JP2000144277A - Hydrogen occlusion alloy and its production - Google Patents

Hydrogen occlusion alloy and its production

Info

Publication number
JP2000144277A
JP2000144277A JP10325403A JP32540398A JP2000144277A JP 2000144277 A JP2000144277 A JP 2000144277A JP 10325403 A JP10325403 A JP 10325403A JP 32540398 A JP32540398 A JP 32540398A JP 2000144277 A JP2000144277 A JP 2000144277A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
alloy
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10325403A
Other languages
Japanese (ja)
Inventor
Yoshiki Sakaguchi
善樹 坂口
Daisuke Mukai
大輔 向井
Shingo Kikukawa
真吾 菊川
Minoru Sakai
実 酒井
Kiyotaka Yasuda
清隆 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10325403A priority Critical patent/JP2000144277A/en
Publication of JP2000144277A publication Critical patent/JP2000144277A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen occlusion alloy containing no cobalt, free from the deterioration of electrode capacity and discharge rate characteristic at the time of being used as a negative electrode active material of a nickel- hydrogen secondary battery and improved in life characteristic (cycle characteristic) and the inexpensive producing method excellent in productivity. SOLUTION: The producing method of the AB5 type hydrogen occlusion alloy having CaCu5 type crystal structure and expressed by the formula, Mm(Laf)NiaMnbAlcFedCue is by heating and melting a hydrogen occlusion alloy raw material, solidifying by super rapid quenching at a quenching rate of 500-2500 rpm roll speed or 50-350 m/sec peripheral velocity using a single roll method or a double roll method and after that, heat-treating. In the formula, Mm represents a misch metal, 4.00<=a<=4.30, 0.25<=b<=0.50, 0.20<=c<=0.45, 0.05<=d<=0.40, 0<=e<=0.30, 5.00<=a+b+c+d+e<=5.35 and where, each of (a)-(e) is the number of moles to 1 mol Mm and (f) is 19-21 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金及び
その製造方法に関し、詳しくは合金中にコバルトを含有
させることなく、鉄を含有させ、ニッケル−水素蓄電池
の負極活物質として用いた時に、電極容量、放電率特性
を低下させることなく、寿命特性(サイクル特性)を向
上させた水素吸蔵合金及びその安価、かつ生産性に優れ
た製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a method for producing the same. More particularly, the present invention relates to a method for producing a nickel-hydrogen storage battery, wherein the alloy contains iron without containing cobalt. The present invention relates to a hydrogen storage alloy having improved life characteristics (cycle characteristics) without lowering electrode capacity and discharge rate characteristics, and a method for manufacturing the hydrogen storage alloy which is inexpensive and has excellent productivity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ニッケル−カドミウム二次電池に代わる高容量アルカリ
二次電池として、水素吸蔵合金を負極に用いたニッケル
−水素二次電池が注目されている。この水素吸蔵合金
は、現在では希土類系の混合物であるMm(ミッシュメ
タル)とNi、Al、Mn、Coとの5元素の水素吸蔵
合金が汎用されている。
2. Description of the Related Art In recent years,
As a high-capacity alkaline secondary battery replacing the nickel-cadmium secondary battery, a nickel-hydrogen secondary battery using a hydrogen storage alloy for a negative electrode has been receiving attention. At present, as the hydrogen storage alloy, a five-element hydrogen storage alloy of Mm (mish metal), which is a rare earth-based mixture, and Ni, Al, Mn, and Co is widely used.

【0003】このMm−Ni−Mn−Al−Co合金
は、La系のそれに比べて比較的安価な材料で負極を構
成でき、サイクル寿命が長く、過充電時の発生ガスによ
る内圧上昇が少ない密閉形ニッケル水素二次電池を得る
ことができることから、電極材料として広く用いられて
いる。
[0003] This Mm-Ni-Mn-Al-Co alloy can form a negative electrode with a relatively inexpensive material as compared with a La-based alloy, has a long cycle life, and has a small internal pressure rise due to gas generated during overcharge. Since a nickel-metal hydride secondary battery can be obtained, it is widely used as an electrode material.

【0004】現在用いられているMm−Ni−Mn−A
l−Co合金の製造方法としては、所定割合の水素吸蔵
合金原料を加熱溶解し、これを鋳造した後、不活性ガス
雰囲気中で熱処理するか、あるいは所定割合の水素吸蔵
合金原料を加熱溶解し、これを急冷冷却速度で超急冷凝
固させた後、不活性ガス雰囲気中で熱処理する方法が挙
げられる。
[0004] Currently used Mm-Ni-Mn-A
As a method for producing the l-Co alloy, a predetermined ratio of a hydrogen storage alloy material is heated and melted, and then cast, and then heat-treated in an inert gas atmosphere, or a predetermined ratio of a hydrogen storage alloy material is heated and melted. A method of ultra-quick solidification at a rapid cooling rate, followed by heat treatment in an inert gas atmosphere.

【0005】しかしながら、これらの方法は、鋳造又は
超急冷凝固、熱処理という工程を必須とするため、高コ
ストになり、生産性に劣るといった問題があった。ま
た、これら水素吸蔵合金をニッケル−水素二次電池の負
極活物質とした時に、さらなる電池特性の向上が望まれ
ていた。
[0005] However, these methods involve the steps of casting or ultra-quick solidification and heat treatment, so that they have a problem of high cost and poor productivity. Further, when these hydrogen storage alloys are used as a negative electrode active material of a nickel-hydrogen secondary battery, further improvement in battery characteristics has been desired.

【0006】また、上記Mm−Ni−Mn−Al−Co
合金は、合金の微粉化を抑制してサイクル寿命を長くし
ているが、一般的にこの微粉化抑制のためには10重量
%程度のCo(原子比で0.6〜1.0)を必要とする
ことが知られている。また、優れた水素吸蔵特性及び耐
食性を得るためにも一定量のCoの含有は必要とされて
いる。
The above-mentioned Mm-Ni-Mn-Al-Co
The alloy suppresses the pulverization of the alloy and prolongs the cycle life. In general, about 10% by weight of Co (at an atomic ratio of 0.6 to 1.0) is used to suppress the pulverization. It is known to need. Further, in order to obtain excellent hydrogen storage characteristics and corrosion resistance, a certain amount of Co is required.

【0007】しかしながら、Coの含有率が高いとそれ
だけ原料コストが高くなり、原料コストの面から問題視
されている。特に、電気自動車用電源(EV:Electric
vihicle)等の大型電池への適用やニッケル−水素二次
電池のさらなる市場の増大に対しては、原料コストは、
電極負極材料の選定において大きな割合を占め、このこ
とが問題となっていた。
However, the higher the Co content, the higher the raw material cost, which is regarded as a problem from the viewpoint of the raw material cost. In particular, power supplies for electric vehicles (EV: Electric
vihicle) and the market for nickel-hydrogen rechargeable batteries are further increasing,
It accounts for a large proportion in the selection of the electrode negative electrode material, and this has been a problem.

【0008】このような問題を解決するために、特開平
9−213319号公報には、Mm−Ni−Mn−Al
−Co系合金の組成を変化させ、これにさらに少量の1
元素を加えることが提案されている。同公報に記載の水
素吸蔵合金粉末を負極に用いることによって、Coが少
量にも拘わらず、合金の微粉化による負極の劣化を一定
限度抑制し、電池のサイクル寿命を長くすることができ
る。
In order to solve such a problem, Japanese Patent Application Laid-Open No. 9-213319 discloses Mm-Ni-Mn-Al
-The composition of the Co-based alloy was changed, and
It has been proposed to add elements. By using the hydrogen storage alloy powder described in the publication for the negative electrode, the deterioration of the negative electrode due to the pulverization of the alloy can be suppressed to a certain extent and the cycle life of the battery can be prolonged despite the small amount of Co.

【0009】しかるに、同公報に開示の水素吸蔵合金を
用いた場合には、EVに必要な出力特性、特に低温出力
特性が得られず、また、EV用二次電池として多量に水
素吸蔵合金を使用する場合には、さらに大きなコスト低
減が必須条件となる。
However, when the hydrogen storage alloy disclosed in the publication is used, the output characteristics required for EVs, particularly low-temperature output characteristics, cannot be obtained, and a large amount of hydrogen storage alloys are used as secondary batteries for EVs. In the case of use, an even greater cost reduction is an essential condition.

【0010】Feを含有し、Coを含有しない水素吸蔵
合金は、耐微粉化特性が向上し有望であるが、Feの偏
析やAlの溶出が問題となり、時として性能差が著し
く、例えば高温での保存時に合金の腐食が著しくなった
り、充放電サイクル初期の容量の劣化が起こったりする
ため性能の安定性を得るのが非常に難しく、基本的性能
向上は認められたものの、安定性に欠け、実用化の大き
な障壁となっていた。また、このような水素吸蔵合金に
おいては、生産性にも問題があった。
[0010] Hydrogen storage alloys containing Fe and not containing Co are promising because of their improved pulverization resistance, but they have problems of segregation of Fe and elution of Al, and sometimes have a significant difference in performance. It is extremely difficult to obtain performance stability due to significant corrosion of the alloy during storage and deterioration of the capacity at the beginning of the charge / discharge cycle. Basic performance improvement was recognized, but stability was lacking. Had become a major barrier to practical application. Further, such a hydrogen storage alloy has a problem in productivity.

【0011】従って、本発明の目的は、コバルトを含有
することなく、ニッケル−水素二次電池の負極活物質と
して用いた時に、電極容量、放電率特性を低下させるこ
となく、寿命特性(サイクル特性)を向上させた水素吸
蔵合金及びその安価、かつ生産性に優れた製造方法を提
供することにある。
[0011] Accordingly, an object of the present invention is to provide a negative electrode active material for a nickel-hydrogen secondary battery without containing cobalt, without reducing the electrode capacity and discharge rate characteristics, and improving the life characteristics (cycle characteristics). An object of the present invention is to provide a hydrogen storage alloy with improved properties and an inexpensive and highly productive production method thereof.

【0012】[0012]

【課題を解決するための手段】本発明者等は種々の研究
を重ねた結果、コバルトを含有せることなく、かつ特定
組成の水素吸蔵合金においては、超急冷凝固した後に、
熱処理を施さなくても均質化が図れ、ニッケル−水素二
次電池の負極活物質として用いた時に、良好な電池特性
が得られることを知見した。
As a result of various studies, the present inventors have found that a hydrogen-absorbing alloy containing no cobalt and having a specific composition has been rapidly quenched and solidified.
It has been found that homogenization can be achieved without heat treatment, and good battery characteristics can be obtained when used as a negative electrode active material of a nickel-hydrogen secondary battery.

【0013】本発明は、上記知見に基づきなされたもの
で、水素吸蔵合金原料を加熱溶解し、単ロール法又は双
ロール法を用い、ロールスピード500〜2500rp
m又は周速度50〜350m/secの急冷速度で超急
冷凝固し、その後、熱処理を行わないことを特徴とす
る、下記一般式で表されるCaCu5 型の結晶構造を有
するAB5 型水素吸蔵合金の製造方法を提供するもので
ある。 一般式 Mm(Laf )Nia Mnb Alc Fed Cue (式中、Mmはミッシュメタル、4.00≦a≦4.3
0、0.25≦b≦0.50、0.20≦c≦0.4
5、0.05≦d≦0.40、0≦e≦0.30、5.
00≦a+b+c+d+e≦5.35、但し、a〜eは
いずれもMm1モルに対するモル数、fは19〜21重
量%)
The present invention has been made on the basis of the above-mentioned findings. The hydrogen storage alloy raw material is heated and melted, and a roll speed of 500 to 2500 rpm is used by a single roll method or a twin roll method.
AB 5 type hydrogen storage having a CaCu 5 type crystal structure represented by the following general formula, characterized by ultra-quench solidification at a rapid cooling rate of 50 m / sec or a peripheral speed of 50 to 350 m / sec, and thereafter, no heat treatment is performed. An object of the present invention is to provide a method for producing an alloy. Formula Mm (La f) Ni a Mn b Al c Fe d Cu e ( wherein, Mm is the mischmetal, 4.00 ≦ a ≦ 4.3
0, 0.25 ≦ b ≦ 0.50, 0.20 ≦ c ≦ 0.4
5, 0.05 ≦ d ≦ 0.40, 0 ≦ e ≦ 0.30, 5.
00 ≦ a + b + c + d + e ≦ 5.35, where a to e are moles per mole of Mm, and f is 19 to 21% by weight.

【0014】また、本発明は、下記一般式 Mm(Laf )Nia Mnb Alc Fed Cue (式中、Mmはミッシュメタル、4.00≦a≦4.3
0、0.25≦b≦0.50、0.20≦c≦0.4
5、0.05≦d≦0.40、0≦e≦0.30、5.
00≦a+b+c+d+e≦5.35、但し、a〜eは
いずれもMm1モルに対するモル数、fは19〜21重
量%)で表されるCaCu5 型の結晶構造を有し、La
Ni5 を1060℃、3時間熱処理したものを標準試料
とした時に、X線回折において、該標準試料に対して、
20°≦2θ≦70°の範囲で回折線半値巾の値が相対
比1.10以上のものを少なくとも2つ以上有すること
を特徴とするAB5 型水素吸蔵合金を提供するものであ
る。
Further, the present invention is represented by the following general formula Mm (La f) Ni a Mn b Al c Fe d Cu e ( wherein, Mm is the mischmetal, 4.00 ≦ a ≦ 4.3
0, 0.25 ≦ b ≦ 0.50, 0.20 ≦ c ≦ 0.4
5, 0.05 ≦ d ≦ 0.40, 0 ≦ e ≦ 0.30, 5.
00 ≦ a + b + c + d + e ≦ 5.35, provided that, a to e number of moles Mm1 molar Both, f is has a CaCu 5 type crystal structure represented by 19-21 wt%), La
When a standard sample was obtained by heat-treating Ni 5 at 1060 ° C. for 3 hours, the standard sample was subjected to X-ray diffraction.
The value of the diffraction line half width in the range of 20 ° ≦ 2θ ≦ 70 ° is intended to provide an AB 5 type hydrogen storage alloy, characterized in that it comprises at least two more than a relative ratio 1.10.

【0015】[0015]

【発明の実施の形態】以下、本発明の製造方法を詳細に
説明する。本発明の製造方法では、下記に示したような
合金組成となるように、水素吸蔵合金原料を秤量、混合
して得られた金属溶湯を、単ロール法又は双ロール法を
用い、ロールスピード500〜2500rpm又は周速
度50〜350m/secの急冷速度で超急冷凝固させ
る。ロールスピードが500rpm未満又は周速度が5
0m/sec未満では、急冷速度が充分でなく、充分な
超急冷凝固がなされない。また、ロールスピードが25
00rpm超又は周速度が350m/sec超では、歩
留まりが悪いか、アモルファス又はそれに近似したもの
となり、得られる水素吸蔵合金の特性が低下する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method of the present invention will be described below in detail. In the production method of the present invention, a metal melt obtained by weighing and mixing the hydrogen-absorbing alloy raw materials so as to have an alloy composition as shown below is rolled at a roll speed of 500 using a single roll method or a twin roll method. Ultra-quick solidification at a rapid cooling speed of 22500 rpm or a peripheral speed of 50 to 350 m / sec. Roll speed is less than 500 rpm or peripheral speed is 5
If it is less than 0 m / sec, the quenching speed is not sufficient, and sufficient rapid quenching solidification is not performed. Also, if the roll speed is 25
If the rotational speed exceeds 00 rpm or the peripheral speed exceeds 350 m / sec, the yield is poor or amorphous or approximated, and the properties of the obtained hydrogen storage alloy deteriorate.

【0016】このようにして得られた水素吸蔵合金は、
既に均質化しているので、不活性ガス雰囲気中、例えば
アルゴンガス中で熱処理することなしに、そのままニッ
ケル−水素二次電池の負極活物質として用いられる。こ
のように水素吸蔵合金に熱処理を施さないことによっ
て、コストが大幅に低減され、生産性に優れたものとな
る。
[0016] The hydrogen storage alloy thus obtained is
Since it is already homogenized, it can be used as a negative electrode active material of a nickel-hydrogen secondary battery without heat treatment in an inert gas atmosphere, for example, argon gas. By not performing the heat treatment on the hydrogen storage alloy in this way, the cost is greatly reduced and the productivity is improved.

【0017】本発明の製造方法における水素吸蔵合金
は、一般式 Mm(Laf )Nia Mnb Alc Fed Cue (式中、Mmはミッシュメタル、4.00≦a≦4.3
0、0.25≦b≦0.50、0.20≦c≦0.4
5、0.05≦d≦0.40、0≦e≦0.30、5.
00≦a+b+c+d+e≦5.35、但し、a〜eは
いずれもMm1モルに対するモル数、fは19〜21重
量%)で表されるCaCu5 型の結晶構造を有するAB
5 型水素吸蔵合金である。
The hydrogen-absorbing alloy in the manufacturing method of the present invention have the general formula Mm in (La f) Ni a Mn b Al c Fe d Cu e ( wherein, Mm is misch metal, 4.00 ≦ a ≦ 4.3
0, 0.25 ≦ b ≦ 0.50, 0.20 ≦ c ≦ 0.4
5, 0.05 ≦ d ≦ 0.40, 0 ≦ e ≦ 0.30, 5.
AB having a CaCu 5 type crystal structure represented by 00 ≦ a + b + c + d + e ≦ 5.35, wherein a to e are moles per mole of Mm, and f is 19 to 21% by weight.
It is a type 5 hydrogen storage alloy.

【0018】ここで、MmはLa、Ce、Pr、Nd、
Sm等の希土類系の混合物であるミッシュメタルであ
る。このミッシュメタル中に含まれるランタンの含有率
は、水素吸蔵合金中に19〜21重量%である。そし
て、この水素吸蔵合金は、CaCu5 型の結晶構造を有
するAB5 型水素吸蔵合金で、AB5.005.35のBサイ
トリッチの非化学量論組成である。
Here, Mm is La, Ce, Pr, Nd,
It is a misch metal that is a rare earth-based mixture such as Sm. The content of lanthanum contained in the misch metal is 19 to 21% by weight in the hydrogen storage alloy. Then, the hydrogen storage alloy in AB 5 type hydrogen storage alloy having a crystal structure type 5 CaCu, a non-stoichiometric composition of B-site rich AB 5.00 ~ 5.35.

【0019】この水素吸蔵合金において、Nia Mnb
Alc Fed Cue の組成割合(Mm1モルに対するモ
ル数)は、下記の関係を有するものである。すなわち、
Niの割合は4.00≦a≦4.30であり、Mnの割
合は0.25≦b≦0.50であり、Alの割合は0.
20≦c≦0.45であり、Feの割合は0.05≦d
≦0.40であり、Cuの割合は0≦e≦0.30であ
り、かつa+b+c+d+eが5.00〜5.35の範
囲にある。
In this hydrogen storage alloy, Ni a Mn b
The composition ratio of Al c Fe d C e (the number of moles per mole of Mm) has the following relationship. That is,
The ratio of Ni is 4.00 ≦ a ≦ 4.30, the ratio of Mn is 0.25 ≦ b ≦ 0.50, and the ratio of Al is 0.
20 ≦ c ≦ 0.45, and the proportion of Fe is 0.05 ≦ d
≦ 0.40, the proportion of Cu is 0 ≦ e ≦ 0.30, and a + b + c + d + e is in the range of 5.00 to 5.35.

【0020】このような水素吸蔵合金組成において、上
記のように、単ロール法又は双ロール法を用い、超急冷
凝固した後、熱処理を施すことなく、そのままニッケル
−水素二次電池の負極活物質として用いてもサイクル特
性等の良好な電池特性が得られる。次に、各元素の組成
割合について言及する。
In such a hydrogen-absorbing alloy composition, as described above, the single-roll method or the twin-roll method is used, followed by ultra-rapid solidification, followed by heat treatment without any heat treatment. Good battery characteristics such as cycle characteristics can be obtained. Next, the composition ratio of each element will be described.

【0021】上記のように、Niの割合aは4.00〜
4.30、好ましくは4.00〜4.20であり、aが
4.00未満では水素吸蔵量が損なわれ、4.30を超
えると微粉化や寿命特性劣化が認められ、またプラトー
圧が上昇する。
As described above, the ratio a of Ni is 4.00 to 4.0.
When a is less than 4.00, the hydrogen storage capacity is impaired, and when it exceeds 4.30, pulverization and deterioration in life characteristics are observed, and the plateau pressure is lowered. To rise.

【0022】Mnの割合bは0.25〜0.50、好ま
しくは0.35〜0.40であり、bが0.25未満で
はプラトー圧力が高くなり、かつ水素吸蔵量が損なわ
れ、0.50を超えると合金の腐食が激しくなり、合金
の早期劣化が認められる。
The ratio b of Mn is from 0.25 to 0.50, preferably from 0.35 to 0.40. If b is less than 0.25, the plateau pressure becomes high and the hydrogen storage capacity is impaired. If it exceeds 0.50, corrosion of the alloy becomes severe, and early deterioration of the alloy is recognized.

【0023】Alの割合cは0.20〜0.45であ
り、cが0.20未満では水素吸蔵合金放出圧力である
プラトー圧力が高くなり、充放電のエネルギー効率が悪
くなり、0.45を超えると水素吸蔵量が少なくなる。
The proportion c of Al is 0.20 to 0.45. When c is less than 0.20, the plateau pressure, which is the pressure at which the hydrogen storage alloy is released, increases, and the energy efficiency of charging and discharging deteriorates. If it exceeds, the amount of hydrogen storage decreases.

【0024】Feの割合dは0.05〜0.40、、d
が0.05未満では微粉化特性に劣り、0.40を超え
るとFeの偏析を防ぐことができず、またAlの溶出を
抑えることができない。
The ratio d of Fe is 0.05 to 0.40, d
If it is less than 0.05, the pulverization characteristics are poor, and if it exceeds 0.40, segregation of Fe cannot be prevented and elution of Al cannot be suppressed.

【0025】Cuの割合eは0〜0.30であり、eが
0.30を超えると水素吸蔵特性が損なわれ、またCu
が析出する場合が生じる。
The proportion e of Cu is 0 to 0.30, and if e exceeds 0.30, the hydrogen storage properties are impaired.
May be precipitated.

【0026】a+b+c+d+e(以下、場合によって
xと総称する)は5.00〜5.35であり、xが5.
00未満では電池寿命や微粉化特性が損なわれ、5.3
5を超えた場合には、水素吸蔵特性が損なわれる。
A + b + c + d + e (hereinafter sometimes collectively referred to as x) is 5.00 to 5.35, and x is 5.
If it is less than 00, the battery life and pulverization characteristics are impaired, and 5.3
If it exceeds 5, the hydrogen storage properties will be impaired.

【0027】次に、本発明の水素吸蔵合金について説明
する。本発明の水素吸蔵合金は、上記化学式で表される
CaCu5 型の結晶構造を有し、LaNi5 を1060
℃、3時間熱処理したものを標準試料とした時に、X線
回折において、該標準試料に対して、20°≦2θ≦7
0°の範囲で回折線半値巾の値が相対比1.10以上の
ものを少なくとも2つ以上有するAB5 型水素吸蔵合金
である。
Next, the hydrogen storage alloy of the present invention will be described. The hydrogen storage alloy of the present invention has a CaCu 5 type crystal structure represented by the above chemical formula, and has a LaNi 5 of 1060
When the sample heat-treated at 3 ° C. for 3 hours was used as a standard sample, in the X-ray diffraction, 20 ° ≦ 2θ ≦ 7
0 The value of the diffraction line half width in the range of ° is AB 5 type hydrogen storage alloy having at least two more than a relative ratio 1.10.

【0028】このように、上記合金組成を有し、かつ上
記標準試料に対して、20°≦2θ≦70°の範囲で回
折線半値巾の値が相対比1.10以上のものを少なくと
も2つ以上有するAB5 型水素吸蔵合金は、ニッケル−
水素二次電池の負極活物質として用いた時に、電極容
量、放電率特性を低下させることなく、寿命特性(サイ
クル特性)を向上させることができる。
As described above, at least two samples having the above alloy composition and having a half value width of diffraction line of 1.10 or more in the range of 20 ° ≦ 2θ ≦ 70 ° with respect to the above standard sample are required. AB 5 type hydrogen storage alloy having at least one
When used as a negative electrode active material of a hydrogen secondary battery, the life characteristics (cycle characteristics) can be improved without lowering the electrode capacity and discharge rate characteristics.

【0029】この水素吸蔵合金は、粗粉砕、微粉砕後、
ニッケル−水素二次電池の負極活物質として用いられ、
上記したような良好な電池特性を有する。
This hydrogen storage alloy is subjected to coarse pulverization and fine pulverization.
Used as a negative electrode active material of a nickel-hydrogen secondary battery,
It has good battery characteristics as described above.

【0030】[0030]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。なお、表1中の%は重量基準である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like. The percentages in Table 1 are based on weight.

【0031】[比較例1]Mm、Ni、Mn、Al、C
o及びCuを合金組成でMm(La19重量%)Ni
3.95Mn0.45Al0.30Co0.4 Cu0.1 (x=5.2
0)になるように、各水素吸蔵合金原料を秤量、混合
し、その混合物をルツボに入れて高周波溶解炉に固定
し、10-2〜10-4Torrまで真空状態にした後、ア
ルゴンガス雰囲気中で加熱溶解した後、水冷式銅鋳型に
流し込み、1430℃で鋳造を行い、合金を得た。さら
に、この合金をアルゴンガス雰囲気中で、1060℃、
3時間熱処理を行い、水素吸蔵合金を得た。この水素吸
蔵合金をニッケル−水素二次電池の負極活物質として使
用した。
Comparative Example 1 Mm, Ni, Mn, Al, C
o and Cu in alloy composition of Mm (La 19% by weight) Ni
3.95 Mn 0.45 Al 0.30 Co 0.4 Cu 0.1 (x = 5.2
0), each hydrogen-absorbing alloy raw material is weighed and mixed, the mixture is put in a crucible, fixed in a high-frequency melting furnace, evacuated to 10 -2 to 10 -4 Torr, and then an argon gas atmosphere. After being heated and melted in the flask, it was poured into a water-cooled copper mold and cast at 1430 ° C. to obtain an alloy. Further, the alloy was heated at 1060 ° C. in an argon gas atmosphere.
Heat treatment was performed for 3 hours to obtain a hydrogen storage alloy. This hydrogen storage alloy was used as a negative electrode active material of a nickel-hydrogen secondary battery.

【0032】[比較例2]Mm、Ni、Mn、Al及び
Feを合金組成でMm(La19重量%)Ni4. 20Mn
0.50Al0.30Fe0.20(x=5.20)になるように、
各水素吸蔵合金原料を秤量、混合し、その混合物をルツ
ボに入れて高周波溶解炉に固定し、10-2〜10-4To
rrまで真空状態にした後、アルゴンガス雰囲気中で加
熱溶解した後、水冷式銅鋳型に流し込み、1430℃で
鋳造を行い、合金を得た。さらに、この合金をアルゴン
ガス雰囲気中で、1060℃、6時間熱処理を行い、水
素吸蔵合金を得た。この水素吸蔵合金をニッケル−水素
二次電池の負極活物質として使用した。
[0032] [Comparative Example 2] Mm, Ni, Mn, Mm (La19 wt%) of Al and Fe in the alloy composition Ni 4. 20 Mn
0.50 Al 0.30 Fe 0.20 (x = 5.20)
Each hydrogen storage alloy raw material is weighed and mixed, and the mixture is placed in a crucible and fixed in a high-frequency melting furnace, and 10 −2 to 10 −4 To
After vacuuming to rr, the mixture was heated and melted in an argon gas atmosphere, poured into a water-cooled copper mold, and cast at 1430 ° C. to obtain an alloy. Furthermore, this alloy was heat-treated at 1060 ° C. for 6 hours in an argon gas atmosphere to obtain a hydrogen storage alloy. This hydrogen storage alloy was used as a negative electrode active material of a nickel-hydrogen secondary battery.

【0033】[比較例3]Mm、Ni、Mn、Al及び
Feを合金組成でMm(La19重量%)Ni4. 20Mn
0.50Al0.30Fe0.20(x=5.20)になるように、
各水素吸蔵合金原料を秤量、混合し、その混合物をルツ
ボに入れて高周波溶解炉に固定し、10-2〜10-4To
rrまで真空状態にした後、アルゴンガス雰囲気中で加
熱溶解した後、水冷式銅鋳型に流し込み、1430℃で
鋳造を行い、水素吸蔵合金を得た。この水素吸蔵合金を
熱処理せずに、ニッケル−水素二次電池の負極活物質と
して使用した。
[0033] [Comparative Example 3] Mm, Ni, Mn, Mm (La19 wt%) in the Al and Fe alloy composition Ni 4. 20 Mn
0.50 Al 0.30 Fe 0.20 (x = 5.20)
Each hydrogen storage alloy raw material is weighed and mixed, and the mixture is placed in a crucible and fixed in a high-frequency melting furnace, and 10 −2 to 10 −4 To
After vacuuming to rr, the mixture was heated and melted in an argon gas atmosphere, poured into a water-cooled copper mold, and cast at 1430 ° C. to obtain a hydrogen storage alloy. This hydrogen storage alloy was used as a negative electrode active material of a nickel-hydrogen secondary battery without heat treatment.

【0034】[比較例4]Mm、Ni、Mn、Al及び
Feを合金組成でMm(La19重量%)Ni4. 20Mn
0.50Al0.30Fe0.20(x=5.20)になるように、
各水素吸蔵合金原料を秤量、混合し、その混合物をルツ
ボに入れて高周波溶解炉に固定し、10-3Torrまで
真空状態にした後、アルゴンガス雰囲気中で加熱溶解し
た後、180m/secの冷却速度で単ロール法により
超急冷凝固させ合金を得た。さらに、この合金をアルゴ
ンガス雰囲気中で、800℃、1時間熱処理を行い、水
素吸蔵合金を得た。この水素吸蔵合金をニッケル−水素
二次電池の負極活物質として使用した。
[0034] [Comparative Example 4] Mm, Ni, Mn, Mm (La19 wt%) in the Al and Fe alloy composition Ni 4. 20 Mn
0.50 Al 0.30 Fe 0.20 (x = 5.20)
Each hydrogen storage alloy raw material was weighed and mixed, and the mixture was put in a crucible and fixed in a high-frequency melting furnace, evacuated to 10 −3 Torr, heated and melted in an argon gas atmosphere, and then heated at 180 m / sec. An alloy was obtained by ultra-rapid solidification by a single roll method at a cooling rate. Further, this alloy was heat-treated at 800 ° C. for 1 hour in an argon gas atmosphere to obtain a hydrogen storage alloy. This hydrogen storage alloy was used as a negative electrode active material of a nickel-hydrogen secondary battery.

【0035】[実施例1〜9]合金組成が表1となるよ
うに各水素吸蔵合金原料を用いた以外は、比較例4と同
様にして水素吸蔵合金を得た。この水素吸蔵合金を熱処
理せずに、ニッケル−水素二次電池の負極活物質として
使用した。
Examples 1 to 9 Hydrogen storage alloys were obtained in the same manner as in Comparative Example 4 except that each hydrogen storage alloy raw material was used so that the alloy composition was as shown in Table 1. This hydrogen storage alloy was used as a negative electrode active material of a nickel-hydrogen secondary battery without heat treatment.

【0036】[特性評価]実施例1〜9及び比較例1〜
4で得られた水素吸蔵合金について、下記に示す方法に
よって、PCT容量、微粉化残存率、アルミニウム溶出
率及び0℃、1C電極容量を測定した。その結果を表2
に示す。
[Evaluation of Characteristics] Examples 1 to 9 and Comparative Examples 1 to
With respect to the hydrogen storage alloy obtained in 4, the PCT capacity, the pulverization residual rate, the aluminum elution rate, and the 1C electrode capacity at 0 ° C. were measured by the following methods. Table 2 shows the results.
Shown in

【0037】<PCT容量>水素吸蔵合金を粉砕し、粒
度22〜53ミクロンに分級し、所定量採取して、PC
Tホルダーに充填した。PCTホルダーを10-3Tor
r以下に真空吸引した後、水素ガス30atmをそこに
導入し、250℃に加熱して10分保持した。その後、
放冷して水素ガスを水素吸蔵合金粉末に吸蔵させた。こ
れを2回行い、活性化処理とした。活性化処理を行った
後、真空吸引し、自動PCT装置にて、45℃において
水素ガス圧30atmまでのPCT容量の測定を行っ
た。
<PCT capacity> The hydrogen storage alloy is pulverized, classified to a particle size of 22 to 53 microns, and a predetermined amount is collected.
Filled into T holder. PCT holder 10 -3 Torr
After vacuum suction at r or lower, 30 atm of hydrogen gas was introduced therein, heated to 250 ° C. and maintained for 10 minutes. afterwards,
After cooling, hydrogen gas was absorbed in the hydrogen-absorbing alloy powder. This was performed twice, and an activation process was performed. After performing the activation treatment, vacuum suction was performed, and the PCT capacity was measured at 45 ° C. up to a hydrogen gas pressure of 30 atm using an automatic PCT apparatus.

【0038】<微粉化残存率>PCT装置で、30ba
rの水素ガスを粒度22〜53ミクロンに分級した水素
吸蔵合金粉末に導入し、その後脱蔵排気する処理を10
回繰り返した後の値を、比較例1の値を100とした指
数で表示した。
<Residual rate of pulverization>
r hydrogen gas is introduced into the hydrogen-absorbing alloy powder classified to a particle size of 22 to 53 microns, and then evacuated and exhausted.
The value after the repetition was indicated by an index with the value of Comparative Example 1 being 100.

【0039】<アルミニウム溶出率>アルミニウム溶出
試験を行い、試験片を30重量%KOH水溶液(75
℃)中に48時間放置し、アルミニウム量をICP分析
にて定量し、比較例1の値を100とした指数で表示し
た。
<Aluminum dissolution rate> An aluminum dissolution test was performed.
C.) for 48 hours, the amount of aluminum was quantified by ICP analysis, and indicated by an index with the value of Comparative Example 1 being 100.

【0040】<0℃、1C電極容量> (電極セルの作製)粒度22〜53ミクロンに分級した
水素吸蔵合金粉末、ニッケル粉末、ポリエチレン粉末を
1:3:0.12(重量比)の割合で混合し、得られた
混合粉を所定量採取し、プレスにてφ18mmのペレッ
トを作製し、負極とした。
<0 ° C., 1 C electrode capacity> (Preparation of electrode cell) Hydrogen storage alloy powder, nickel powder and polyethylene powder classified to a particle size of 22 to 53 μm in a ratio of 1: 3: 0.12 (weight ratio). After mixing, a predetermined amount of the obtained mixed powder was sampled, and a pellet having a diameter of 18 mm was prepared by a press to prepare a negative electrode.

【0041】正極(焼結式水酸化ニッケル)と負極の間
にセパレーターを挟み、クリップにて密着させた。この
ものをコップ状容器に入れ、電解液(KOH)31重量
%水溶液を正極、負極の全てに浸るまで注入し、電極セ
ルを作製した。この電極セルを充放電装置に接続した。
A separator was sandwiched between the positive electrode (sintered nickel hydroxide) and the negative electrode, and closely attached with clips. This was put in a cup-shaped container, and a 31% by weight aqueous solution of an electrolytic solution (KOH) was injected until it was immersed in all of the positive electrode and the negative electrode, thereby producing an electrode cell. This electrode cell was connected to a charging / discharging device.

【0042】(充放電装置条件の設定)この電極セルを
用いた充放電装置条件の設定は、次の通りである。 1)初期活性化 ・充電:0.2C、130% ・放電:0.2C、0.7Vカット ・サイクル:15サイクル ・温度:20℃
(Setting of charging / discharging device conditions) Setting of charging / discharging device conditions using this electrode cell is as follows. 1) Initial activation ・ Charge: 0.2C, 130% ・ Discharge: 0.2C, 0.7V cut ・ Cycle: 15 cycles ・ Temperature: 20 ° C

【0043】2)0℃、1Cでの電極容量測定 上記初期活性化終了後、下記条件により0℃、1Cでの
電極容量を測定した。 ・充電:0.2C、130% ・放電:1C、0.7Vカット ・サイクル:1サイクル ・温度:0℃ この0℃、1Cでの電極容量の値(mAh/g)によ
り、低温ハイレート特性を評価した。
2) Measurement of electrode capacity at 0 ° C. and 1C After the completion of the initial activation, the electrode capacity was measured at 0 ° C. and 1C under the following conditions.・ Charge: 0.2 C, 130% ・ Discharge: 1 C, 0.7 V cut ・ Cycle: 1 cycle ・ Temperature: 0 ° C. The electrode capacity value (mAh / g) at 0 ° C. and 1 C gives low-temperature high-rate characteristics. evaluated.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】表2に示されるように、実施例1〜9は、
PCT容量、微粉化残存率、アルミニウム溶出率、電極
容量(低温ハイレート特性)のいずれにおいても優れて
おり、しかも熱処理を行っていないので、製造コストも
低減される。
As shown in Table 2, Examples 1 to 9
It is excellent in PCT capacity, residual pulverization rate, aluminum elution rate, and electrode capacity (low-temperature high-rate characteristics), and the production cost is reduced because no heat treatment is performed.

【0047】これに対して、比較例1は、従来より用い
られている組成及び製造方法により得られたものであ
り、実施例1〜9に比較して電極容量(低温ハイレート
特性)において劣り、またコスト的にも劣ったものであ
る。また、比較例2は、実施例1〜9に比較して微粉化
残存率において劣り、熱処理を行っているためコスト的
にも劣ったものである。
On the other hand, Comparative Example 1 was obtained by a conventionally used composition and manufacturing method, and was inferior in electrode capacity (low-temperature high-rate characteristics) as compared with Examples 1 to 9, It is also inferior in cost. Further, Comparative Example 2 is inferior in the pulverization residual ratio as compared with Examples 1 to 9 and inferior in cost due to heat treatment.

【0048】比較例3は、製造方法として鋳造法を用
い、熱処理を行わないものであるが、実施例1〜9に比
較して微粉化残存率及びアルミニウム溶出率において劣
る。比較例4は、製造方法として単ロール法を用い、熱
処理を行ったものであるが、実施例1〜9に比較して熱
処理を行っているのでコスト的に劣る。
In Comparative Example 3, a casting method was used as the manufacturing method, and no heat treatment was performed. However, the pulverized residual rate and the aluminum elution rate were inferior to those of Examples 1 to 9. In Comparative Example 4, the heat treatment was performed using the single roll method as the manufacturing method. However, the heat treatment was performed as compared with Examples 1 to 9, so that the cost was inferior.

【0049】[X線回折評価]実施例1〜9及び比較例
1〜4で得られた水素吸蔵合金のX線回折を行い、La
Ni5 を1060℃、3時間熱処理したものを標準試料
とした時に、この標準試料に対して、20°≦2θ≦7
0°の範囲で回折線半値巾の値の相対比を求めた。結果
を表3に示す。
[Evaluation of X-ray Diffraction] The hydrogen storage alloys obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were subjected to X-ray diffraction to obtain La.
Ni 5 to 1060 ° C., when a standard sample which was heat treated 3 hours, against the standard sample, 20 ° ≦ 2θ ≦ 7
The relative ratio of the values of the half width of the diffraction line in the range of 0 ° was obtained. Table 3 shows the results.

【0050】[0050]

【表3】 [Table 3]

【0051】表3に示されるように、実施例1〜9は、
標準試料(LaNi5 )に対して、20°≦2θ≦70
°の範囲で回折線半値巾の値が相対比1.10以上のも
のを2つ以上有している。これに対して、比較例1〜2
及び4は、熱処理しているために回折線半値巾が狭い。
また、比較例3は、標準試料に対して、回折線半値巾の
値が相対比1.10以上のものを2つ以上有している
が、製造方法が鋳造法であるため、上記の表2に示され
るように微粉化残存率及びアルミニウム溶出率において
劣る。
As shown in Table 3, Examples 1 to 9
20 ° ≦ 2θ ≦ 70 with respect to the standard sample (LaNi 5 )
It has two or more diffraction angle half-value widths with relative ratio of 1.10 or more in the range of °. On the other hand, Comparative Examples 1 and 2
In Nos. 4 and 5, the half-width of the diffraction line is narrow due to the heat treatment.
Further, Comparative Example 3 has two or more samples whose half-width of the diffraction line has a relative ratio of 1.10 or more with respect to the standard sample, but the manufacturing method is a casting method. As shown in FIG. 2, the residual ratio of fine powder and the elution ratio of aluminum are inferior.

【0052】また、実施例1の水素吸蔵合金の顕微鏡写
真を図1に示す。この図1から、実施例1の水素吸蔵合
金は、熱処理を行わないにも拘わらず、偏析等が生ぜず
均質化されていることが判る。
FIG. 1 shows a micrograph of the hydrogen storage alloy of Example 1. From FIG. 1, it can be seen that the hydrogen storage alloy of Example 1 was homogenized without causing segregation or the like, even though heat treatment was not performed.

【0053】[0053]

【発明の効果】以上説明したように、本発明の製造方法
によって、コバルトを含有することなく、特定の合金組
成を有する水素吸蔵合金が、安価、かつ良好な生産性を
もって得られる。そして、この特定の合金組成を有する
水素吸蔵合金は、ニッケル−水素二次電池の負極活物質
として用いた時に、電極容量、放電率特性を低下させる
ことなく、寿命特性(サイクル特性)を向上させること
ができる。
As described above, according to the production method of the present invention, a hydrogen storage alloy having a specific alloy composition without containing cobalt can be obtained at low cost and with good productivity. Then, when the hydrogen storage alloy having this specific alloy composition is used as a negative electrode active material of a nickel-hydrogen secondary battery, the life characteristics (cycle characteristics) are improved without lowering the electrode capacity and discharge rate characteristics. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の水素吸蔵合金の顕微鏡写真(×50
0)。
FIG. 1 is a micrograph (× 50) of a hydrogen storage alloy of Example 1.
0).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊川 真吾 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 (72)発明者 酒井 実 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 (72)発明者 安田 清隆 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 Fターム(参考) 4E004 DB02 DB03 TA06 TB01 TB02 5H003 AA04 BA01 BB02 BC06 BD00 BD01 BD03 BD04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Shingo Kikukawa, Inventor 1-5-1, Shiomachi, Takehara-shi, Hiroshima Prefecture Inside Battery Materials Research Laboratory, Mitsui Kinzoku Mining Co., Ltd. (72) Minoru Sakai 1-5, Shiomachi, Takehara-shi, Hiroshima Prefecture No. 1 Inside the Battery Materials Research Laboratories of Mitsui Kinzoku Mining Co., Ltd. (72) Inventor Kiyotaka Yasuda 1-5-1 Shiomachi, Takehara-shi, Hiroshima F-term inside the Battery Materials Research Laboratories of Mitsui Kinzoku Mining Co., Ltd. 4E004 DB02 DB03 TA06 TB01 TB02 5H003 AA04 BA01 BB02 BC06 BD00 BD01 BD03 BD04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金原料を加熱溶解し、単ロー
ル法又は双ロール法を用い、ロールスピード500〜2
500rpm又は周速度50〜350m/secの急冷
速度で超急冷凝固し、その後、熱処理を行わないことを
特徴とする、下記一般式で表されるCaCu5 型の結晶
構造を有するAB5 型水素吸蔵合金の製造方法。 一般式 Mm(Laf )Nia Mnb Alc Fed Cue (式中、Mmはミッシュメタル、4.00≦a≦4.3
0、0.25≦b≦0.50、0.20≦c≦0.4
5、0.05≦d≦0.40、0≦e≦0.30、5.
00≦a+b+c+d+e≦5.35、但し、a〜eは
いずれもMm1モルに対するモル数、fは19〜21重
量%)
1. A hydrogen storage alloy raw material is heated and melted, and a roll speed of 500 to 2 is applied using a single roll method or a twin roll method.
AB 5 type hydrogen storage having a CaCu 5 type crystal structure represented by the following general formula, characterized by ultra-quick solidification at a rapid cooling speed of 500 rpm or a peripheral speed of 50 to 350 m / sec, and thereafter, no heat treatment is performed. Alloy manufacturing method. Formula Mm (La f) Ni a Mn b Al c Fe d Cu e ( wherein, Mm is the mischmetal, 4.00 ≦ a ≦ 4.3
0, 0.25 ≦ b ≦ 0.50, 0.20 ≦ c ≦ 0.4
5, 0.05 ≦ d ≦ 0.40, 0 ≦ e ≦ 0.30, 5.
00 ≦ a + b + c + d + e ≦ 5.35, where a to e are moles per mole of Mm, and f is 19 to 21% by weight.
【請求項2】 下記一般式 Mm(Laf )Nia Mnb Alc Fed Cue (式中、Mmはミッシュメタル、4.00≦a≦4.3
0、0.25≦b≦0.50、0.20≦c≦0.4
5、0.05≦d≦0.40、0≦e≦0.30、5.
00≦a+b+c+d+e≦5.35、但し、a〜eは
いずれもMm1モルに対するモル数、fは19〜21重
量%)で表されるCaCu5 型の結晶構造を有し、La
Ni5 を1060℃、3時間熱処理したものを標準試料
とした時に、X線回折において、該標準試料に対して、
20°≦2θ≦70°の範囲で回折線半値巾の値が相対
比1.10以上のものを少なくとも2つ以上有すること
を特徴とするAB5 型水素吸蔵合金。
Wherein the following formula Mm (La f) Ni a Mn b Al c Fe d Cu e ( wherein, Mm is the mischmetal, 4.00 ≦ a ≦ 4.3
0, 0.25 ≦ b ≦ 0.50, 0.20 ≦ c ≦ 0.4
5, 0.05 ≦ d ≦ 0.40, 0 ≦ e ≦ 0.30, 5.
00 ≦ a + b + c + d + e ≦ 5.35, wherein a to e have a CaCu 5 type crystal structure represented by the following formula:
When a standard sample was obtained by heat-treating Ni 5 at 1060 ° C. for 3 hours, the standard sample was subjected to X-ray diffraction.
AB 5 type hydrogen storage alloy, characterized in that it has at least two or more diffraction angle half-width values having a relative ratio of 1.10 or more in the range of 20 ° ≦ 2θ ≦ 70 °.
【請求項3】 請求項1に記載の製造方法により得られ
た水素吸蔵合金を負極活物質に用いたニッケル−水素二
次電池。
3. A nickel-hydrogen secondary battery using the hydrogen storage alloy obtained by the production method according to claim 1 as a negative electrode active material.
【請求項4】 請求項2に記載の水素吸蔵合金を負極活
物質に用いたニッケル−水素二次電池。
4. A nickel-hydrogen secondary battery using the hydrogen storage alloy according to claim 2 as a negative electrode active material.
JP10325403A 1998-11-16 1998-11-16 Hydrogen occlusion alloy and its production Pending JP2000144277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10325403A JP2000144277A (en) 1998-11-16 1998-11-16 Hydrogen occlusion alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10325403A JP2000144277A (en) 1998-11-16 1998-11-16 Hydrogen occlusion alloy and its production

Publications (1)

Publication Number Publication Date
JP2000144277A true JP2000144277A (en) 2000-05-26

Family

ID=18176464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10325403A Pending JP2000144277A (en) 1998-11-16 1998-11-16 Hydrogen occlusion alloy and its production

Country Status (1)

Country Link
JP (1) JP2000144277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825517A (en) * 2017-01-10 2017-06-13 中科院微电子研究所昆山分所 A kind of electrode cap high-temperature mold and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825517A (en) * 2017-01-10 2017-06-13 中科院微电子研究所昆山分所 A kind of electrode cap high-temperature mold and method
CN106825517B (en) * 2017-01-10 2018-11-23 中科院微电子研究所昆山分所 A kind of electrode cap high-temperature mold and method

Similar Documents

Publication Publication Date Title
US9219277B2 (en) Low Co hydrogen storage alloy
US11094932B2 (en) Hydrogen storage alloy
JP6608558B1 (en) Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment
JP3965209B2 (en) Low Co hydrogen storage alloy
JP4828714B2 (en) Hydrogen storage alloy, method for producing the same, and negative electrode for nickel metal hydride secondary battery
JP3881823B2 (en) Hydrogen storage alloy and method for producing the same
JP2001040442A (en) Hydrogen storage alloy
JP5001809B2 (en) Hydrogen storage alloy
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP3944237B2 (en) Low Co hydrogen storage alloy
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP2000160265A (en) Hydrogen storage alloy and its manufacture
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
JP2000144277A (en) Hydrogen occlusion alloy and its production
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JP2004218017A (en) Hydrogen storage alloy
JP2002535495A (en) AB5-type rare earth-transition intermetallic compound for secondary battery negative electrode
JP2001181763A (en) Hydrogen storage alloy
JP4573421B2 (en) Hydrogen storage alloy
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2000038630A (en) Hydrogen storage alloy and its production