JP2000129386A - Highly friction-resistant cemented carbide for brazing, and its manufacture - Google Patents

Highly friction-resistant cemented carbide for brazing, and its manufacture

Info

Publication number
JP2000129386A
JP2000129386A JP10309251A JP30925198A JP2000129386A JP 2000129386 A JP2000129386 A JP 2000129386A JP 10309251 A JP10309251 A JP 10309251A JP 30925198 A JP30925198 A JP 30925198A JP 2000129386 A JP2000129386 A JP 2000129386A
Authority
JP
Japan
Prior art keywords
cemented carbide
layer
brazing
high wear
resistant cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10309251A
Other languages
Japanese (ja)
Inventor
Hideki Moriguchi
秀樹 森口
Toshinori Shimose
敏憲 下瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10309251A priority Critical patent/JP2000129386A/en
Publication of JP2000129386A publication Critical patent/JP2000129386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cemented carbide capable of suppressing chipping caused by the generated thermal stress in brazing the cemented carbide to a steel machine body or a fixing steel jig, and its manufacturing method. SOLUTION: Relating to a cemented carbide that at least two layers of hard materials different in coefficient of linear expansion are laminated, the coefficient of linear expansion of each layer becomes larger from the highest layer to the lowest layer, and the highest layer comprises a coupling phase consisting of 0.01-2 wt.% ferrous metal, and a hard phase mainly consisting of WC. The lowest layer comprises a coupling phase consisting 20-50 wt.% ferrous metal and a hard phase mainly consisting of WC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は線膨張係数の異なる
硬質材料を積層した超硬合金に関するものである。特
に、ロウ付け時に亀裂が生じにくい超硬合金に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide in which hard materials having different linear expansion coefficients are laminated. In particular, the present invention relates to a cemented carbide that does not easily crack during brazing.

【0002】[0002]

【従来の技術】近年、WC基超硬合金はその優れた靭性、
耐摩耗性によりその適用分野を大幅に広げてきている。
その適用範囲の拡大のため、金属結合相量を大幅に低減
したバインダレス超硬合金が提案され、特に優れた耐摩
耗性を発揮している。
2. Description of the Related Art In recent years, WC-based cemented carbides have excellent toughness,
Its wear resistance has greatly expanded its field of application.
In order to expand the applicable range, a binderless cemented carbide in which the amount of the metal binding phase is significantly reduced has been proposed, and particularly exhibits excellent wear resistance.

【0003】[0003]

【発明が解決しようとする課題】しかし、バインダレス
超硬合金は金属結合相量を従来の超硬合金と比較して大
幅に低減しているため、その機械的強度は従来の超硬合
金と比較して低下している。中でも耐熱亀裂性の低下は
著しく、ロウ付け加工を行うと熱亀裂が生じやすいた
め、ロウ付け接合が必要な用途でこれらの材料を使用す
ることができなかった。
However, the binderless cemented carbide has a significantly reduced metal bonding phase compared to the conventional cemented carbide, so its mechanical strength is equal to that of the conventional cemented carbide. Compared to the decline. Above all, the heat cracking resistance is remarkably reduced, and thermal cracking is apt to occur when brazing is performed. Therefore, these materials cannot be used in applications that require brazing.

【0004】従って、本発明の主目的は、鋼製の基材に
ロウ付け接合する際でも熱応力による欠けが発生し難い
超硬合金とその製造方法とを提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a cemented carbide hardly causing chipping due to thermal stress even when brazing to a steel base material, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記のよう
な目的に対し、金属結合相量を低減した超硬合金の下層
にこれよりも結合相量の多い超硬合金を積層し、同時に
接合する構成とした。そして、その積層数や最上層中の
金属結合相量、WCの平均粒径、最下層中の金属結合相
量、WCの平均粒径などを最適化し、各層の線膨張係数を
上層から下層に向かって大きくなるように配置すること
で、ロウ付け接合に好適な焼結体を作製できることを見
出し、本発明に至ったものである。
Means for Solving the Problems The inventors of the present invention have, for the above-mentioned purpose, laminated a cemented carbide having a larger amount of a binder phase below a cemented carbide having a reduced amount of a metal binder phase, It was configured to be joined at the same time. The number of layers, the amount of metal binder phase in the uppermost layer, the average particle size of WC, the amount of metal binder phase in the lowermost layer, the average particle size of WC, etc. are optimized, and the coefficient of linear expansion of each layer is changed from the upper layer to the lower layer. It has been found that a sintered body suitable for brazing can be manufactured by arranging the sintered body so as to become larger toward it, and the present invention has been accomplished.

【0006】すなわち、本発明の超硬合金は、線膨張係
数が異なる硬質材料を2層以上積層した超硬合金におい
て、各層の線膨張係数が上層から下層に向かうに従って
大きくなる順に積層されている。最上層は0.01以上2重
量%未満の鉄族金属からなる結合相とWCを主体とする硬
質相とで構成される。また、最下層は15〜50重量%の鉄
族金属からなる結合相とWCを主体とする硬質相とから構
成されることを特徴とする。なお、各層の厚みを薄く
し、各層の組成変化を僅かづつとすることで、硬質材料
の厚さ方向における線膨張係数の変化が実質的に連続す
る構成も本発明に含む。
That is, in the cemented carbide according to the present invention, in a cemented carbide in which two or more hard materials having different linear expansion coefficients are laminated, the layers are laminated in such a manner that the linear expansion coefficient of each layer increases from the upper layer to the lower layer. . The uppermost layer is composed of a binder phase composed of 0.01 to less than 2% by weight of an iron group metal and a hard phase mainly composed of WC. Further, the lowermost layer is characterized by comprising a binder phase composed of 15 to 50% by weight of an iron group metal and a hard phase mainly composed of WC. The present invention also includes a configuration in which the thickness of each layer is reduced and the composition of each layer is slightly changed, so that the change in the coefficient of linear expansion in the thickness direction of the hard material is substantially continuous.

【0007】このような構成により、ロウ付けする際
に、鋼と最下層の熱膨張係数差を小さくすることがで
き、熱応力の発生による熱亀裂もしくは割れを生じにく
くできる。その上、最上層は結合相量が少なく耐摩耗性
に優れるため、バインダレス超硬合金と同様の耐摩耗性
が得られる。特に積層数を3層以上とすれば、亀裂や割
れの抑制効果は一層顕著になる。
[0007] With this configuration, when brazing, the difference in thermal expansion coefficient between the steel and the lowermost layer can be reduced, and thermal cracking or cracking due to generation of thermal stress can be suppressed. In addition, the uppermost layer has a small amount of binder phase and is excellent in wear resistance, so that the same wear resistance as that of the binderless cemented carbide can be obtained. In particular, when the number of layers is three or more, the effect of suppressing cracks and cracks becomes more remarkable.

【0008】最上層の結合相量を0.01以上2重量%未満
としたのは0.01重量%より少ないと焼結性が極端に低下
し、2重量%以上であるとバインダレス超硬合金として
の優れた耐摩耗性の実現が困難となるためである。
When the amount of the binder phase in the uppermost layer is 0.01 or more and less than 2% by weight, the sinterability is extremely reduced when the amount is less than 0.01% by weight, and when the amount is more than 2% by weight, the binderless cemented carbide is excellent. This is because it becomes difficult to realize wear resistance.

【0009】同様の観点から、最上層のWCの平均粒径は
0.1〜0.6μmであると特に優れた耐摩耗性を実現できる
ため好ましい。この範囲の平均粒径であると焼結中に生
成した液相の毛細管現象がWCの微粒化で起こりやすくな
って焼結性が向上する。なお、特に好ましい粒径は0.2
〜0.5μmのときである。最上層のWC粒子には100〜1500
MPaの圧縮残留応力が導入されており、この範囲の圧縮
残留応力が導入されていることで、ロウ付け時の引っ張
りの熱応力が発生しても打ち消す方向に働くため、ロウ
付け時の割れの発生が抑制される上、最上層が強靭化す
る効果もある。この圧縮残留応力の値が100MPaを下回る
と、ロウ付け時の割れ抑制や強靭化の効果が現れにく
く、1500MPaを上回ると圧縮破壊が起こりやすくなり挽
結体の強度が低下する。特に好ましいのは300〜1000MPa
のときである。
From the same viewpoint, the average particle size of WC in the uppermost layer is
It is preferable that the thickness be 0.1 to 0.6 μm because particularly excellent wear resistance can be realized. When the average particle diameter is in this range, the capillary phenomenon of the liquid phase generated during sintering is likely to occur due to the atomization of WC, and the sinterability is improved. Incidentally, a particularly preferred particle size is 0.2
It is the case of about 0.5 μm. 100-1500 for the top WC particles
MPa compressive residual stress is introduced, and by introducing the compressive residual stress in this range, even if tensile thermal stress occurs during brazing, it acts in the direction of canceling out, so cracking during brazing In addition to suppressing the occurrence, there is an effect that the uppermost layer is toughened. If the value of the compressive residual stress is less than 100 MPa, the effect of suppressing cracking and toughening at the time of brazing is less likely to be exhibited, and if it exceeds 1500 MPa, compressive fracture is likely to occur and the strength of the ground body is reduced. Particularly preferred is 300-1000MPa
It is time.

【0010】なお、この最上層の硬質材料のマトリック
スである硬質合金の結合相にはCoが好ましいが、耐食
性を向上させたい場合にはその少なくとも一部をNiやCr
で置き換えることが好ましく、中でも結合相の主体をNi
としたとき(結合相金属の50%以上がNiの意味)には特
に優れた耐食性を得ることができる。また、WCの少なく
とも一部をIVa,Va,VIa族元素の炭化物、窒化物または炭
窒化物、例えばTiC、TiCN、TiN、Mo2C、TaC、NbCなどで
置き換えても構わない。
[0010] Incidentally, Co is preferable for the binder phase of the hard alloy which is the matrix of the hard material of the uppermost layer, but if it is desired to improve the corrosion resistance, at least a part thereof is made of Ni or Cr.
Preferably, the main component of the binder phase is Ni.
(50% or more of the binder phase metal is Ni), particularly excellent corrosion resistance can be obtained. Further, at least a part of WC may be replaced by carbide, nitride or carbonitride of group IVa, Va, VIa element, for example, TiC, TiCN, TiN, Mo 2 C, TaC, NbC and the like.

【0011】一方、最下層のWC基超硬合金中の結合相は
15〜50重量%の鉄族金属とする。これは、15重量%未満
であるとロウ付け時の熱応力による割れ発生の抑制効果
が小さく、50重量%を越えると超硬合金としての優れた
性能が低下するためである。鉄族金属としてはロウ付け
時の割れ抑制の観点からCoを主体とすることが好まし
く、NiやFeなどを一部に用いても構わない。また、結合
相中にはIVa,Va,VIa族元素、例えばCr、Ta、Ti、Zrなど
が固溶されていると強度の観点から好ましい。なお、硬
質相であるWCの一部をTiの炭化物、窒化物または炭窒化
物で置き換えても構わないが、最も好ましいのはWCとCo
もしくはWCとCrが固溶したCoとからなる超硬合金とした
ときである。
On the other hand, the binder phase in the lowermost WC-base cemented carbide is
15-50% by weight of iron group metal. This is because if the content is less than 15% by weight, the effect of suppressing the occurrence of cracks due to thermal stress during brazing is small, and if it exceeds 50% by weight, excellent performance as a cemented carbide is reduced. The iron group metal is preferably composed mainly of Co from the viewpoint of suppressing cracking at the time of brazing, and Ni or Fe may be partially used. In addition, it is preferable from the viewpoint of strength that a group IVa, Va, or VIa element such as Cr, Ta, Ti, or Zr is dissolved in the binder phase. Although a part of WC, which is a hard phase, may be replaced with carbide, nitride or carbonitride of Ti, the most preferable is WC and Co.
Or when a cemented carbide made of WC and Co in which Cr is dissolved is used.

【0012】最下層中のWCの平均粒径は1〜5μmである
ことがロウ付け時の割れ発生抑制および亀裂進展抑制の
観点から好ましい。特に好ましいのはWCの平均粒径が1
〜3μmのときである。また、最下層のWCの平均粒径よ
りも、最上層のWCの平均粒径を小さくすると、最上層の
耐摩耗性向上と最下層の耐熱亀裂性向上が両立し、かつ
最上層の焼結性も焼結中に生成した液相の毛細管現象が
WCの微粒化で起こりやすくなって向上するため好まし
い。
The average particle size of the WC in the lowermost layer is preferably 1 to 5 μm from the viewpoint of suppressing crack generation and crack propagation during brazing. It is particularly preferable that the average particle size of WC is 1
33 μm. In addition, if the average particle size of the uppermost layer WC is smaller than the average particle size of the lowermost layer WC, the improvement of the wear resistance of the uppermost layer and the improvement of the heat crack resistance of the lowermost layer are compatible, and the sintering of the uppermost layer is performed. Capability of liquid phase generated during sintering
It is preferable because WC becomes finer and more likely to occur.

【0013】さらに、前記最下層の硬質材料のHv硬度
が1000kg/m以下であるようにすると、特に優れた耐
熱亀裂性を有することができ、ロウ付け加工性が向上す
る。
Further, when the Hv hardness of the hard material of the lowermost layer is set to 1000 kg / m 2 or less, particularly excellent heat crack resistance can be obtained, and brazing workability is improved.

【0014】本発明の超硬合金は、切削工具に成形して
木材加工用に用いると、最上層の結合相量が非常に少な
く、通電焼結によりWC粒子同士の結合力が向上している
ため、非常に優れた耐摩耗性を発揮することができる。
また、木材加工においては、耐食性を向上させることが
重要である。これは、木材自身が有する腐食成分や、集
合材が有する接着剤成分により超硬合金に腐食が生じや
すいためである。本発明では、結合相量を2wt%よりも
少なくしたことにより、優れた耐腐食性を期待でき、中
でも結合相の主体をNiとしたときに特に優れた耐腐食性
が期待できる。もちろん、ここでいう木材には無垢板や
合板、パーティクルボード、ファイバーボード、チップ
ボードなどの集合材が含まれる。
When the cemented carbide of the present invention is formed into a cutting tool and used for wood processing, the amount of the bonding phase in the uppermost layer is extremely small, and the bonding strength between WC particles is improved by current sintering. Therefore, extremely excellent wear resistance can be exhibited.
In wood processing, it is important to improve corrosion resistance. This is because corrosion is likely to occur in the cemented carbide due to the corrosion component of the wood itself and the adhesive component of the aggregate. In the present invention, excellent corrosion resistance can be expected by reducing the amount of the binder phase to less than 2 wt%, and particularly excellent corrosion resistance can be expected when the main component of the binder phase is Ni. Of course, the wood mentioned here includes aggregates such as solid boards, plywood, particle boards, fiber boards, and chip boards.

【0015】以上のような構造とすることで、従来の単
一層のバインダレス超硬合金では熱亀裂の発生のため不
可能であったロウ付け加工が可能となり、従来利用され
なかった用途でバインダレス超硬合金の優れた耐摩耗性
を実現できるようになる。また、本発明の構造とするこ
とで最下層が強靭な超硬合金とでき、最下層の最大長さ
が50mm以上の焼結体の作製が可能となる。その結果、こ
の50mm以上の大きさの焼結体から放電加工機やレーザー
加工機などを用いて多数個のロウ付け用部材に加工する
と、製造コストが安価となり有利である。
With the above structure, it is possible to perform brazing, which was impossible with a conventional single-layer binderless cemented carbide due to the occurrence of thermal cracks. It becomes possible to realize the excellent wear resistance of the less cemented carbide. Further, by adopting the structure of the present invention, the lowermost layer can be a tough cemented carbide, and a sintered body having a maximum length of the lowermost layer of 50 mm or more can be produced. As a result, when the sintered body having a size of 50 mm or more is processed into a large number of brazing members by using an electric discharge machine, a laser machine, or the like, the production cost is advantageously reduced.

【0016】本発明の超硬合金は、通電加圧焼結法によ
って製造されることが好ましい。すなわち、まず2層以
上の各層の原料粉末を混合する。ここで、最上層の原料
粉末は0.01以上2重量%未満の鉄族金属を主体とする結
合相とWCを主体とする硬質相とからなる。また、最下層
の原料粉末は15〜50重量%の鉄族金属を主体とする結合
相とWCを主体とする硬質相とからなる。次に、各層の原
料粉末を線膨張係数が最上層から最下層に向かうに従っ
て大きくなる順に黒鉛型に装填する。そして、通電加圧
焼結により黒鉛型内の前記原料粉末を焼結する。
The cemented carbide of the present invention is preferably produced by an electric current pressure sintering method. That is, first, the raw material powders of each of two or more layers are mixed. Here, the raw material powder in the uppermost layer is composed of a binder phase mainly composed of an iron group metal of 0.01 to less than 2% by weight and a hard phase mainly composed of WC. The lowermost raw material powder is composed of 15 to 50% by weight of a binder phase mainly composed of an iron group metal and a hard phase mainly composed of WC. Next, the raw material powder of each layer is loaded on a graphite mold in order of increasing linear expansion coefficient from the uppermost layer to the lowermost layer. Then, the raw material powder in the graphite mold is sintered by current pressure sintering.

【0017】通電加圧焼結法を用いることで、低温、短
時間焼結が可能となるため、焼結中に液相を生成した金
属結合相量が各層間を移動して、各層の組成が変動する
ことを抑制できる。なお、各層間の界面付近での若干の
金属結合相の移動は各層間の結合力を高める上で有効で
ある。また、内径50mm以上、好ましくは80mm以上の黒鉛
型を用いて焼結体を作製することも製造原価低減の観点
で好ましい。
The use of the current-pressure sintering method enables sintering at a low temperature for a short time, so that the amount of the metal-bonded phase that has generated the liquid phase during sintering moves between the layers, and the composition of each layer Can be suppressed from fluctuating. A slight movement of the metal binding phase near the interface between the layers is effective in increasing the bonding strength between the layers. It is also preferable from the viewpoint of reduction of manufacturing cost to produce a sintered body using a graphite mold having an inner diameter of 50 mm or more, preferably 80 mm or more.

【0018】この焼結法を用いた場合の好ましい製造条
件は以下の通りである。すなわち、焼結温度は硬質材料
に液相が生成する温度であることが好ましく、前記焼結
温度での保持時間が10秒以上30分以内、加圧力が5〜100
MPaの条件で通電加圧焼結して製造されると好ましい。
ここで、液相生成温度での保持時間を10秒以上30分以内
としたのは、10秒未満では焼結体の緻密化が不十分であ
り、30分を越えるとWCの粒成長が起こりやすく、また金
属結合相の移動を招く結果、最上層の優れた耐摩耗性と
最下層の優れたロウ付け性を両立させる狙いが達成しに
くくなるためである。特に、通電加圧焼結が1〜100msec
のパルス電流を用いて行われた場合には、非常に低温、
短時間で各層の金属結合相の移動が少ない緻密な焼結体
とでき、好都合である。
Preferred manufacturing conditions when this sintering method is used are as follows. That is, the sintering temperature is preferably a temperature at which a liquid phase is formed on the hard material, the holding time at the sintering temperature is 10 seconds or more and 30 minutes or less, and the pressing force is 5 to 100.
It is preferable to manufacture by sintering under electric pressure under the condition of MPa.
Here, the reason why the holding time at the liquid phase generation temperature is set to 10 seconds or more and 30 minutes or less is that if it is less than 10 seconds, the densification of the sintered body is insufficient, and if it exceeds 30 minutes, WC grain growth occurs. This is because it is difficult to achieve the aim of achieving both excellent abrasion resistance of the uppermost layer and excellent brazing properties of the lowermost layer as a result of migration of the metal binding phase. In particular, electric pressure sintering is 1 ~ 100msec
Very low temperature, when performed with a pulse current of
This is advantageous because a dense sintered body can be obtained in which the movement of the metal binding phase of each layer is small in a short time.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)平均粒径2μmのWC、Mo2C粉末、平均粒径1μ
mのCo、Ni、Cr粉末を準備し、表1の組成に配合後、ボー
ルミルを用いて混合し、焼結用粉末を用意した。このよ
うにして準備した粉末を各層の厚みが焼結後に2mmとな
るように表1の順に積層して、内径80mmの黒鉛型に充填
し、0.01Torr以下の真空中で圧力20MPaを付加しなが
ら、ON時間80msec OFF時間2msecのパルス電流を流して
通電加圧焼結した。昇温パターンは10分間で1330℃まで
昇温、その温度で3分間保持して、30℃/minの速度で冷
却した。このようにして得られた焼結体No.1-1〜No.1-1
5は直径が80mm、各層の厚みが2mmで総厚みが4〜6mmの焼
結体で、割れもなく良好な外観を呈していた。
Embodiments of the present invention will be described below. (Example 1) WC, Mo 2 C powder having an average particle size of 2 μm, and an average particle size of 1 μm
m Co, Ni, and Cr powders were prepared, blended into the compositions shown in Table 1, and mixed using a ball mill to prepare sintering powders. The powder thus prepared was laminated in the order shown in Table 1 so that the thickness of each layer became 2 mm after sintering, and filled in a graphite mold having an inner diameter of 80 mm, while applying a pressure of 20 MPa in a vacuum of 0.01 Torr or less. A pulsating current with an ON time of 80 msec and an OFF time of 2 msec was passed, and current pressure sintering was performed. In the heating pattern, the temperature was raised to 1330 ° C. in 10 minutes, kept at that temperature for 3 minutes, and cooled at a rate of 30 ° C./min. The sintered bodies No. 1-1 to No. 1-1 thus obtained
5 is a sintered body having a diameter of 80 mm, a thickness of each layer of 2 mm and a total thickness of 4 to 6 mm, and exhibited a good appearance without cracks.

【0020】[0020]

【表1】 [Table 1]

【0021】次に、これらの焼結体からワイヤカット装
置を用いて長さ70mm、幅10mm厚み4〜6mmの短冊状の試験
片を切りだし、ワイヤカット面およびロウ付け面を#20
0のダイヤモンド砥石を用いて平面研削後、SK5製鋼材に
銀ロウ(住友電工製SA3)とフラックス(硝酸25%、硼
砂30%、酸性フッ化カリ45%)を用いて、高周波炉で大
気中、700℃程度に加熱しながら最下層と鋼材のロウ付
け接合を行った。次に、ロウ付け接合した各試験片の最
上面に垂直方向から平均粒径100μmのSiC粉末を用い
て、5kg/cmで、60分間のサンドブラストを行い、耐
摩耗テストを行った。なお、ロウ付け接合がうまくでき
なかったNo.1-2、1-10、1-13、1-14、1-15は本テストを
行わなかった。耐摩耗テストの結果はNo.1-9の摩耗量を
100として、各試料の摩耗量を評価した。その結果を表2
に示す。
Next, a strip-shaped test piece having a length of 70 mm, a width of 10 mm and a thickness of 4 to 6 mm was cut out from these sintered bodies using a wire cutting device, and the wire cut surface and the brazed surface were # 20.
After surface grinding using a 0 diamond grindstone, SK5 steel material was subjected to air in a high frequency furnace using silver brazing (SA3 manufactured by Sumitomo Electric) and flux (25% nitric acid, 30% borax, 45% acid fluoride). The lowermost layer and the steel material were brazed while being heated to about 700 ° C. Next, abrasion test was performed on the uppermost surface of each of the brazed test pieces by sand blasting at 5 kg / cm 2 for 60 minutes using SiC powder having an average particle diameter of 100 μm from the vertical direction. Nos. 1-2, 1-10, 1-13, 1-14, and 1-15 where brazing was not successfully performed were not tested. The results of the abrasion test show the wear amount of No.1-9
The wear amount of each sample was evaluated as 100. Table 2 shows the results.
Shown in

【0022】[0022]

【表2】 [Table 2]

【0023】本発明品であるNo.1-1、1-3〜1-7、1-11、
1-12の試料には熱亀裂や割れもなく、鋼に対し良好に接
着し、しかも優れた耐摩耗性を示すことが確認できた。
一方、本発明品でないNo.1-2、1-10、1-13〜1-15の試料
にはロウ付け時に発生したと思われる熱亀裂や割れが発
生し、良好なロウ付けができなかった。No.1-2は最上層
の結合相量が極端に少なく、No.1-10は最下層の結合相
量が少なく、No.1-13は最下層の結合相量が多い。ま
た、 No.1-14、1-15は線膨張係数の配列が下層に向かう
に従って大きくなっていない。No.1-8、1-9はロウ付け
接合はうまくできたものの、最上層の結合相量が2wt%
以上であるため、耐摩耗性に劣る結果となった。
Nos. 1-1, 1-3 to 1-7, 1-11,
It was confirmed that the sample No. 1-12 had no thermal cracks or cracks, adhered well to steel, and exhibited excellent wear resistance.
On the other hand, the samples of Nos. 1-2, 1-10, and 1-13 to 1-15 which are not the products of the present invention generate thermal cracks and cracks which are considered to have occurred during brazing, and good brazing cannot be performed. Was. No. 1-2 has an extremely small amount of the binder phase in the top layer, No. 1-10 has a small amount of the binder phase in the bottom layer, and No. 1-13 has a large amount of the binder phase in the bottom layer. In Nos. 1-14 and 1-15, the array of linear expansion coefficients did not increase toward the lower layer. Nos. 1-8 and 1-9 were successfully joined by brazing, but the amount of binder phase in the top layer was 2 wt%
As a result, the wear resistance was poor.

【0024】(実施例2)実施例1で用いた粉末を用い
て、表3の組成と構造を持つ焼結体No.2-1〜2-7を実施例
1と同様にして作製した。なお、各層の厚みは1.5mm、総
厚みは4.5mmとした。なお、No.2-1の試料のみ単層で総
厚みは4.5mmである。
Example 2 Using the powder used in Example 1, sintered bodies No. 2-1 to 2-7 having the composition and structure shown in Table 3 were used.
It was produced in the same manner as 1. The thickness of each layer was 1.5 mm, and the total thickness was 4.5 mm. In addition, only the sample of No. 2-1 has a single layer and a total thickness of 4.5 mm.

【0025】[0025]

【表3】 [Table 3]

【0026】これらの試料の最上面を#200のダイヤモ
ンド砥石で平面研削後、#1500、♯3000のダイヤモンド
ペーストを用いて研磨し、この面の中央部をX線を用い
て最上層のWC粒子が有する応力の測定をsin2φ法により
行った。用いたX線の線源はCu−Kα線でWCのヤング率を
700GPa、ポアソン比を0.21として応力値を算出した。そ
の結果を表4中に記す。
The top surfaces of these samples were ground using a # 200 diamond grindstone and then polished using a # 1500, # 3000 diamond paste. Was measured by the sin 2 φ method. The X-ray source used was Cu-Kα radiation and the Young's modulus of WC was
The stress value was calculated with 700 GPa and Poisson's ratio of 0.21. The results are shown in Table 4.

【0027】[0027]

【表4】 [Table 4]

【0028】さらに、これらの試料から直径60mmの円盤
状の試験片をワイヤカット装置で切りだし、実施例1と
同様にロウ付け面を#200のダイヤモンド砥石を用いて
平面研削後、SUS304製鋼材に銀ロウ(Ag69%、Cu27%、
Ti4%)を用いて、真空炉中で800℃程度に加熱しながら
最下層と鋼材のロウ付け接合を行った。その結果を表4
に示すが、本発明品の積層構造を有するNo.2-2〜2-7の
試料には熱亀裂や割れもなく、鋼に対し良好に接着して
いることが確認できた。
Further, a disc-shaped test piece having a diameter of 60 mm was cut out from these samples by a wire cutting device, and the brazing surface was surface-ground using a # 200 diamond grindstone in the same manner as in Example 1; The silver wax (Ag69%, Cu27%,
Using Ti4%), the lowermost layer and the steel material were brazed while being heated to about 800 ° C. in a vacuum furnace. Table 4 shows the results.
As shown in the figure, it was confirmed that the samples Nos. 2-2 to 2-7 having the laminated structure of the product of the present invention did not have thermal cracks or cracks and were well bonded to steel.

【0029】次に、上記の鋼にロウ付けした円盤状試験
片の最上面に実施例1と同様にして垂直方向から100μm
のSiC粉末を用いて、5kg/cm2で、60分間のサンドブラ
ストを行い、エロージョンテストを行った。なお、No.2
-1の試料に関しては良好なロウ付けができていなかった
ため、ロウ付け前の試験片を用いて評価を行った。No.2
-1の摩耗量(重量減少量)を100としたときの各試料の
摩耗量を評価し、その結果を表4中に記載した。
Next, on the uppermost surface of the disc-shaped test piece brazed to the above steel, 100 μm from the vertical direction in the same manner as in Example 1.
Was blasted at 5 kg / cm 2 for 60 minutes using an SiC powder. No.2
Since the sample No.-1 could not be brazed well, evaluation was performed using a test piece before brazing. No.2
The wear amount of each sample when the wear amount (weight loss amount) of -1 was set to 100 was evaluated, and the results are shown in Table 4.

【0030】表4の結果より、WC粒子に導入された圧縮
応力値が100〜1500MPaの範囲にあるNo.2-2〜2-6の試料
は、圧縮応力値がこの範囲外にある試料No.2-1、2-7よ
りも優れた耐摩耗性を有し、中でも圧縮応力値が300〜1
000MPaの範囲にあるNo.2-3〜2-5の試料は特に優れた耐
摩耗性を有することがわかる。
From the results shown in Table 4, the samples of Nos. 2-2 to 2-6 in which the compressive stress value introduced into the WC particles was in the range of 100 to 1500 MPa were sample Nos. .2.Abrasion resistance superior to 2-7, with compressive stress value of 300-1
It turns out that the samples of No. 2-3 to 2-5 in the range of 000 MPa have particularly excellent wear resistance.

【0031】(実施例3)平均粒径0.1〜10μmのWC粉
末、平均粒経1μmのCo、Ni、Cr粉末を準備し、表5の組
成に配合後、ボールミルを用いて混合し、焼結用粉末を
用意した。このようにして準備した粉末を各層の厚みが
焼結後に1mmとなるように表5の順に積層して、内径60mm
の黒鉛型に充填し、0.01Torr以下の真空中で圧力30MPa
を付加しながら、ON時間が50msec、 OFF時間が10msec
のパルス電流を流して通電加圧焼結した。昇温パターン
は6分間で1350℃まで昇温、その温度で6分間保持して、
50℃/minの速度で冷却した。このようにして得られた
焼結体No.3-1〜3-9は直径が60mm、各層の厚みが1mmで総
厚みが3mmの焼結体で、割れもなく良好な外観を呈して
いた。
Example 3 A WC powder having an average particle diameter of 0.1 to 10 μm and Co, Ni, and Cr powders having an average particle diameter of 1 μm were prepared, blended into the composition shown in Table 5, mixed using a ball mill, and sintered. Powder was prepared. The powder thus prepared was laminated in the order of Table 5 so that the thickness of each layer became 1 mm after sintering, and the inner diameter was 60 mm.
Filled in a graphite mold, and pressure of 30 MPa in a vacuum of 0.01 Torr or less
With ON time of 50 ms and OFF time of 10 ms
Sintering by applying a pulse current of The temperature rise pattern is to rise to 1350 ° C in 6 minutes, hold at that temperature for 6 minutes,
It was cooled at a rate of 50 ° C./min. The sintered bodies Nos. 3-1 to 3-9 thus obtained were sintered bodies having a diameter of 60 mm, a thickness of each layer of 1 mm and a total thickness of 3 mm, and had a good appearance without cracks. .

【0032】[0032]

【表5】 [Table 5]

【0033】次に、この焼結体の一部をダイヤモンド砥
石を用いて切断し、厚み方向の断面を平面研削後、鏡面
研磨し、最下層のHv硬度をダイヤモンド製のビッカース
圧子を用いて荷重50kgで測定するとともに、最上層と最
下層の中に含まれるWCの平均粒径をフルマンの式により
算出した。その結果を表6中に記載した。
Next, a part of the sintered body is cut using a diamond grindstone, the cross section in the thickness direction is surface ground, and then mirror-polished, and the Hv hardness of the lowermost layer is measured using a diamond Vickers indenter. The measurement was carried out at 50 kg, and the average particle size of WC contained in the uppermost layer and the lowermost layer was calculated by Fulman's equation. The results are shown in Table 6.

【0034】[0034]

【表6】 [Table 6]

【0035】さらに、これらの試料から50mm×40mm×厚
み3mmの角状の試験片をワイヤカット装置を用いて切り
出し、実施例1と同様にワイヤカット面およびロウ付け
面を#200のダイヤモンド砥石を用いて平面研削後、S45
C製鋼材に銀ロウ(住友電工製SA2)とフラックス(硝酸
25%、硼砂30%、酸性フッ化カリ45%)を用いて、高周
波炉において大気中で700℃程度に加熱しながら最下層
と鋼材のロウ付け接合を行った。その結果を表6に示
す。本発明品の積層構造を有するNo.3-1〜3-9の試料に
はいずれも熱亀裂や割れもなく、鋼に対し良好に接着し
ていることが確認できた。
Further, a square test piece having a size of 50 mm × 40 mm × thickness 3 mm was cut out from these samples using a wire cutting device, and the wire cut surface and the brazing surface were cut with a # 200 diamond grindstone in the same manner as in Example 1. After surface grinding using
Silver steel (Sumitomo Electric SA2) and flux (Nitric acid)
(25%, 30% borax, 45% acid fluoride)), the lowermost layer and the steel material were brazed while heating to about 700 ° C. in the air in a high frequency furnace. Table 6 shows the results. It was confirmed that all of the samples Nos. 3-1 to 3-9 having the laminated structure of the product of the present invention did not have any thermal cracks or cracks and were well bonded to steel.

【0036】このようにして鋼にロウ付け接合したNo.3
-1〜3-9の角状試験片の表面を#400のダイヤモンド砥石
を用いて平面研削し、これらの面に対して垂直方向から
φ20の超硬ボールを用いて15Jの衝撃エネルギー与える
試験を行った。この破壊衝撃試験では、衝撃を5回与え
る度に試験片の破壊の有無を確認しながら試験片が破壊
するまで繰り返し、試験片が破壊するまでに要した破壊
衝撃回数を計測した。その結果も表6に示す。
No. 3 thus brazed to steel
The surface of -1 to 3-9 square test specimens was ground using a # 400 diamond grindstone, and a 15 J impact energy test was performed on these surfaces from a perpendicular direction using a φ20 carbide ball. went. In this fracture impact test, each time the impact was applied five times, the test piece was repeatedly checked until the specimen was destroyed while checking whether the specimen was destroyed, and the number of fracture impacts required until the specimen was destroyed was measured. Table 6 also shows the results.

【0037】また、前述の方法で同様に鋼製円板の外周
部に2×2×厚み3mmのNo.3-1〜3-9の角状試験片をロウ付
け接合した。さらに、この試験片の最上層のエッジ部に
0.02mmのホーニング処理を行なった後、回転速度50m/m
in、切り込み0.15mm、すくい角10°の条件でパーティク
ルボードの切削試験を行った。なお、No.3-3の摩耗量
(重量減少量)を100としたときの各試料の摩耗量を評
価し、その結果を表6中に記載した。
Similarly, square test pieces of No. 3-1 to 3-9 having a size of 2 × 2 × 3 mm and having a thickness of 3 mm were brazed to the outer peripheral portion of the steel disk in the same manner as described above. In addition, the edge of the uppermost layer of this test piece
After performing honing treatment of 0.02mm, rotation speed 50m / m
In, a cutting test of the particle board was performed under the conditions of 0.15 mm notch and rake angle of 10 °. The wear amount of each sample was evaluated when the wear amount (weight loss amount) of No. 3-3 was set to 100, and the results are shown in Table 6.

【0038】表6の結果より、最下層のHv硬度が1000kg
/m2以下であるNo.3-2〜3-9の試料は最下層の硬度が100
0kg/m2より大きいNo.3-1の試料よりも優れた耐衝撃性
を示している。中でも最下層のWCの平均粒径が1〜5μm
の範囲にあるNo.3-2、3-3、3-4、3-6、3-7、3-8、3-9の
試料は優れた耐衝撃性を示した。また、最下層中のWCの
平均粒径よりも最上層中のWCの平均粒度が小さいNo.3-
6、3-7、3-8の試料の耐摩耗性は最上層と最下層のWCの
平均粒径が等しいNo.3-3の試料よりも優れている。さら
に、最上層のWCの平均粒径が0.1〜0.6μmの範囲にあるN
o.3-6、3-7、3-8の試料のパーティクルボード切削にお
ける耐摩耗性は特に優れていることが確認できた。
From the results shown in Table 6, the Hv hardness of the lowermost layer is 1000 kg.
/ M 2 or less, the samples of Nos. 3-2 to 3-9 have a lowermost layer hardness of 100.
It shows better impact resistance than the sample of No. 3-1 larger than 0 kg / m 2 . Among them, the average particle size of WC in the lowermost layer is 1 to 5 μm
The samples of Nos. 3-2, 3-3, 3-4, 3-6, 3-7, 3-8, and 3-9 in the range indicated excellent impact resistance. Also, the average particle size of WC in the uppermost layer is smaller than the average particle size of WC in the lowermost layer.
The wear resistance of the samples of 6, 3-7 and 3-8 is superior to that of the sample of No. 3-3 in which the average particle size of WC in the uppermost layer and the lowermost layer is equal. Furthermore, the average particle size of WC in the uppermost layer is in the range of 0.1 to 0.6 μm.
The abrasion resistance of the samples of o.3-6, 3-7, and 3-8 in particle board cutting was particularly excellent.

【0039】[0039]

【発明の効果】以上説明したように、本発明超硬合金に
よれば、最上層を硬度に優れたバインダレス超硬合金で
構成し、下層に向かって線膨張係数が大きくなるような
積層構造の焼結体とすることで、この超硬合金を鋼材料
にロウ付けする際に熱応力に伴う割れを抑制し、鋼材料
との接着性を高めることができる。
As described above, according to the cemented carbide of the present invention, the uppermost layer is made of a binderless cemented carbide having excellent hardness, and the laminated structure in which the linear expansion coefficient increases toward the lower layer. By using this sintered body, cracking due to thermal stress when brazing this cemented carbide to a steel material can be suppressed, and the adhesion to the steel material can be increased.

【0040】また、本発明製造方法によれば、製造コス
トの低減および大サイズの焼結体の製造が可能となる。
また、低温での短時間焼結が可能であり、各層間の組成
の変動を極力少なくして複数層を同時焼結することがで
きる。
Further, according to the manufacturing method of the present invention, the manufacturing cost can be reduced and a large-sized sintered body can be manufactured.
Further, sintering at a low temperature for a short period of time is possible, and sintering of a plurality of layers can be performed at the same time with a minimum change in the composition between the layers.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 線膨張係数が異なる硬質材料を2層以上
積層した超硬合金において、 各層の線膨張係数は上層から下層に向かうに従って大き
くなる順に構成され、 最上層は0.01以上2重量%未満の鉄族金属からなる結合
相とWCを主体とする硬質相とからなり、 最下層は15〜50重量%の鉄族金属からなる結合相とWCを
主体とする硬質相とからなることを特徴とするロウ付け
用高耐摩耗性超硬合金。
1. A cemented carbide in which two or more hard materials having different linear expansion coefficients are laminated, wherein the linear expansion coefficient of each layer is configured in the order of increasing from the upper layer to the lower layer, and the uppermost layer is 0.01 to less than 2% by weight. Characterized by a binder phase composed of iron group metal and a hard phase mainly composed of WC, and the lowermost layer is composed of a binder phase composed of 15 to 50% by weight of iron group metal and a hard phase mainly composed of WC. High wear resistant cemented carbide for brazing.
【請求項2】 前記硬質材料の積層数が3層以上である
ことを特徴とする請求項1に記載のロウ付け用高耐摩耗
性超硬合金。
2. The high wear resistant cemented carbide for brazing according to claim 1, wherein the number of layers of the hard material is three or more.
【請求項3】 前記最上層のWCの平均粒径が0.1〜0.6μ
mであることを特徴とする請求項1に記載のロウ付け用
高耐摩耗性超硬合金。
3. The WC of the uppermost layer has an average particle size of 0.1 to 0.6 μm.
The high wear resistant cemented carbide for brazing according to claim 1, wherein m is m.
【請求項4】 前記最上層中のWC粒子が100〜1500MPaの
圧縮残留応力を有することを特徴とする請求項1に記載
のロウ付け用高耐摩耗性超硬合金。
4. The high wear resistant cemented carbide according to claim 1, wherein the WC particles in the uppermost layer have a compressive residual stress of 100 to 1500 MPa.
【請求項5】 前記最上層の結合相の主体がNiであるこ
とを特徴とする請求項1記載のロウ付け用高耐摩耗性超
硬合金。
5. The high wear resistant cemented carbide for brazing according to claim 1, wherein a main component of the binder phase in the uppermost layer is Ni.
【請求項6】 前記最下層のWCの平均粒径が1〜5μmで
あることを特徴とする請求項1に記載のロウ付け用高耐
摩耗性超硬合金。
6. The high wear-resistant cemented carbide for brazing according to claim 1, wherein the WC in the lowermost layer has an average particle size of 1 to 5 μm.
【請求項7】 前記最上層のWCの平均粒径よりも、前記
最下層のWCの平均粒径が大きいことを特徴とする請求項
1に記載のロウ付け用高耐摩耗性超硬合金。
7. The high wear-resistant cemented carbide for brazing according to claim 1, wherein the average particle size of the WC of the lowermost layer is larger than the average particle size of the WC of the uppermost layer.
【請求項8】 前記最下層のHv硬度が1000kg/mm以下
であることを特徴とする請求項1に記載のロウ付け用高
耐摩耗性超硬合金。
8. The high wear resistant cemented carbide for brazing according to claim 1, wherein the Hv hardness of the lowermost layer is 1000 kg / mm 2 or less.
【請求項9】 前記最下層の最大長さが50mm以上あるこ
とを特徴とするロウ付け用高耐摩耗性超硬合金。
9. A high wear resistant cemented carbide for brazing, wherein the maximum length of the lowermost layer is 50 mm or more.
【請求項10】 木材加工用であることを特徴とする請
求項1に記載のロウ付け用高耐摩耗性超硬合金。
10. The high wear resistant cemented carbide for brazing according to claim 1, wherein the cemented carbide is for wood processing.
【請求項11】 2層以上の各層の原料粉末を混合する
工程と、 各層の原料粉末を線膨張係数が最上層から最下層に向か
うに従って大きくなる順に黒鉛型に装填する工程と、 1〜100msecのパルス電流を用いた通電加圧焼結により黒
鉛型内の前記原料粉末を焼結する工程とを具え、 最上層の原料粉末は、0.01以上2重量%未満の鉄族金属
からなる結合相とWCを主体とする硬質相とからなり、 最下層の原料粉末は、25〜70体積%の鉄族金属を主体と
する結合相とWCを主体とする硬質相とからなることを特
徴とするロウ付け用高耐摩耗性超硬合金の製造方法。
11. A step of mixing two or more layers of raw material powder, a step of loading the raw material powder of each layer into a graphite mold in order of increasing linear expansion coefficient from the uppermost layer to the lowermost layer, 1 to 100 msec. Sintering the raw material powder in the graphite mold by current pressure sintering using a pulse current, wherein the uppermost raw material powder has a binder phase composed of an iron group metal of 0.01 or more and less than 2% by weight. A wax comprising a hard phase mainly composed of WC, and a lowermost raw material powder comprising a binder phase mainly composed of 25 to 70% by volume of an iron group metal and a hard phase mainly composed of WC. Manufacturing method of high wear resistant cemented carbide for mounting.
JP10309251A 1998-10-29 1998-10-29 Highly friction-resistant cemented carbide for brazing, and its manufacture Pending JP2000129386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10309251A JP2000129386A (en) 1998-10-29 1998-10-29 Highly friction-resistant cemented carbide for brazing, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10309251A JP2000129386A (en) 1998-10-29 1998-10-29 Highly friction-resistant cemented carbide for brazing, and its manufacture

Publications (1)

Publication Number Publication Date
JP2000129386A true JP2000129386A (en) 2000-05-09

Family

ID=17990758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10309251A Pending JP2000129386A (en) 1998-10-29 1998-10-29 Highly friction-resistant cemented carbide for brazing, and its manufacture

Country Status (1)

Country Link
JP (1) JP2000129386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275508A (en) * 2001-03-15 2002-09-25 Sumitomo Electric Ind Ltd Cutting blade for working semiconductor product and production method therefor
CN101858200A (en) * 2010-05-14 2010-10-13 苏州新锐硬质合金有限公司 Diamond composite sheet matrix with carbon potential gradient

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275508A (en) * 2001-03-15 2002-09-25 Sumitomo Electric Ind Ltd Cutting blade for working semiconductor product and production method therefor
JP4480912B2 (en) * 2001-03-15 2010-06-16 住友電工ハードメタル株式会社 Cutting blade for semiconductor product processing and manufacturing method thereof
CN101858200A (en) * 2010-05-14 2010-10-13 苏州新锐硬质合金有限公司 Diamond composite sheet matrix with carbon potential gradient

Similar Documents

Publication Publication Date Title
US5697994A (en) PCD or PCBN cutting tools for woodworking applications
KR101269498B1 (en) Abrasive slicing tool for electronics industry
JP5063831B2 (en) Cutting tools
CN105349965B (en) A kind of composite polycrystal-diamond and preparation method thereof
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JPH0726173B2 (en) High toughness cermet and method for producing the same
US9764448B2 (en) Binder for the fabrication of diamond tools
EP1231288B1 (en) Composite material containing ultra-hard particle
JP2000129386A (en) Highly friction-resistant cemented carbide for brazing, and its manufacture
JP5447845B2 (en) Surface coated cutting tool
JP3651285B2 (en) Cubic boron nitride-containing brazing composite material and method for producing the same
JP3651284B2 (en) Diamond-containing brazing composite material and method for producing the same
JP5656076B2 (en) cBN insert
JP2004510884A (en) Abrasive and wear-resistant materials
JPH11188510A (en) Hard sintered body cutting tool
JP4857506B2 (en) WC-based cemented carbide multilayer chip
JPH10310840A (en) Superhard composite member and its production
JP2001187431A (en) Laminated structural material
JP2001040446A (en) Diamond-containing hard member and its production
JPH05230589A (en) Wc-based cemented carbide
JPS6324003A (en) Composite cutting tip
JPH10310839A (en) Super hard composite member with high toughness, and its production
JP2002045957A (en) Member for molten metal excellent in erosion resistance to molten metal and its producing method
WO2023248318A1 (en) Wear-resistant member
JP2000135607A (en) Centerless blade and its manufacture