a certain wavelength is read, and this value is subtracted from the maximum value Pmax = 100 of the detector output value to obtain the actually measured value Qi of the transmitted light intensity ratio. . The measured values Qi of the three standard samples thus obtained are fitted to a curve obtained from the equation (7) to determine a calibration curve.

【0032】以上の手順により、作成された検量線が図
5である。ここでは、波長が3.70μmの光を用い、
数7式に代入した値はλ=3.70(μm)、n1
3.42、n2=1.46、z=150(Å)である。
標準試料のQiはプロットで示してある。
FIG. 5 shows a calibration curve created by the above procedure. Here, light having a wavelength of 3.70 μm is used,
The values substituted into Equation 7 are λ = 3.70 (μm) and n 1 =
3.42, n 2 = 1.46, z = 150 (Å).
The Qi of the standard sample is shown in the plot.

【0033】次に、未知試料のプラズマCVD法により
作製したシリコンカーバイド薄膜(基板はシリコンウェ
ハー)の屈折率を求めた。シリコンカーバイド薄膜をS
iO2と接するように配置し、このサンプルの出力値Q
sを求めた。シリコンカーバイド膜の波長3.7μmに
おけるQsは57.96となった。この値を図5の検量
線にあてはめると、屈折率は2.58と求めることがで
きた。バルク形状のシリコンカーバイドの屈折率は、文
献によればおよそ2.53である。ここで、サンプルの
シリコンカーバイド薄膜の屈折率が文献値に比べて高い
値として得られた理由は、サンプルのシリコンカーバイ
ド膜内に、化学量論比よりも大きな割合でシリコン元素
が存在しているためと考えられ、求められた値は妥当な
値である。
Next, the refractive index of an unknown sample silicon carbide thin film (substrate is a silicon wafer) produced by the plasma CVD method was determined. Silicon carbide thin film S
It is arranged so as to be in contact with iO 2, and the output value Q of this sample is
s was determined. Qs of the silicon carbide film at a wavelength of 3.7 μm was 57.96. When this value was applied to the calibration curve in FIG. 5, the refractive index was determined to be 2.58. The refractive index of bulk silicon carbide is approximately 2.53 according to the literature. Here, the reason that the refractive index of the silicon carbide thin film of the sample was obtained as a value higher than the literature value is that the silicon element is present in the silicon carbide film of the sample at a ratio larger than the stoichiometric ratio. Therefore, the obtained value is an appropriate value.

【0034】このように、膜厚測定を行うことなく未知
試料の屈折率を測定して材料分析手段として適用できる
ことが示された。
As described above, it has been shown that the refractive index of an unknown sample can be measured without measuring the film thickness and the film can be applied as a material analysis means.

【0035】以上の測定結果より明らかな様に、検量線
の作成のため測定する標準試料のプロットのずれはその
まま測定誤差となり、アッベの屈折率計に比べれば誤差
は大きいが、膜厚測定を行わずに簡便に屈折率測定が可
能である点で利便性の高い方法である。
As is evident from the above measurement results, the deviation of the plot of the standard sample to be measured for the preparation of the calibration curve is a measurement error as it is. Although the error is large compared to the Abbe refractometer, the measurement of the film thickness is difficult. This is a highly convenient method in that the refractive index can be easily measured without performing it.

【0036】上述のように、サンプルの厚さ測定、厚さ
調整作業、複雑な計算処理が不必要で、なおかつ、特殊
な大きな装置を構成せずにサンプル自身に吸収が無い場
合でも屈折率が測定可能な屈折率測定法を考案した。従
来の方式の様な、サンプル自身による光の全反射や、サ
ンプル内を透過する光を利用する方法とは異なり、光導
波部分とサンプル以外の物質との界面で生じる全反射光
から生成するエバネセント波の、サンプルによる吸収強
度を求め、これを利用して屈折率を求める方法である。
また、この方法を利用して、高屈折率の長波長の赤外光
を透過できる材料について、市販の赤外光度計をベース
とした赤外光領域の光に対する屈折率測定を可能とする
屈折率測定装置を新たに考案した。
As described above, the measurement of the thickness of the sample, the work of adjusting the thickness, and the complicated calculation processing are unnecessary, and the refractive index can be maintained even if the sample itself has no absorption without configuring a special large apparatus. A measurable refractive index measurement method was devised. Unlike conventional methods that use total reflection of light by the sample itself or light that passes through the sample, evanescent light generated from the total reflection light generated at the interface between the optical waveguide portion and the substance other than the sample is different from the conventional method. This is a method in which the absorption intensity of a wave by a sample is determined, and the refractive index is determined using the absorption intensity.
In addition, using this method, a material that can transmit long-wavelength infrared light with a high refractive index can be used to measure the refractive index of light in the infrared region based on a commercially available infrared photometer. A rate measuring device was newly devised.

【0037】すなわち、上述のエバネセント波の透過現
象を利用する屈折率測定法においては、サンプル(物質
C)の透過光強度比Tからサンプルの屈折率n3を求め
るから、サンプルの厚さデータを用いずに、また実測し
たデータを用いる複雑な計算処理を要さずに、薄膜状態
のサンプルの屈折率n3を測定することが可能となっ
た。また、サンプルの測定条件を考慮しながら測定系を
構築する必要があるが、測定光の全反射条件はサンプル
の屈折率n3に依存しない。したがって、一度、測定系
を構築して計算を行えば、多種の物質の測定に容易に適
用できる利点がある。また、膜厚測定用の特別のサンプ
ルを用意する必要がなく、サンプルをそのままの形状で
測定することが可能なため、プロセス監視用測定法とし
ても適用でき、特に、表面状態と屈折率との相関がある
材料においては有用である。
That is, in the refractive index measuring method utilizing the transmission phenomenon of the evanescent wave, the refractive index n 3 of the sample is obtained from the transmitted light intensity ratio T of the sample (substance C). without, also without requiring a complicated calculation processing using the actually measured data, it becomes possible to measure the refractive index n 3 of the sample of the thin film state. Further, it is necessary to construct a measurement system in consideration of the measurement conditions of the sample, but the total reflection condition of the measurement light does not depend on the refractive index n 3 of the sample. Therefore, once the measurement system is constructed and the calculation is performed, there is an advantage that it can be easily applied to the measurement of various kinds of substances. In addition, since it is not necessary to prepare a special sample for film thickness measurement and the sample can be measured in the same shape, it can be applied as a process monitoring measurement method. Useful for correlated materials.

【0038】また、上述のエバネセント波の透過現象を
利用する屈折率測定装置においては、市販の赤外分光装
置を組み合わせ、赤外領域の光を用いた屈折率測定を簡
便に行うことができ、毒性の高い赤外光透過材料であっ
ても、屈折率について特別な加工無しに測定できる。ま
た、測定光の波長が可変でない光学計を用いても測定が
可能である。よって、このような屈折率測定法を適用し
て構築される屈折率測定装置は、将来的に小型システム
に組み込む際に適したものである。さらに、シリコンウ
ェハーを切り出して作製される導波路の部分を使い捨て
部品として適用することが可能である。今後、赤外光を
利用した通信システムやセンシングシステムの開発支援
装置の一つとして活用できると考えられる。また、試料
室部分の構成を市販の紫外・可視分光装置に組みこみな
おすだけで、赤外領域だけでなく、数百nmの波長の領
域の光を測定光として用いる装置を構成できる。
Further, in the above-described refractive index measuring device utilizing the transmission phenomenon of the evanescent wave, a commercially available infrared spectrometer can be combined to easily perform the refractive index measurement using light in the infrared region. Even a highly toxic infrared light transmitting material can measure the refractive index without special processing. Also, measurement can be performed using an optical meter whose wavelength of the measurement light is not variable. Therefore, a refractive index measuring device constructed by applying such a refractive index measuring method is suitable for being incorporated into a small system in the future. Further, it is possible to apply a waveguide portion formed by cutting out a silicon wafer as a disposable part. In the future, it can be used as one of the development support devices for communication systems and sensing systems using infrared light. Further, by simply incorporating the configuration of the sample chamber portion into a commercially available ultraviolet / visible spectrometer, it is possible to configure an apparatus that uses not only the infrared region but also light having a wavelength of several hundred nm as the measurement light.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係るエバ
ネセント波の透過現象を利用する屈折率測定法、その測
定装置においては、試料中に滲み出して透過光に変化し
たエバネセント波の大きさを求めて試料の屈折率を求め
るから、試料の厚さデータを用いずに、また実測したデ
ータを用いる複雑な計算処理を要さずに、薄膜状態の試
料の屈折率を測定することが可能である。
As described above, in the refractive index measuring method utilizing the transmission phenomenon of the evanescent wave according to the present invention and the measuring apparatus, the magnitude of the evanescent wave oozing out into the sample and changing into the transmitted light is obtained. The refractive index of the sample can be measured without using the thickness data of the sample and without complicated calculation processing using the actually measured data. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るエバネセント波の透過現象を利用
する屈折率測定法の実施の形態を示す概念図である。
FIG. 1 is a conceptual diagram showing an embodiment of a refractive index measuring method using an evanescent wave transmission phenomenon according to the present invention.

【図2】透過光強度比と屈折率の関係図である。FIG. 2 is a relationship diagram between a transmitted light intensity ratio and a refractive index.

【図3】本発明に係るエバネセント波の透過現象を利用
する屈折率測定装置の実施の形態を示す構成図である。
FIG. 3 is a configuration diagram showing an embodiment of a refractive index measuring device utilizing an evanescent wave transmission phenomenon according to the present invention.

【図4】シリコン標準試料の吸収測定結果を示す図であ
る。
FIG. 4 is a diagram showing an absorption measurement result of a silicon standard sample.

【図5】透過光強度比と屈折率の関係を示す検量線図で
ある。
FIG. 5 is a calibration diagram illustrating a relationship between a transmitted light intensity ratio and a refractive index.

【符号の説明】[Explanation of symbols]

1 測定光 2 界面 3 エバネセント波 4 透過光 5 検出器 6 赤外光源 7 マイケルソン干渉計 8 検出器 9 試料室 10 プリズム DESCRIPTION OF SYMBOLS 1 Measurement light 2 Interface 3 Evanescent wave 4 Transmitted light 5 Detector 6 Infrared light source 7 Michelson interferometer 8 Detector 9 Sample room 10 Prism

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】測定光を透過する屈折率が既知の第1の物
質の平坦な面に、前記測定光を透過し前記第1の物質よ
りも低屈折率の第2の物質からなり前記第1の物質側か
ら入射した前記測定光が前記第2の物質との界面で全反
射するときに生ずるエバネセント波の滲み出し距離より
も小さな膜厚を有する屈折率と膜厚が既知の薄膜を密着
させ、該薄膜上に屈折率を求めたい試料を密着させ、前
記第1の物質と前記薄膜との界面で測定光を全反射させ
てエバネセント波を発生させ、前記エバネセント波のう
ち、前記薄膜を越えて前記試料中に滲み出して透過光に
変化したエバネセント波の大きさを求めて前記試料の屈
折率を求めることを特徴とするエバネセント波の透過現
象を利用する屈折率測定法。
A first material having a known refractive index that transmits the measuring light, and a second material having a lower refractive index than the first material that transmits the measuring light and having a lower refractive index than the first material; A thin film having a known thickness and a refractive index smaller than the exudation distance of the evanescent wave generated when the measurement light incident from the first material side is totally reflected at the interface with the second material is adhered to the thin film. Then, a sample whose refractive index is to be obtained is brought into close contact with the thin film, and the measurement light is totally reflected at the interface between the first substance and the thin film to generate an evanescent wave. A refractive index measuring method using a transmission phenomenon of an evanescent wave, wherein the magnitude of an evanescent wave that has transpired into the sample and changed into transmitted light is determined to determine the refractive index of the sample.
【請求項2】前記試料がないときに前記第1の物質と前
記薄膜との界面で全反射して戻ってくる測定光の強度
と、前記試料を設置したときに前記第1の物質と前記薄
膜との界面で全反射して戻ってくる測定光の強度との差
から、前記試料中に滲み出して透過光に変化したエバネ
セント波の大きさを求めることを特徴とする請求項1に
記載のエバネセント波の透過現象を利用する屈折率測定
法。
2. The method according to claim 1, wherein the intensity of the measuring light which is totally reflected back at the interface between the first material and the thin film when the sample is absent and the intensity of the first material and the first material when the sample is set. 2. The magnitude of an evanescent wave that oozes into the sample and is converted into transmitted light from a difference from the intensity of the measurement light that is totally reflected at the interface with the thin film and returns. A refractive index measurement method using the transmission phenomenon of evanescent waves.
【請求項3】前記第1の物質と前記薄膜との界面での前
記測定光の全反射を多数回繰り返すように、前記測定光
を前記第1の物質中を導波させ、その後前記第1の物質
より出射させて強度を測定することを特徴とする請求項
2に記載のエバネセント波の透過現象を利用する屈折率
測定法。
3. The measurement light is guided through the first material so that total reflection of the measurement light at the interface between the first material and the thin film is repeated many times. The refractive index measurement method using the transmission phenomenon of an evanescent wave according to claim 2, wherein the intensity is measured by emitting light from the substance.
【請求項4】赤外光源、マイケルソン干渉計、検出器、
試料室を有するフーリエ変換赤外光光度計の試料室内
に、測定光の光路を誘導するプリズムと、上記プリズム
上に密着させた屈折率が既知の第1の物質と、上記第1
の物質上に密着させた上記第1の物質よりも低屈折率で
エバネセント波の滲み出し距離よりも小さな膜厚の第2
の物質からなる薄膜とを有することを特徴とするエバネ
セント波の透過現象を利用する屈折率測定装置。
4. An infrared light source, a Michelson interferometer, a detector,
A prism for guiding an optical path of measurement light, a first substance having a known refractive index closely adhered on the prism, and a first material having a refractive index in the sample chamber of a Fourier transform infrared photometer having a sample chamber;
A second material having a lower refractive index than the first material adhered onto the material and having a smaller film thickness than the oozing distance of the evanescent wave.
A refraction index measuring device utilizing an evanescent wave transmission phenomenon, characterized in that the device has a thin film made of the following materials.
【請求項5】上記第1の物質にシリコンを用い、上記第
2の物質にSiO2を用いることを特徴とする請求項4
に記載のエバネセント波の透過現象を利用する屈折率測
定装置。
5. The method according to claim 4, wherein silicon is used as said first material and SiO 2 is used as said second material.
2. A refractive index measuring device utilizing the transmission phenomenon of an evanescent wave described in 1.
JP32175398A 1998-11-12 1998-11-12 Refractive index measuring method utilizing transmission phenomenon of evanescent wave and its measuring device Pending JP2000146836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32175398A JP2000146836A (en) 1998-11-12 1998-11-12 Refractive index measuring method utilizing transmission phenomenon of evanescent wave and its measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32175398A JP2000146836A (en) 1998-11-12 1998-11-12 Refractive index measuring method utilizing transmission phenomenon of evanescent wave and its measuring device

Publications (1)

Publication Number Publication Date
JP2000146836A true JP2000146836A (en) 2000-05-26

Family

ID=18136071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32175398A Pending JP2000146836A (en) 1998-11-12 1998-11-12 Refractive index measuring method utilizing transmission phenomenon of evanescent wave and its measuring device

Country Status (1)

Country Link
JP (1) JP2000146836A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156432A (en) * 2001-11-22 2003-05-30 Toshiba Corp Optical waveguide type biochemical sensor
JP2003207445A (en) * 2002-01-16 2003-07-25 Toshiba Corp Portable inspecting apparatus and system
JP2003279479A (en) * 2002-01-16 2003-10-02 Toshiba Corp Optical waveguide type glucose sensor and optical waveguide type glucose measurement method
WO2004106900A1 (en) * 2003-05-29 2004-12-09 Aisin Seiki Kabushiki Kaisha Reflection type terahertz spectrometer and spectrometric method
JP2005037403A (en) * 2002-01-16 2005-02-10 Toshiba Corp Optical waveguide type glucose sensor
US6903815B2 (en) 2001-11-22 2005-06-07 Kabushiki Kaisha Toshiba Optical waveguide sensor, device, system and method for glucose measurement
JP2007178325A (en) * 2005-12-28 2007-07-12 Toshiba Corp Chip for inspecting optical measuring instrument, inspection method of the optical measuring instrument, manufacturing method of the optical measuring instrument and usage method of the optical measuring instrument
CN102798611A (en) * 2011-05-26 2012-11-28 中国科学院上海微***与信息技术研究所 Method for measuring dielectric loss by utilizing pulse response time of electromagnetic evanescent wave irradiance
CN114112947A (en) * 2020-08-26 2022-03-01 横河电机株式会社 Spectral analysis apparatus, optical system and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054514B2 (en) 2001-11-22 2006-05-30 Kabushiki Kaisha Toshiba Optical waveguide sensor, device, system and method for glucose measurement
JP2003156432A (en) * 2001-11-22 2003-05-30 Toshiba Corp Optical waveguide type biochemical sensor
US6903815B2 (en) 2001-11-22 2005-06-07 Kabushiki Kaisha Toshiba Optical waveguide sensor, device, system and method for glucose measurement
JP2003207445A (en) * 2002-01-16 2003-07-25 Toshiba Corp Portable inspecting apparatus and system
JP2003279479A (en) * 2002-01-16 2003-10-02 Toshiba Corp Optical waveguide type glucose sensor and optical waveguide type glucose measurement method
JP2005037403A (en) * 2002-01-16 2005-02-10 Toshiba Corp Optical waveguide type glucose sensor
WO2004106900A1 (en) * 2003-05-29 2004-12-09 Aisin Seiki Kabushiki Kaisha Reflection type terahertz spectrometer and spectrometric method
US7488940B2 (en) 2003-05-29 2009-02-10 Aisin Seiki Kabushiki Kaisha Reflection type terahertz spectrometer and spectrometric method
EP2015054A3 (en) * 2003-05-29 2009-04-15 Aisin Seiki Kabushiki Kaisha Reflection-type terahertz spectrometer and spectrometric method
JP2007178325A (en) * 2005-12-28 2007-07-12 Toshiba Corp Chip for inspecting optical measuring instrument, inspection method of the optical measuring instrument, manufacturing method of the optical measuring instrument and usage method of the optical measuring instrument
CN102798611A (en) * 2011-05-26 2012-11-28 中国科学院上海微***与信息技术研究所 Method for measuring dielectric loss by utilizing pulse response time of electromagnetic evanescent wave irradiance
CN102798611B (en) * 2011-05-26 2014-07-30 中国科学院上海微***与信息技术研究所 Method for measuring dielectric loss by utilizing pulse response time of electromagnetic evanescent wave irradiance
CN114112947A (en) * 2020-08-26 2022-03-01 横河电机株式会社 Spectral analysis apparatus, optical system and method

Similar Documents

Publication Publication Date Title
Melendez et al. A commercial solution for surface plasmon sensing
JP4786651B2 (en) Light sensor
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
JP4699459B2 (en) Multi-wavelength light sensor
KR102428510B1 (en) How to calibrate an electronic nose
Sieger et al. On-chip integrated mid-infrared GaAs/AlGaAs Mach–Zehnder interferometer
KR20040086806A (en) Method and device for measuring concentration of specific component
TWI454654B (en) Film thickness measuring device and method for measuring film thickness
US8958999B1 (en) Differential detection for surface plasmon resonance sensor and method
TW201315964A (en) Film thickness measurement apparatus
JP2000146836A (en) Refractive index measuring method utilizing transmission phenomenon of evanescent wave and its measuring device
Long et al. Sensing absorptive fluids with backside illuminated grating coupled SPR sensor fabricated by nanoimprint technology
JP2005321385A (en) Wavelength tuning intensity measurement for surface plasmon resonance sensor
CN108318453B (en) Optical waveguide biosensor with low detection cost and insensitive temperature
Luna-Moreno et al. Virtual instrumentation in LabVIEW for multiple optical characterizations on the same opto-mechanical system
US20190128798A1 (en) Flexible mid-infrared photonics for chemical sensing
Chen et al. A low cost surface plasmon resonance biosensor using a laser line generator
JP2004170095A (en) Waveguide structure, its manufacturing method, and surface plasmon resonance sensor and refractive index change measurement method using the waveguide structure
Álvarez et al. Phase-sensitive detection for optical sensing with porous silicon
Taudt Development and Characterization of a dispersion-encoded method for low-coherence interferometry
Mitmit et al. Infrared wavelength-specific gas sensing with pyroelectricity at room temperature
JP2006242798A (en) Film thickness and calculation method of optical constant
Luo et al. Sensitivity enhancement of surface plasmon resonance sensor based on wavelength and angular combined modulations
Xiao et al. Sensitivity enhancement of polymeric Mach–Zehnder interferometers by use of thin high-index films
US6903340B1 (en) Thin film analyzer