JP2000143342A - Dielectric porcelain composition and multilayer ceramic capacitor using the same - Google Patents

Dielectric porcelain composition and multilayer ceramic capacitor using the same

Info

Publication number
JP2000143342A
JP2000143342A JP10320557A JP32055798A JP2000143342A JP 2000143342 A JP2000143342 A JP 2000143342A JP 10320557 A JP10320557 A JP 10320557A JP 32055798 A JP32055798 A JP 32055798A JP 2000143342 A JP2000143342 A JP 2000143342A
Authority
JP
Japan
Prior art keywords
composition
dielectric
range
multilayer ceramic
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10320557A
Other languages
Japanese (ja)
Other versions
JP3575298B2 (en
Inventor
Masafumi Nakayama
雅文 中山
Kazuhiro Komatsu
和博 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32055798A priority Critical patent/JP3575298B2/en
Publication of JP2000143342A publication Critical patent/JP2000143342A/en
Application granted granted Critical
Publication of JP3575298B2 publication Critical patent/JP3575298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric porcelain composition capable of providing stable electric characteristics even by baking in a nonoxidizing atmosphere and useful for a multilayer ceramic capacitor. SOLUTION: This dielectric porcelain composition is obtained by adding 0.05-3.00 wt.% of one selected from the group of BaSiO3, MgSiO3 and CaSiO3 and further 0.05-0.30 wt.% of V2O5 as additives to 100 wt.% of a composition surrounded by (a) [(x)=0.49, (y)=0.50, (z)=0.01], (b) [(x)=0.25, (y)=0.50, (z)=0.25] and (c)[(x)=0.97, (y)=0.02, (z)=0.01] [with the proviso that (m) is within the range of 0.30<=(m)<=0.70; (n) is within the range of 0.70<=(n)<=0.90] in a ternary composition represented by x(MgmCa1-m)O-y(TinZr1-n)O2-zPr2O3 (x), (y), (m) and (n) denote each molar ratio; [(x)+(y)+(z)] is 1} as the formula.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケルなどの卑金
属で内部電極を形成する温度補償用の積層セラミックコ
ンデンサに用いる誘電体磁器組成物およびこれを用いた
積層セラミックコンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition for use in a multilayer ceramic capacitor for temperature compensation in which an internal electrode is formed of a base metal such as nickel, and a multilayer ceramic capacitor using the same.

【0002】[0002]

【従来の技術】従来の積層セラミックコンデンサは、公
知の積層セラミックコンデンサの製造方法にしたがっ
て、誘電体磁器組成物を主成分とするセラミック層グリ
ーンシートと内部電極層を交互に複数層積層したグリー
ン積層体を、所定のグリーンチップ形状に切断した後所
定温度で焼成を行い、得られた焼結体の端面に露出した
内部電極と電気的に接続するように焼結体の端面部に外
部電極を形成する方法が一般的に行われている。
2. Description of the Related Art A conventional monolithic ceramic capacitor is formed by alternately laminating a plurality of ceramic green sheets mainly composed of a dielectric ceramic composition and a plurality of internal electrode layers according to a known method of manufacturing a monolithic ceramic capacitor. After cutting the body into a predetermined green chip shape, baking is performed at a predetermined temperature, and an external electrode is provided on the end face of the sintered body so as to be electrically connected to the internal electrode exposed on the end face of the obtained sintered body. The method of forming is generally performed.

【0003】しかしながら近年、積層セラミックコンデ
ンサの大容量、高積層化に伴い内部電極にニッケル等の
卑金属を用いたグリーンチップを非酸化性雰囲気中で焼
結を行う方法が主流となってきている。
However, in recent years, a method of sintering a green chip using a base metal such as nickel for an internal electrode in a non-oxidizing atmosphere has become mainstream as the multilayer ceramic capacitor has a large capacity and a high lamination.

【0004】[0004]

【発明が解決しようとする課題】従来の積層セラミック
コンデンサを非酸化性雰囲気で焼成を行うのは、ニッケ
ル等の卑金属内部電極の酸化を防ぐためである。しかし
ながら積層セラミックコンデンサの内、温度補償用の積
層セラミックコンデンサに用いる誘電体磁器組成物は、
一般的に主成分のMgTiO3、CaTiO3に希土類酸
化物を添加した組成が多く、この材料は非酸化性雰囲気
で焼成すると主成分中の酸化チタンが還元され易く、半
導体化して絶縁抵抗が低くなると共に所望の誘電体特性
が得られないという課題を有していた。
The reason why the conventional multilayer ceramic capacitor is fired in a non-oxidizing atmosphere is to prevent oxidation of a base metal internal electrode such as nickel. However, among the multilayer ceramic capacitors, the dielectric ceramic composition used for the multilayer ceramic capacitor for temperature compensation is:
Generally, there are many compositions in which rare earth oxides are added to the main components MgTiO 3 and CaTiO 3. When this material is fired in a non-oxidizing atmosphere, the titanium oxide in the main components is easily reduced, and becomes a semiconductor, resulting in low insulation resistance. In addition, there is a problem that desired dielectric characteristics cannot be obtained.

【0005】本発明は非酸化性雰囲気中の焼成において
も、安定した電気特性の得られる誘電体磁器組成物およ
びこれを用いた積層セラミックコンデンサを提供するこ
とを目的とするものである。
[0005] It is an object of the present invention to provide a dielectric ceramic composition capable of obtaining stable electric characteristics even when fired in a non-oxidizing atmosphere, and a multilayer ceramic capacitor using the same.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
本発明は、一般式として、x(MgmCa1-m)O−y
(TinZr1-n)O2−zPr23(但しx+y+z=
1)で表される三成分系組成において、a(x=0.4
9、y=0.50、z=0.01)、b(x=0.2
5、y=0.50、z=0.25)、c(x=0.9
7、y=0.02、z=0.01)で囲まれた組成(但
し、mは0.30≦m≦0.70、nは0.70≦n≦
0.90の範囲)100wt%に対し、添加物としてB
aSiO3、MgSiO3、CaSiO3の群より選ばれ
た一つを0.05〜3.00wt%、更にV25を0.
05〜0.30wt%添加した組成としたものである。
The present invention for achieving the above object, according to an aspect of, as a general formula, x (Mg m Ca 1- m) O-y
(Ti n Zr 1-n) O 2 -zPr 2 O 3 ( where x + y + z =
In the ternary composition represented by 1), a (x = 0.4
9, y = 0.50, z = 0.01), b (x = 0.2
5, y = 0.50, z = 0.25), c (x = 0.9
7, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦
0.90 range) 100 wt%, B as an additive
aSiO 3, MgSiO 3, 0.05~3.00wt% of one selected from the group of CaSiO 3, further V 2 O 5 0.
The composition is a composition in which the composition is added in the range of 0.5 to 0.30 wt%.

【0007】この構成により、非酸化性雰囲気中の焼成
においても電気特性の安定したものが得られることにな
る。
[0007] With this configuration, even when firing in a non-oxidizing atmosphere, stable electric characteristics can be obtained.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、一般式として、x(MgmCa1-m)O−y(Tin
Zr1-n)O2−zPr23(但しx+y+z=1)で表
される三成分系組成において、a(x=0.49、y=
0.50、z=0.01)、b(x=0.25、y=
0.50、z=0.25)、c(x=0.97、y=
0.02、z=0.01)で囲まれた組成(但し、mは
0.30≦m≦0.70、nは0.70≦n≦0.90
の範囲)100wt%に対し、添加物としてBaSiO
3、MgSiO3、CaSiO3の群より選ばれた一つを
0.05〜3.00wt%、更にV25を0.05〜
0.30wt%添加した誘電体磁器組成物である。一般
式が、x(MgmCa1-m)O−y(TinZr1-n)O2
−zPr23(但しx+y+z=1)で表され、しかも
a(x=0.49、y=0.50、z=0.01)、b
(x=0.25、y=0.50、z=0.25)、c
(x=0.97、y=0.02、z=0.01)で囲ま
れた本発明の三成分系材料組成は、MgO、CaO、P
23のモル比の和(x+z)が、常にTiO2、Zr
2のモル比の和(y)と等しいか又は大きくなるよう
に組成範囲を規定したものである。この組成にV25
0.05〜0.30wt%添加することにより、非酸化
性雰囲気中で焼成を行ってもV25がTiO2の還元を
防止し、絶縁抵抗が大きく、しかも設計値通りの容量温
度係数の小さい焼結体が得られる。従ってニッケル等の
卑金属を内部電極に用いる温度補償用積層セラミックコ
ンデンサの誘電体磁器組成物として好適なものである。
また更に、還元されやすいTiO2の一部をZrO2で置
換することで、更に耐還元性を向上させることができ
る。一方BaSiO3、MgSiO3、CaSiO3の群
より選ばれた一つを0.05〜3.00wt%添加する
ことにより、これらが焼結助材として焼結性を促進しQ
E、絶縁抵抗の高い優れた焼結体を得ることができるも
のである。
DETAILED DESCRIPTION OF THE INVENTION According to a first aspect of the present invention, as a general formula, x (Mg m Ca 1- m) O-y (Ti n
In a ternary composition represented by Zr 1-n ) O 2 -zPr 2 O 3 (where x + y + z = 1), a (x = 0.49, y =
0.50, z = 0.01), b (x = 0.25, y =
0.50, z = 0.25), c (x = 0.97, y =
0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦ 0.90)
Range) 100 wt%, and BaSiO as an additive
3, MgSiO 3, 0.05~3.00wt% of one selected from the group of CaSiO 3, further 0.05 to V 2 O 5
It is a dielectric porcelain composition to which 0.30 wt% is added. General formula, x (Mg m Ca 1- m) O-y (Ti n Zr 1-n) O 2
−zPr 2 O 3 (where x + y + z = 1), and a (x = 0.49, y = 0.50, z = 0.01), b
(X = 0.25, y = 0.50, z = 0.25), c
(X = 0.97, y = 0.02, z = 0.01), the ternary material composition of the present invention is composed of MgO, CaO, P
The sum of the molar ratios of r 2 O 3 (x + z) is always TiO 2 , Zr
The composition range is defined so as to be equal to or larger than the sum (y) of the molar ratio of O 2 . By the V 2 O 5 added 0.05~0.30Wt% in this composition, a non-oxidizing atmosphere V 2 O 5 even if fired in is prevented the reduction of TiO 2, a large insulation resistance, Moreover, a sintered body having a small capacity temperature coefficient as designed can be obtained. Therefore, it is suitable as a dielectric ceramic composition for a multilayer ceramic capacitor for temperature compensation using a base metal such as nickel for the internal electrodes.
Further, by substituting a part of TiO 2 which is easily reduced with ZrO 2 , reduction resistance can be further improved. On the other hand, by adding one selected from the group consisting of BaSiO 3 , MgSiO 3 and CaSiO 3 in an amount of 0.05 to 3.00 wt%, they promote sinterability as sintering aids and
E. An excellent sintered body having high insulation resistance can be obtained.

【0009】本発明の請求項2に記載の発明は、請求項
1に記載の誘電体磁器組成物の主成分x(Mgm
1-m)O−y(TinZr1-n)O2−zPr23(但し
x+y+z=1)で表される三成分系組成において、a
(x=0.49、y=0.50、z=0.01)、b
(x=0.25、y=0.50、z=0.25)、c
(x=0.97、y=0.02、z=0.01)で囲ま
れた組成(但し、mは0.30≦m≦0.70、nは
0.70≦n≦0.90の範囲)100wt%に対し、
更にAl23を2.0wt%以下、MnO2を0.5w
t%以下(但し、両方とも同時に0は除く)を添加した
請求項1に記載の誘電体磁器組成物である(尚x、y、
m、nはモル比を表す)。前記組成に対しAl23及び
MnO2を添加することにより焼結性を更に向上させ
る。特にMnO2はTiO2の還元を防ぎ、絶縁抵抗をよ
り高いものとする効果がある。
According to a second aspect of the present invention, there is provided the dielectric ceramic composition according to the first aspect, wherein the main component x (Mg m C
In a 1-m) O-y (Ti n Zr 1-n) O 2 -zPr 2 O 3 ( where x + y + z = 1) ternary composition represented by, a
(X = 0.49, y = 0.50, z = 0.01), b
(X = 0.25, y = 0.50, z = 0.25), c
(X = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦ 0.90) Range) 100 wt%,
Further, Al 2 O 3 is 2.0 wt% or less, and MnO 2 is 0.5 w%.
2. The dielectric porcelain composition according to claim 1, wherein t% or less (however, both simultaneously exclude 0) is used.
m and n represent a molar ratio). Sinterability is further improved by adding Al 2 O 3 and MnO 2 to the above composition. In particular, MnO 2 has the effect of preventing the reduction of TiO 2 and increasing the insulation resistance.

【0010】本発明の請求項3に記載の発明は、請求項
1及び請求項2に記載の誘電体磁器組成物からなるセラ
ミック層と、ニッケル等の卑金属の内部電極で構成した
積層セラミックコンデンサである。請求項1及び請求項
2に記載の耐還元性誘電体磁器組成物でセラミック層を
構成することによって、ニッケル等の卑金属を内部電極
に用いた積層セラミックコンデンサが非酸化性雰囲気中
での焼成が可能となり、QE、絶縁抵抗が共に高く、し
かも静電容量温度係数の小さい優れた温度補償用の積層
セラミックコンデンサを得ることができるものである。
According to a third aspect of the present invention, there is provided a multilayer ceramic capacitor comprising a ceramic layer comprising the dielectric ceramic composition according to the first and second aspects and an internal electrode of a base metal such as nickel. is there. By forming the ceramic layer from the reduction-resistant dielectric porcelain composition according to claim 1 or 2, the multilayer ceramic capacitor using a base metal such as nickel for the internal electrode can be fired in a non-oxidizing atmosphere. This makes it possible to obtain an excellent multilayer ceramic capacitor for temperature compensation, which has both a high Q E and a high insulation resistance and a small capacitance temperature coefficient.

【0011】(実施の形態1)先ず、出発原料として高
純度のMgO、CaO、TiO2、ZrO2、Pr23
25、BaSiO3粉末を(表1)〜(表5)に示す
組成比になるように秤量し、湿式混合後、脱水乾燥を行
い、得られた混合材料を高純度アルミナ質の坩堝に入
れ、空気中1150℃の温度で2時間仮焼を行う。
(Embodiment 1) First, high-purity MgO, CaO, TiO 2 , ZrO 2 , Pr 2 O 3 ,
V 2 O 5, BaSiO 3 powder (Table 1) to be weighed so as to obtain the composition ratio shown in (Table 5), after the wet mixing, carried out dehydration and drying, the resulting mixed material crucible of a high-purity alumina And calcined in air at a temperature of 1150 ° C. for 2 hours.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】[0016]

【表5】 [Table 5]

【0017】次に、仮焼材料をゴム内張りのボールミル
の中に純水とジルコニアボールと共に入れ、湿式粉砕
後、脱水乾燥を行い温度補償用の誘電体磁器組成物を作
製した。得られた温度補償用の誘電体磁器組成物に、有
機バインダーを加え造粒後、油圧プレスを用い、成形圧
力1ton/cm2で直径15mm、厚み0.4mmの円板を成形
した。
Next, the calcined material was put together with pure water and zirconia balls in a rubber-lined ball mill, wet-pulverized, dehydrated and dried to prepare a dielectric ceramic composition for temperature compensation. An organic binder was added to the obtained dielectric ceramic composition for temperature compensation, and after granulation, a disc having a diameter of 15 mm and a thickness of 0.4 mm was formed at a molding pressure of 1 ton / cm 2 using a hydraulic press.

【0018】次いで、成形した円板をアルミナ質のサヤ
に入れ、空気中にて700℃で2時間脱脂した後、非酸
化雰囲気中にて(表6)〜(表10)に示す温度で2時
間焼成し焼結体を得た。
Next, the formed disk is placed in an alumina sheath, degreased in air at 700 ° C. for 2 hours, and then heated in a non-oxidizing atmosphere at a temperature shown in (Table 6) to (Table 10). After firing for a time, a sintered body was obtained.

【0019】得られた焼結体の両面に銅電極ペーストを
塗布した後、非酸化雰囲気において900℃の温度で焼
付けた後、誘電率、QE、絶縁抵抗、静電容量温度係数
の測定を行い、その結果を(表6)〜(表10)に示し
た。尚、誘電率、QEの測定は温度20℃、測定電圧
1.0Vrms、測定周波数1MHzで行い、絶縁抵抗は
電極間にDC50Vを1分間印加した後の抵抗値より、
また静電容量温度係数は20℃と125℃における静電
容量を測定し(数1)より求めた。
After applying a copper electrode paste to both surfaces of the obtained sintered body and baking it at 900 ° C. in a non-oxidizing atmosphere, the dielectric constant, Q E , insulation resistance and capacitance temperature coefficient were measured. The results were shown in (Table 6) to (Table 10). The dielectric constant and Q E were measured at a temperature of 20 ° C., a measurement voltage of 1.0 V rms , and a measurement frequency of 1 MHz.
The capacitance temperature coefficient was determined by measuring the capacitance at 20 ° C. and 125 ° C. (Equation 1).

【0020】[0020]

【表6】 [Table 6]

【0021】[0021]

【表7】 [Table 7]

【0022】[0022]

【表8】 [Table 8]

【0023】[0023]

【表9】 [Table 9]

【0024】[0024]

【表10】 [Table 10]

【0025】[0025]

【数1】 (Equation 1)

【0026】(表6)〜(表10)に示すように、試料
2、4、18、22、23、26はTiO2が一部還元
され絶縁抵抗が極端に低下し、試料8、10、14、1
9は1350℃の温度で焼結不十分なためQE、絶縁抵
抗が共に低下し、試料5、7は1350℃の温度で焼結
しない。さらに、試料15は、静電容量温度係数がプラ
ス361ppm/℃と大きい。これに対し、試料1、3、
6、9、11、12、13、16、17、20、21、
24、25の本発明の組成範囲内のものは、Q Eが大き
く、絶縁抵抗も高く、さらに静電容量温度係数が小さい
優れた誘電体特性が得られることが明らかとなる。
As shown in Tables 6 to 10, the samples
2, 4, 18, 22, 23 and 26 are made of TiOTwoIs partially reduced
As a result, the insulation resistance is extremely reduced, and the samples 8, 10, 14, 1
9 is 1350 ° C because of insufficient sintering.E, Insulation resistance
Samples 5 and 7 were sintered at a temperature of 1350 ° C.
do not do. Further, the sample 15 has a capacitance temperature coefficient
361 ppm / ° C. In contrast, samples 1, 3,
6, 9, 11, 12, 13, 16, 17, 20, 21,
24, 25 within the composition range of the present invention EIs large
High insulation resistance and low capacitance temperature coefficient
It becomes clear that excellent dielectric properties can be obtained.

【0027】以下、それぞれの組成範囲を限定した理由
について述べる。はじめに、主成分のx、y、zの範囲
を限定した理由について述べる。(表1)の試料2、4
のように、MgOとCaO及びPr23のモル比の和
(x+z)よりも、TiO2とZrO2のモル比の和
(y)が大きい範囲、即ちy>0.50の組成は非還元
雰囲気で焼成すると、主成分のTiO2が還元され絶縁
抵抗が低く、安定した誘電体特性が得られず実用的でな
くなる。
The reasons for limiting the respective composition ranges will be described below. First, the reason why the ranges of x, y, and z of the main components are limited will be described. Samples 2 and 4 in Table 1
In the range where the sum (y) of the molar ratios of TiO 2 and ZrO 2 is larger than the sum (x + z) of the molar ratios of MgO, CaO and Pr 2 O 3 , that is, the composition where y> 0.50 is not When firing in a reducing atmosphere, the main component TiO 2 is reduced, the insulation resistance is low, and stable dielectric properties cannot be obtained, which is not practical.

【0028】また、試料8のようにTiO2とZrO2
モル比の和(y)が0.01の組成は1350℃の焼成
では、焼結が不十分でQE、絶縁抵抗共が低くなる。従
って、yの範囲は0.02≦y≦0.50とする必要が
ある。
Further, as shown in Sample 8, the composition having the sum (y) of the molar ratios of TiO 2 and ZrO 2 of 0.01, when sintered at 1350 ° C., has insufficient sintering and low Q E and low insulation resistance. Become. Therefore, the range of y needs to be 0.02 ≦ y ≦ 0.50.

【0029】また、試料5、7、8のように、zのモル
数の2倍の値がyのモル数と等しいか又は大きくなる
と、焼結不十分か焼結が困難となり、QE、絶縁抵抗が
低下することがわかる。即ち、y(Ti、Zr)O2
zPr23との関係において、Pr23のモル数zの2
倍が、(Ti、Zr)O2のモル数yより大きくなる
と、焼結が困難になることから、y≧2zとする必要が
ある。但し、yの範囲は0.02≦y≦0.50とす
る。従って、yの値が0.02から0.50の範囲で変
化すると、zの値は常にy≧2zを満たし0.01〜
0.25の範囲で変化することになる。
When twice the number of moles of z is equal to or greater than the number of moles of y as in samples 5, 7, and 8, the sintering is insufficient or difficult, and Q E , It can be seen that the insulation resistance decreases. That is, in the relationship between y (Ti, Zr) O 2 and zPr 2 O 3 , the molar number z of Pr 2 O 3 is 2
If the factor is larger than the number of moles y of (Ti, Zr) O 2 , sintering becomes difficult. Therefore, it is necessary to satisfy y ≧ 2z. However, the range of y is set to 0.02 ≦ y ≦ 0.50. Therefore, when the value of y changes in the range of 0.02 to 0.50, the value of z always satisfies y ≧ 2z and is 0.01 to
It will change in the range of 0.25.

【0030】また、x+y+z=1の関係からxの範囲
はy、zの値より必然的に決定され、本発明の主成分の
x、y、zの範囲は図1に示す点a、b、cを直線で囲
まれたモル比の範囲に限定される。
Further, from the relation x + y + z = 1, the range of x is inevitably determined by the values of y and z, and the ranges of x, y and z of the main components of the present invention are defined by points a, b, and c is limited to the range of the molar ratio enclosed by a straight line.

【0031】次にMgのモル比mの範囲を限定した理由
は、(表2)、(表7)に示すようにmの値が0.30
より小さいか、または0.70より大きい組成の試料1
0、14は1350℃の焼成でも焼結不十分なために、
E、絶縁抵抗が共に低下し実用的でなくなる。従っ
て、mの範囲は0.30≦m≦0.70に限定する必要
がある。
Next, the reason for limiting the range of the molar ratio m of Mg is that as shown in (Table 2) and (Table 7), the value of m is 0.30
Sample 1 having a composition smaller than or larger than 0.70
Since 0 and 14 are insufficiently sintered even at 1350 ° C.,
Both Q E and insulation resistance are reduced, making them impractical. Therefore, the range of m needs to be limited to 0.30 ≦ m ≦ 0.70.

【0032】また、Tiのモル比nの範囲を限定した理
由は、(表3)、(表8)に示す試料15のように、n
の値が0.60の場合は静電容量温度係数がプラス方向
に極めて大きくなり、温度補償用の誘電体磁器組成物と
して実用的でなく、試料18のようにnの値が1.0
0、即ちTiO2100%の場合は、非酸化雰囲気中の
焼成でTiO2が還元され、絶縁抵抗が低くなると共に
安定した誘電特性が得られなくなる。従って、nの値は
0.70≦n≦0.90の範囲に限定する必要がある。
The reason for limiting the range of the molar ratio n of Ti is that, as shown in sample 15 shown in (Table 3) and (Table 8), n
Is 0.60, the temperature coefficient of capacitance becomes extremely large in the positive direction, which is not practical as a dielectric ceramic composition for temperature compensation.
0, i.e., if the TiO 2 100%, TiO 2 is reduced by firing in a non-oxidizing atmosphere, the insulation resistance can not be obtained a stable dielectric properties with lower. Therefore, it is necessary to limit the value of n to the range of 0.70 ≦ n ≦ 0.90.

【0033】一方、添加物のBaSiO3の添加量を限
定した理由は(表4)、(表9)に示す試料19のよう
に添加量が零の組成は、1350℃の焼成においても焼
結不十分なためにQE、絶縁抵抗が共に低下し、また、
試料22のように添加量が3.0を超えると焼成温度を
低下する効果があるが、添加したBaSiO3のSi成
分の一部がTi位置に入り込み、置換されたTiが還元
されてQEと絶縁抵抗を低下させる。従って、BaSi
3の添加範囲は、0.2〜3.0wt%の範囲に限定
する必要がある。
On the other hand, the reason for limiting the amount of BaSiO 3 to be added is shown in (Table 4) and the composition with no added amount as in Sample 19 shown in (Table 9) is sintered even at 1350 ° C. Insufficiently reduces both Q E and insulation resistance.
When the addition amount exceeds 3.0 as in Sample 22, the firing temperature is lowered, but a part of the added Si component of BaSiO 3 enters the Ti position, and the substituted Ti is reduced to Q E. And lower the insulation resistance. Therefore, BaSi
It is necessary to limit the addition range of O 3 to the range of 0.2 to 3.0 wt%.

【0034】更に、V25の添加量を限定した理由は、
(表5)、(表10)に示す試料23のように添加量が
零の組成は、主成分のTiO2の還元を防御することが
できず、非酸化性雰囲気中の焼成でTiO2が還元さ
れ、絶縁抵抗が低下すると共に安定した誘電特性が得ら
れなくなる。また、試料26のように添加量が0.3w
t%を超えると逆にTiO2を還元させ、QEと絶縁抵抗
を低下させるため好ましくない。この原因は定かではな
いが、V25がTiO2を原子価制御し半導体化するた
めと思われる。従って、V25の添加量は、0.05〜
0.3wt%の範囲に限定する必要がある。
Further, the reason for limiting the amount of V 2 O 5 added is as follows.
(Table 5), the composition amount added is zero as in Sample 23 shown in Table 10 can not protect the reduction of TiO 2 of the main component, TiO 2 is in the firing in a non-oxidizing atmosphere As a result, the insulation resistance is reduced and stable dielectric properties cannot be obtained. Further, as in the case of the sample 26, the addition amount is 0.3 w
If the content exceeds t%, TiO 2 is reduced and Q E and insulation resistance are reduced. The reason for this is not clear, but it is thought that V 2 O 5 controls the valence of TiO 2 and turns it into a semiconductor. Therefore, the added amount of V 2 O 5 is 0.05 to
It is necessary to limit the range to 0.3 wt%.

【0035】(実施の形態2)実施の形態1の試料12
の組成のBaSiO3に替えてMgSiO3またはCaS
iO3を(表11)に示す組成比になるように秤量した
後、以降の工程を実施の形態1と同条件で処理し、作製
した試料について実施の形態1と同様に評価し、その結
果を(表12)に示した。
(Embodiment 2) Sample 12 of Embodiment 1
MgSiO 3 or CaS in place of BaSiO 3
After weighing iO 3 so as to have the composition ratio shown in (Table 11), the subsequent steps were treated under the same conditions as in Embodiment 1, and the produced sample was evaluated in the same manner as in Embodiment 1, and the results were obtained. Are shown in (Table 12).

【0036】[0036]

【表11】 [Table 11]

【0037】[0037]

【表12】 [Table 12]

【0038】(表12)に示すように、BaSiO3
替えてMgSiO3を添加した試料27〜29、または
CaSiO3を添加した試料31〜33は、BaSiO3
添加の場合と同様にQE、絶縁抵抗共に高く、しかも静
電容量温度係数が小さい優れた誘電体特性が得られるこ
とが分かる。また、MgSiO3を添加した場合、Ba
SiO3の添加に比べ、より絶縁抵抗が高く、CaSi
3の添加はBaSiO3の添加に比べ、よりQEの大き
い誘電体磁器組成物が得られることが分かる。しかしな
がら何れの場合とも添加量が3wt%を超えると、焼成
温度を低下させる効果があるもののBaSiO3と同様
に絶縁抵抗を低下させるために好ましくない。
As shown in Table 12, Samples 27 to 29 to which MgSiO 3 was added instead of BaSiO 3 , or Samples 31 to 33 to which CaSiO 3 was added, were obtained from BaSiO 3.
As in the case of the addition, it can be seen that excellent dielectric characteristics with high Q E and high insulation resistance and a small capacitance temperature coefficient can be obtained. When MgSiO 3 is added, Ba
Compared to the addition of SiO 3, the insulation resistance is higher and CaSi
It can be seen that the addition of O 3 results in a dielectric ceramic composition having a higher Q E than the addition of BaSiO 3 . However, in any case, when the addition amount exceeds 3 wt%, although the effect of lowering the firing temperature is obtained, it is not preferable because the insulation resistance is reduced similarly to BaSiO 3 .

【0039】(実施の形態3)実施の形態1の試料12
の組成に、更にAl23及びMnO2を(表13)に示
す組成となるように秤量し、以降の工程条件を実施の形
態1と同条件で処理し、作製した試料について実施の形
態1と同様に評価しその結果を(表14)に示した。
(Embodiment 3) Sample 12 of Embodiment 1
In addition, Al 2 O 3 and MnO 2 were further weighed to the composition shown in (Table 13), and the subsequent process conditions were processed under the same conditions as in Embodiment 1 to prepare a sample. The results were evaluated in the same manner as in Example 1, and the results are shown in (Table 14).

【0040】[0040]

【表13】 [Table 13]

【0041】[0041]

【表14】 [Table 14]

【0042】(表14)に示すように、本発明のAl2
3及びMnO2を添加した試料35〜38と40、4
1、43は、QE、絶縁抵抗共に更に高くなり、しかも
静電容量温度係数が小さい優れた誘電体特性が得られる
ことが分かる。これに対しAl 23の添加量が2.0w
t%を超える試料39は焼結温度を低下させる効果はあ
るものの、QEが低下し、またMnO2の添加量が0.5
wt%を超える試料42の焼結体は8μm以上の異常成
長粒子が認められ実用上好ましくない。従ってAl
23、及びMnO2の添加は夫々2.0wt%、0.5
wt%以下(但し、両方とも同時に0は除く)に限定す
る必要があることが分かる。
As shown in Table 14, the Al of the present inventionTwo
OThreeAnd MnOTwo35 to 38 and 40, 4
1, 43 is QE, The insulation resistance is higher, and
Excellent dielectric characteristics with low capacitance temperature coefficient
You can see that. On the other hand, Al TwoOThree2.0w
Sample 39 exceeding t% does not have the effect of lowering the sintering temperature.
Although QEAnd MnOTwo0.5
The sintered body of Sample 42 exceeding wt% has an abnormal composition of 8 μm or more.
Long particles are observed, which is not practically preferable. Therefore, Al
TwoOThree, And MnOTwo2.0 wt% and 0.5 wt%, respectively.
wt% or less (however, excluding 0 at the same time for both)
It is necessary to understand that it is necessary.

【0043】(実施の形態4)実施の形態1から実施の
形態3で作製した、本発明の誘電体磁器組成物の試料1
2、19、28、32、42、43の各誘電体磁器組成
物に酢酸ブチル、ポリビニルブチラール、可塑剤からな
るビヒクルを加えて、公知のドクターブレード法により
厚さ30μmのセラミックグリーンシートを作製した。
(Embodiment 4) Sample 1 of the dielectric porcelain composition of the present invention prepared in Embodiment 1 to Embodiment 3
A vehicle comprising butyl acetate, polyvinyl butyral, and a plasticizer was added to each of the dielectric porcelain compositions 2, 19, 28, 32, 42, and 43, and a 30 μm-thick ceramic green sheet was prepared by a known doctor blade method. .

【0044】次に、得られたそれぞれの組成のセラミッ
クグリーンシートを用い、公知の積層セラミックコンデ
ンサの製造方法に従い、内部電極とセラミックグリーン
シートを交互に15層積層したグリーン積層体を600
kg/cm2の圧力で加圧圧着した後、1608タイプの
積層セラミックコンデンサのグリーンチップ形状に切断
を行った。尚、内部電極にはニッケル電極ペーストを用
いた。
Next, using the obtained ceramic green sheets of the respective compositions, a green laminated body in which 15 layers of internal electrodes and ceramic green sheets were alternately laminated was formed in accordance with a known method of manufacturing a laminated ceramic capacitor.
After pressure-compression bonding at a pressure of kg / cm 2 , a 1608 type multilayer ceramic capacitor was cut into a green chip shape. Note that a nickel electrode paste was used for the internal electrodes.

【0045】次いで、グリーンチップを空気中にて35
0℃の温度で2時間脱脂した後、非酸化雰囲気中の13
50℃で2時間焼成を行った。
Next, the green chip was placed in the air for 35 minutes.
After degreasing at a temperature of 0 ° C. for 2 hours, 13 g in a non-oxidizing atmosphere
The firing was performed at 50 ° C. for 2 hours.

【0046】その後、得られた焼結体の内部電極が露出
した端面に外部電極を設けてそれぞれ積層セラミックコ
ンデンサを完成させた。
Thereafter, external electrodes were provided on the end surfaces of the obtained sintered body where the internal electrodes were exposed, thereby completing the multilayer ceramic capacitors.

【0047】得られた各積層セラミックコンデンサにつ
いて静電容量、QE、静電容量温度係数、絶縁抵抗を、
実施の形態1と同様の方法で測定を行った。また寿命試
験として125℃の恒温槽中で50Vの直流電圧を積層
セラミックコンデンサの外部電極間に1000時間連続
印加を行い、その結果を(表15)に示した。
The capacitance, Q E , temperature coefficient of capacitance, and insulation resistance of each of the obtained multilayer ceramic capacitors were calculated as follows:
The measurement was performed in the same manner as in the first embodiment. As a life test, a DC voltage of 50 V was continuously applied between external electrodes of the multilayer ceramic capacitor for 1000 hours in a thermostat at 125 ° C., and the results are shown in Table 15.

【0048】[0048]

【表15】 [Table 15]

【0049】(表15)から明らかなように、本発明の
範囲内の誘電体磁器組成物12、28、32、43を用
い作製した積層セラミックコンデンサは、QE、絶縁抵
抗が共に高く、寿命試験においても特性劣化が認められ
ないのに対し、本発明の範囲外の誘電体磁器組成物の試
料19、42で作製した積層セラミックコンデンサは絶
縁抵抗が低下し、しかも寿命試験においても特性劣化が
認められた。尚、特性劣化は寿命試験後の絶縁抵抗値が
1×1010(Ω)以下に低下したものを不良としてカウ
ントした。
As is clear from Table 15, the multilayer ceramic capacitors manufactured using the dielectric ceramic compositions 12, 28, 32, and 43 within the scope of the present invention have high Q E and high insulation resistance, and have a long service life. While no characteristic deterioration was observed in the test, the multilayer ceramic capacitors manufactured using the dielectric ceramic composition samples 19 and 42 outside the range of the present invention had a reduced insulation resistance, and the characteristic deterioration was also observed in the life test. Admitted. In addition, as for the characteristic deterioration, those whose insulation resistance value after the life test was reduced to 1 × 10 10 (Ω) or less were counted as defective.

【0050】以上本発明の誘電体磁器組成物は、内部電
極にニッケル等の卑金属を用い積層セラミックコンデン
サグリーンチップを作製し、これを非酸化性雰囲気中で
焼成を行っても、QE、絶縁抵抗が共に高く、また静電
容量温度変化率の小さい、しかも寿命試験においても特
性劣化が発生しない優れた積層セラミックコンデンサが
得られることが明らかである。
The above dielectric ceramic composition of the present invention is to prepare a multilayer ceramic capacitor green chip using a base metal such as nickel internal electrodes, even when the baking it in a non-oxidizing atmosphere, Q E, insulating It is clear that an excellent multilayer ceramic capacitor having both high resistance and a small rate of change in capacitance with temperature and having no characteristic deterioration even in a life test can be obtained.

【0051】また、実施の形態1から3で誘電体磁器組
成物の作製にMgO、CaO、TiO2、ZrO2、Pr
23、BaSiO3、MgSiO3、CaSiO3、V2
5の粉末を使用したが、Mg−Ca−Ti−Zr−Oの
化合物、あるいはMg、Ca、Ti、Zr、Prの炭酸
塩、水酸化物等を本発明の組成となるように用いても、
また、主成分をあらかじめ仮焼した後、添加物を添加し
ても実施の形態と同程度の特性を得ることができる。
In the first to third embodiments, the production of the dielectric ceramic composition was performed using MgO, CaO, TiO 2 , ZrO 2 , Pr.
2 O 3 , BaSiO 3 , MgSiO 3 , CaSiO 3 , V 2 O
Although the powder of No. 5 was used, a compound of Mg-Ca-Ti-Zr-O, or a carbonate, a hydroxide, or the like of Mg, Ca, Ti, Zr, Pr, or the like may be used so as to become the composition of the present invention. ,
Further, even if the main component is preliminarily calcined and then an additive is added, characteristics similar to those of the embodiment can be obtained.

【0052】[0052]

【発明の効果】以上の結果に示すように、本発明の誘電
体磁器組成物は非酸化雰囲気中で焼成してもQE及び絶
縁抵抗が共に高く、しかも静電容量温度係数の小さい優
れた誘電体特性を有する焼結体が得られ、ニッケル等の
卑金属を内部電極に用いる積層セラミックコンデンサ用
の誘電体磁器組成物として使用が可能である。特に、Q
E特性が優れ、静電容量温度係数が小さいため高周波回
路などで使用する温度補償用の積層セラミックコンデン
サの誘電体磁器組成物として実用性が高いものである。
As shown in the above results, the dielectric properties of the present invention
The ceramic porcelain composition has a QEAnd absolute
Both edge resistance is high and capacitance temperature coefficient is small.
A sintered body with improved dielectric properties is obtained,
For multilayer ceramic capacitors using base metal for internal electrodes
It can be used as a dielectric ceramic composition. In particular, Q
EExcellent characteristics and low temperature coefficient of capacitance
Ceramic condenser for temperature compensation used in roads, etc.
It is highly practical as a dielectric ceramic composition.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体磁器組成物の範囲を示す三成分
系図
FIG. 1 is a ternary diagram showing the range of the dielectric ceramic composition of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 4/12 361 H01G 4/12 361 Fターム(参考) 4G031 AA03 AA04 AA06 AA07 AA11 AA12 AA13 AA30 AA39 BA09 CA03 5E001 AB03 AC09 AE00 AE02 AE03 AE04 AF06 AH01 AH05 AH06 AH09 AJ01 AJ02 5G303 AA01 AB01 AB06 AB08 AB11 AB20 BA12 CA01 CB01 CB03 CB06 CB17 CB18 CB26 CB30 CB35 CB36 CB39 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01G 4/12 361 H01G 4/12 361 F term (Reference) 4G031 AA03 AA04 AA06 AA07 AA11 AA12 AA13 AA30 AA39 BA09 CA03 5E001 AB03 AC09 AE00 AE02 AE03 AE04 AF06 AH01 AH05 AH06 AH09 AJ01 AJ02 5G303 AA01 AB01 AB06 AB08 AB11 AB20 BA12 CA01 CB01 CB03 CB06 CB17 CB18 CB26 CB30 CB35 CB36 CB39

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式として、x(MgmCa1-m)O−
y(TinZr1-n)O 2−zPr23(但しx+y+z
=1)で表される三成分系組成において、a(x=0.
49、y=0.50、z=0.01)、b(x=0.2
5、y=0.50、z=0.25)、c(x=0.9
7、y=0.02、z=0.01)で囲まれた組成(但
し、mは0.30≦m≦0.70、nは0.70≦n≦
0.90の範囲)100wt%に対し、添加物としてB
aSiO3、MgSiO3、CaSiO3の群より選ばれ
た一つを0.05〜3.00wt%、更にV25を0.
05〜0.30wt%添加した誘電体磁器組成物(尚
x、y、m、nはモル比を表す)。
1. The general formula x (MgmCa1-m) O-
y (TinZr1-n) O Two-ZPrTwoOThree(However, x + y + z
= 1) in the ternary composition represented by a (x = 0.
49, y = 0.50, z = 0.01), b (x = 0.2
5, y = 0.50, z = 0.25), c (x = 0.9
7, y = 0.02, z = 0.01)
And m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦
0.90 range) 100 wt%, B as an additive
aSiOThree, MgSiOThree, CaSiOThreeFrom the group of
The other one is 0.05 to 3.00 wt%, and VTwoOFiveTo 0.
The dielectric porcelain composition added with 0.5 to 0.30 wt% (note that
x, y, m, and n represent a molar ratio).
【請求項2】 請求項1に記載の誘電体磁器組成物の主
成分x(MgmCa1-m)O−y(TinZr1-n)O2
zPr23(但しx+y+z=1)で表される三成分系
組成において、a(x=0.49、y=0.50、z=
0.01)、b(x=0.25、y=0.50、z=
0.25)、c(x=0.97、y=0.02、z=
0.01)で囲まれた組成(但し、mは0.30≦m≦
0.70、nは0.70≦n≦0.90の範囲)100
wt%に対し、更にAl23を2.0wt%以下、及び
MnO2を0.5wt%以下(但し両方とも同時に0の
場合は除く)を添加した請求項1に記載の誘電体磁器組
成物(尚x、y、m、nはモル比を表す)。
2. A main component x (Mg m Ca 1-m ) of the dielectric ceramic composition according to claim 1 O-y (Ti n Zr 1-n) O 2 -
In a ternary composition represented by zPr 2 O 3 (where x + y + z = 1), a (x = 0.49, y = 0.50, z =
0.01), b (x = 0.25, y = 0.50, z =
0.25), c (x = 0.97, y = 0.02, z =
0.01) (where m is 0.30 ≦ m ≦
0.70, n is in the range of 0.70 ≦ n ≦ 0.90) 100
2. The dielectric ceramic composition according to claim 1, wherein Al 2 O 3 is added in an amount of 2.0 wt% or less and MnO 2 is added in an amount of 0.5 wt% or less (except when both are 0 at the same time). (Where x, y, m, and n represent molar ratios).
【請求項3】 請求項1及び請求項2に記載の誘電体磁
器組成物からなるセラミック層と、ニッケル等の卑金属
の内部電極で構成した積層セラミックコンデンサ。
3. A multilayer ceramic capacitor comprising a ceramic layer comprising the dielectric ceramic composition according to claim 1 and an internal electrode of a base metal such as nickel.
JP32055798A 1998-11-11 1998-11-11 Dielectric ceramic composition and multilayer ceramic capacitor using the same Expired - Lifetime JP3575298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32055798A JP3575298B2 (en) 1998-11-11 1998-11-11 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32055798A JP3575298B2 (en) 1998-11-11 1998-11-11 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2000143342A true JP2000143342A (en) 2000-05-23
JP3575298B2 JP3575298B2 (en) 2004-10-13

Family

ID=18122768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32055798A Expired - Lifetime JP3575298B2 (en) 1998-11-11 1998-11-11 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Country Status (1)

Country Link
JP (1) JP3575298B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925199A (en) * 2020-07-03 2020-11-13 成都宏科电子科技有限公司 Low-temperature sintered microwave dielectric ceramic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925199A (en) * 2020-07-03 2020-11-13 成都宏科电子科技有限公司 Low-temperature sintered microwave dielectric ceramic material and preparation method thereof
CN111925199B (en) * 2020-07-03 2022-07-01 成都宏科电子科技有限公司 Low-temperature sintered microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP3575298B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
KR100631995B1 (en) Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same
KR20010109177A (en) Multilayer Ceramic Capacitor and Production Method Thereof
KR20010095163A (en) Multilayer ceramic chip capacitor and method for producing same
JPH06206765A (en) Nonreducing dielectric ceramic composition
JP2000053466A (en) Non-reducible dielectric porcelain composition and laminated ceramic capacitor using the same
KR20030056175A (en) Nonreducible dielectric ceramic composition
JP3642282B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
US6613706B2 (en) Dielectric ceramic composition and ceramic capacitor
JP2002362970A (en) Dielectric ceramic composition and ceramic capacitor
JP2008162862A (en) Dielectric porcelain composition and electronic component
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3634930B2 (en) Dielectric porcelain composition
JP3575294B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3575299B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3575298B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2002087879A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same
JPH04188506A (en) Dielectric porcelain composition
KR0145121B1 (en) Dielectric ceramic compositions
JP4677961B2 (en) Electronic component, dielectric ceramic composition and manufacturing method thereof
JPH0551127B2 (en)
JP3106371B2 (en) Dielectric porcelain composition
JP2958826B2 (en) Dielectric porcelain composition
JPH056710A (en) Dielectric porcelain composition
JP4782539B2 (en) Dielectric porcelain
JP3064519B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term