JP2000128655A - Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same - Google Patents

Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same

Info

Publication number
JP2000128655A
JP2000128655A JP30862698A JP30862698A JP2000128655A JP 2000128655 A JP2000128655 A JP 2000128655A JP 30862698 A JP30862698 A JP 30862698A JP 30862698 A JP30862698 A JP 30862698A JP 2000128655 A JP2000128655 A JP 2000128655A
Authority
JP
Japan
Prior art keywords
brazing material
ceramic
inorganic powder
metal
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30862698A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
智 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30862698A priority Critical patent/JP2000128655A/en
Publication of JP2000128655A publication Critical patent/JP2000128655A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a joined structure of a ceramic member to a metal member, having a highly strong and stable joining of the ceramic member to the metal member by dispersing inorganic powder having a wetting angle and a melting point at specific values or larger, respectively, in a brazing material. SOLUTION: This joined structure of a ceramic member 4 to a metal member 1 is obtained by forming a brazing material layer 3 not containing inorganic powder on a ceramic member 4, superposing a brazing material layer 2 containing inorganic power which has a wetting angle of >=50 degree with the first brazing material, has a melting point of >=1,200 deg.C and is dispersed in the brazing material layer 2, further superposing a metal member 1, and subsequently joining the superposed product by an ultrasonic joining method, etc. The inorganic powder preferably has a flaky or plate-like shape and an average particle diameter of 2-l00 μm. The kind of the inorganic powder is especially preferably carbon. Thereby, the generation of cracks in the joined portion of the ceramic member 4 can be prevented, because thermal stresses can be absorbed by slippage or deformation on interfaces between the brazing materials and carbon particles dispersed in the brazing materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、セラミック体と金
属体をロウ材を介して接合した接合構造およびこれを用
いたセラミックヒ−タに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining structure in which a ceramic body and a metal body are joined via a brazing material, and a ceramic heater using the same.

【0002】[0002]

【従来の技術】セラミックヒ−タにおいてセラミック体
の端部に金属リ−ドを接合することが行なわれている。
このような場合に、セラミック体と金属体を接合するに
は、セラミック表面をMo−Mn法でメタライズ(金属
化)し、さらにNiメッキを施したのち、銀ロウ材で金
属とロウ接する方法や、Ti、Zr、V等の金属化合物
層をセラミック−金属界面に形成して層間の密着性を改
善した活性金属法などが広く一般的に利用されている。
2. Description of the Related Art In a ceramic heater, a metal lead is joined to an end of a ceramic body.
In such a case, in order to join the ceramic body and the metal body, a method of metallizing (metallizing) the ceramic surface by the Mo-Mn method, further applying Ni plating, and then brazing to the metal with a silver brazing material may be used. An active metal method in which a metal compound layer of Ti, Zr, V, etc. is formed at the ceramic-metal interface to improve the adhesion between the layers is widely and generally used.

【0003】しかし、先のMo−Mn法はアルミナ等の
酸化物系セラミックには広く採用されているが、窒化珪
素セラミック等の非酸化物系セラミックへの適用は困難
である。また、活性金属法はメタライズとロウ接とを同
時に行うために、銀ロウ中に活性金属であるTiを含有
させたAg- Cu- Ti系、Ag−Cu- In- Ti系
などのロウ材を使用してセラミックと直接反応させて接
合するなど改善が見られるが、十分な強度を有し、耐酸
化性、耐熱性に優れた接合体は得られていないのが現状
である。
However, the Mo-Mn method is widely used for oxide ceramics such as alumina, but is difficult to apply to non-oxide ceramics such as silicon nitride ceramics. In the active metal method, in order to simultaneously perform metallization and brazing, a brazing material such as Ag-Cu-Ti-based or Ag-Cu-In-Ti-based in which Ti as an active metal is contained in a silver braze is used. Although improvements have been seen such as bonding by directly reacting with ceramics during use, a bonded body having sufficient strength and excellent in oxidation resistance and heat resistance has not yet been obtained.

【0004】通常セラミック体と金属体を加熱接合する
場合、両者の熱膨張差により冷却過程で接合部の付近に
残留応力が働き、接合体の接合強度の低下やセラミック
スに割れ等が発生する。この残留応力を低減するため両
者の間にMo、W、Fe−Ni−Co合金等の低熱膨張
金属を挿入して接合したり、Ni、銅、アルミニウム等
の軟質金属板を挟み込んで接合するようにしている。
Usually, when a ceramic body and a metal body are joined by heating, a residual stress acts near the joint in the cooling process due to a difference in thermal expansion between the two, causing a decrease in the joint strength of the joined body and cracking of the ceramic. In order to reduce the residual stress, a low thermal expansion metal such as Mo, W, Fe-Ni-Co alloy or the like is inserted between the two for joining, or a soft metal plate such as Ni, copper, aluminum or the like is sandwiched for joining. I have to.

【0005】これらの軟質金属のなかで銅は耐力が低い
ため応力がかかる接合体に使用すると銅の部分が変形し
てしまう。アルミニウムも同様であり、さらに融点が低
いために高温で使用する接合体には使用できない。Ni
は耐力があり、耐酸化性、耐熱性の面で優れた特性を持
っているので、セラミック体と金属体の接合用の緩衝材
として適しているが、熱膨張の小さい高純度の窒化物系
セラミックと、接合される金属の間に単純にNi板を挿
入しても両者(Ni板とセラミック)の熱膨張差により
冷却過程での残留応力が大きくなり、セラミックに割れ
が発生し高い接合強度を有する接合体は得られない。
[0005] Among these soft metals, copper has a low proof stress, so that when used for a joint to which stress is applied, the copper portion is deformed. Similarly, aluminum cannot be used for a joined body used at high temperature because of its low melting point. Ni
Is a high-purity nitride material with low thermal expansion, which is suitable as a cushioning material for joining ceramic and metal bodies because it has high strength and excellent properties in terms of oxidation resistance and heat resistance. Even if a Ni plate is simply inserted between the ceramic and the metal to be joined, residual stress in the cooling process increases due to the difference in thermal expansion between the two (the Ni plate and the ceramic), resulting in cracks in the ceramic and high joining strength Cannot be obtained.

【0006】前述したように活性金属法による方法で
は、Ag−Cu系のロウ材中に活性金属としてTiを使
用したものが多い。ここで、このAg−Cu−Ti系ロ
ウ材と窒化物系セラミック(ここでは窒化珪素セラミッ
ク)と金属板の3種類の物質の接合を例にその接合メカ
ニズムと実際の問題点について考えてみる。
As described above, in the method based on the active metal method, there are many Ag-Cu brazing materials using Ti as an active metal. Here, the joining mechanism and actual problems will be considered by taking as an example the joining of three types of materials of the Ag-Cu-Ti-based brazing material, the nitride-based ceramic (here, silicon nitride ceramic), and the metal plate.

【0007】図3(a)に示すようにたとえばAg−C
u−Ti系のようなロウ材層3を用いてセラミック体4
と金属体1を活性金属法で接合する場合、窒化珪素等の
セラミック体4とロウ材層3との界面にはTiN及びT
5 Si3 の反応層が生成され、この層の形成によりロ
ウ材層3と接していたセラミック体4の表面はメタライ
ズ(金属化)されるものと考えられる。
As shown in FIG. 3A, for example, Ag-C
Ceramic body 4 using brazing material layer 3 such as u-Ti
When the metal body 1 and the metal body 1 are joined by the active metal method, the interface between the ceramic body 4 such as silicon nitride and the brazing material layer 3 is formed by TiN and T
It is considered that a reaction layer of i 5 Si 3 is generated, and the surface of the ceramic body 4 in contact with the brazing material layer 3 is metallized (metallized) by the formation of this layer.

【0008】このTiN及びTi5 Si3 の反応層の上
にAg−Cu合金のロウ材層3が形成され、さらにこの
ロウ材層3と金属体1とがロウ付けされることにより3
種類の物質の接合体が得られる。
A brazing material layer 3 of an Ag—Cu alloy is formed on the reaction layer of TiN and Ti 5 Si 3 , and the brazing material layer 3 and the metal body 1 are brazed.
A conjugate of different materials is obtained.

【0009】[0009]

【発明が解決しようとする課題】しかし、上記の接合構
造において加熱接合される金属体1とセラミック体4と
の熱膨張の差が大きいと冷却過程で接合部付近に残留応
力が発生する。この場合に、接合される金属体1がNi
板であっても、窒化珪素セラミックとNi板の熱膨張の
差で生じる残留応力がロウ材層3の中あるいはセラミッ
クス体4の表面に働き、接合体の接合強度の低下やセラ
ミックの割れが問題となる。
However, if the difference in thermal expansion between the metal member 1 and the ceramic member 4 to be heated and joined in the above-described joint structure is large, residual stress is generated in the vicinity of the joint during the cooling process. In this case, the metal body 1 to be joined is Ni
Even in the case of a plate, the residual stress generated due to the difference in thermal expansion between the silicon nitride ceramic and the Ni plate acts in the brazing material layer 3 or on the surface of the ceramic body 4, and there is a problem in that the joining strength of the joined body is reduced and the ceramic is cracked. Becomes

【0010】また、上記問題を防止するために、一般的
に緩衝層として使用される軟質金属(たとえば銅など)
は耐熱性や耐食性に問題があり十分に満足できる緩衝
材、緩衝層とはならない。
In order to prevent the above problem, a soft metal (for example, copper) generally used as a buffer layer is used.
Has a problem in heat resistance and corrosion resistance and cannot be a sufficiently satisfactory buffer material or buffer layer.

【0011】そのために、例えばセラミックヒータのリ
ード接続部について、信頼性の高い接合ができないとい
う問題点があった。
For this reason, for example, there has been a problem that a highly reliable bonding cannot be performed at a lead connection portion of a ceramic heater.

【0012】本発明は、セラミック体と金属体との接合
を高強度でかつ安定したものとするために必要な緩衝層
の形成方法およびその緩衝層を有する金属とセラミック
の接合を可能にし、接合の信頼性の高いセラミック体と
金属体の接合構造を提供する点にある。
The present invention enables a method of forming a buffer layer necessary for making a ceramic body and a metal body to have high strength and stability and a metal-ceramic bonding having the buffer layer. Another object of the present invention is to provide a highly reliable bonding structure between a ceramic body and a metal body.

【0013】[0013]

【課題を解決するための手段】本発明者らは、セラミッ
ク体と金属体の接合構造において、両者を接合するロウ
材中に炭素粒子等のロウ材に対する濡れ角50°以上、
融点1200℃以上の無機粉末を分散させることによっ
て無機粉末付近のロウ材が滑り変形しやすいようにする
ことにより、セラミック体と金属体の熱膨張差を緩和
し、接合部付近のセラミック体へのクラック発生を防止
できることを見出した。
Means for Solving the Problems In the joint structure of a ceramic body and a metal body, the present inventors have found that the brazing material for joining the two has a wetting angle of at least 50 ° with respect to the brazing material such as carbon particles.
By dispersing the inorganic powder having a melting point of 1200 ° C. or more, the brazing filler metal near the inorganic powder is liable to slip and deform, so that the difference in thermal expansion between the ceramic body and the metal body is reduced, and the ceramic body near the joint is applied to the ceramic body. It has been found that cracking can be prevented.

【0014】[0014]

【作用】セラミック体と金属体をロウ付けした構造にお
いては、前述のように、セラミック体と金属体の熱膨張
率の差による熱応力が破壊の原因となる。本発明のよう
に、セラミック体と金属体を接合するロウ材の部分に、
ロウ材に対して濡れ角が50°以上であり融点が120
0℃以上である無機粉末、たとえば炭素粒子を介在させ
ると、前記熱応力をロウ材とロウ材中に分散している炭
素粒子の界面の滑りないしは変形により熱応力を吸収で
きるので、セラミック体の接合部に発生するクラックを
防止することができる。
In the structure in which the ceramic body and the metal body are brazed, as described above, thermal stress due to the difference in the coefficient of thermal expansion between the ceramic body and the metal body causes destruction. As in the present invention, in the brazing material portion joining the ceramic body and the metal body,
The wetting angle to the brazing material is 50 ° or more and the melting point is 120.
When an inorganic powder having a temperature of 0 ° C. or higher, for example, carbon particles is interposed, the thermal stress can be absorbed by slipping or deformation of the interface between the brazing material and the carbon particles dispersed in the brazing material. It is possible to prevent cracks generated at the joint.

【0015】[0015]

【発明の実施の形態】図1(a)を用いて、本発明のセ
ラミック体と金属体の接合構造を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A joining structure between a ceramic body and a metal body according to the present invention will be described with reference to FIG.

【0016】まず、セラミック体4上に無機粉末を含ま
ないロウ材層3を形成する。その後、ロウ材との濡れ角
が50°以上であり融点が1200℃以上である無機粉
末を分散させたロウ材層2を重ね、さらにその上に、金
属体1を重ねて、例えば超音波接合を用いて接合して、
本発明のセラミック体と金属体の接合体を得ることがで
きる。
First, a brazing material layer 3 containing no inorganic powder is formed on a ceramic body 4. Thereafter, a brazing material layer 2 in which an inorganic powder having a wetting angle with the brazing material of 50 ° or more and a melting point of 1200 ° C. or more is dispersed, and a metal body 1 is further laminated thereon, for example, by ultrasonic bonding And joined using
The joined body of the ceramic body and the metal body of the present invention can be obtained.

【0017】また、他の実施形態として、無機粉末を分
散させたロウ材層2と金属体1との間に、さらに無機粉
末を含まないロウ材層3を介在させることもできる。
In another embodiment, a brazing material layer 3 containing no inorganic powder may be interposed between the metal material 1 and the brazing material layer 2 in which the inorganic powder is dispersed.

【0018】そして、この無機粉末を分散させたロウ材
層2として、ロウ材との濡れ角が50°以上であり融点
が1200℃以上である無機粉末を分散させたものを用
いることにより、熱膨張差による応力を緩和することが
できる。
As the brazing material layer 2 in which the inorganic powder is dispersed, a material in which an inorganic powder having a wetting angle with the brazing material of 50 ° or more and a melting point of 1200 ° C. or more is dispersed is used. The stress due to the difference in expansion can be reduced.

【0019】ロウ材との濡れ角が50°以上の無機粉末
とした理由は、もし濡れ角が50°未満であると無機粉
末と無機粉末を分散させたロウ材層2が強固に密着する
ため、無機粉末とロウ材間の剥離に起因する滑りによ
り、熱膨張差による応力の緩和が期待できなくなるから
である。
The reason why the inorganic powder having a wetting angle of 50 ° or more with the brazing material is that if the wetting angle is less than 50 °, the inorganic powder and the brazing material layer 2 in which the inorganic powder is dispersed are firmly adhered. This is because, due to slippage caused by separation between the inorganic powder and the brazing material, relaxation of stress due to a difference in thermal expansion cannot be expected.

【0020】また、無機粉末の融点を1200℃以上と
するのは、1200℃未満では無機粉末同志の焼結もし
くは溶融により無機粉末とロウ材2間の構造が複雑にな
り層間の滑りを期待できなくなるからである。
If the melting point of the inorganic powder is set to 1200 ° C. or more, if the temperature is lower than 1200 ° C., the structure between the inorganic powder and the brazing material 2 becomes complicated due to sintering or melting of the inorganic powder, and slip between layers can be expected. Because it is gone.

【0021】なお、無機粉末の形状としては、球形より
鱗片状もしくは板状である事が好ましい。これは無機粉
末とロウ材2は濡れが悪いので、外部から応力がかかる
と両者の界面が剥離するため、界面でロウ材が滑り変形
することにより応力を緩和できるものである。鱗片状も
しくは板状であれば、ロウ材層形成時にこれらが配向し
やすく、層状に応力緩和層が形成されるので応力を緩和
しやすくなるからである。
The shape of the inorganic powder is preferably scaly or plate-like rather than spherical. This is because the inorganic powder and the brazing material 2 have poor wettability, and when an external stress is applied, the interface between the two is peeled off, so that the stress can be relieved by sliding deformation of the brazing material at the interface. This is because if they are scaly or plate-like, they tend to be oriented during the formation of the brazing material layer, and the stress relaxation layer is formed in a layered manner, so that the stress is easily relaxed.

【0022】また無機粉末の平均粒径は、2〜100μ
mである事が好ましい。2μm未満では、無機粉末同士
が凝集しやすく、このため期待通りの応力緩和効果が得
られない。また、後述するように無機粉末表面にメッキ
を形成する際、粒径2μm未満では比表面積が大きくな
るので、メッキ液の消費量が大きくなるので好ましくな
い。そして、無機粉末の粒径が100μm以上では、熱
サイクルによりロウ材中にクラックが発生して好ましく
ない。
The average particle size of the inorganic powder is 2 to 100 μm.
m is preferred. If it is less than 2 μm, the inorganic powders are likely to agglomerate, so that the expected stress relaxation effect cannot be obtained. Further, when plating is formed on the surface of the inorganic powder as will be described later, when the particle size is less than 2 μm, the specific surface area is increased, and the consumption of the plating solution is undesirably increased. When the particle diameter of the inorganic powder is 100 μm or more, cracks are generated in the brazing material due to the heat cycle, which is not preferable.

【0023】無機粉末の添加量については、10〜40
体積%とすることが好ましい。無機粉末の添加量を10
体積%未満にすると、添加による応力緩和効果が不十分
であり4点曲げによる強度が低下し破壊源がロウ材端面
のクラックとなり好ましくない。また、添加量を40体
積%以上にすると、ロウ材自体の強度が劣化して、4点
曲げによる破壊源がロウ材内部となり、強度が低下す
る。
The amount of the inorganic powder added is 10 to 40.
It is preferred to be volume%. Add inorganic powder of 10
If the content is less than the volume%, the stress relaxation effect by the addition is insufficient, the strength by four-point bending is reduced, and the fracture source is unfavorably cracked on the end face of the brazing material. Further, when the addition amount is 40% by volume or more, the strength of the brazing material itself is deteriorated, and a fracture source due to four-point bending is inside the brazing material, and the strength is reduced.

【0024】このような無機粉末としては、炭素、窒化
ホウ素、マイカ等の粉末、あるいは炭化珪素、窒化珪
素、窒化アルミニウム、酸化アルミニウム、酸化シリコ
ン、酸化マグネシウム、炭化タングステン等のセラミッ
クス粉末が使用可能であるが、特に炭素が好適である。
As such an inorganic powder, a powder of carbon, boron nitride, mica or the like, or a ceramic powder of silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, silicon oxide, magnesium oxide, tungsten carbide or the like can be used. However, carbon is particularly preferred.

【0025】また、無機粉末を分散させたロウ材層2の
マトリックス成分としては、Ag−Cu、Ag−Cu−
In、Au−Cu等を主成分としたロウ材を用いること
が可能である。
The matrix components of the brazing material layer 2 in which the inorganic powder is dispersed include Ag-Cu, Ag-Cu-
It is possible to use a brazing material containing In, Au-Cu or the like as a main component.

【0026】そして、無機粉末として炭素粒子を分散さ
せる場合は、炭素粒子表面にNi等のメッキを施すと、
ロウ材と炭素粒子混合粉焼結時の焼結状態を改善でき
る。以下、Niメッキの形成方法を説明する。まず、炭
素粒子を水中に分散させた懸濁液を作製し、前記懸濁液
中に適量のPd系の活性剤を滴下して炭素粒子表面を活
性化処理する。この懸濁液を濾紙を用いて濾過したの
ち、蒸留水で十分洗浄して余分な活性液を除去し、蒸留
水中に再度分散させて前記炭素粒子の懸濁液を再度作製
する。その後、液温を適正温度に保持したNiメッキ液
中に前記懸濁液を徐々に投入して、表面にNiメッキを
施した炭素粒子を得ることができる。
When carbon particles are dispersed as an inorganic powder, the surface of the carbon particles is plated with Ni or the like.
The sintering state at the time of sintering the mixed powder of the brazing material and the carbon particles can be improved. Hereinafter, a method for forming Ni plating will be described. First, a suspension is prepared by dispersing carbon particles in water, and an appropriate amount of a Pd-based activator is dropped into the suspension to activate the surface of the carbon particles. The suspension is filtered using a filter paper, washed sufficiently with distilled water to remove an excess of the active liquid, and dispersed again in distilled water to prepare a suspension of the carbon particles again. Thereafter, the suspension is gradually introduced into a Ni plating solution in which the solution temperature is maintained at an appropriate temperature to obtain carbon particles having a Ni-plated surface.

【0027】ここで、さらに図2を用いて、本発明によ
るセラミックヒータの例を説明する。このセラミックヒ
ータは、無機導電材からなる発熱体およびリード部を内
蔵したセラミック体4の電極取出用の端子部上7にAg
−Cu−Tiを主成分とした無機粉末を含まないロウ材
層3が形成され、その上に炭素粉末20体積%とAg−
Cu合金粉末80体積%からなる、無機粉末を分散させ
たロウ材層2が形成され、さらにその上にNiリード線
6を接合した応力緩和層8が形成されたセラミックヒー
タである。
Here, an example of the ceramic heater according to the present invention will be described with reference to FIG. This ceramic heater has a heating element made of an inorganic conductive material and a lead 7 built in a ceramic body 4 with an electrode extraction terminal 7 on an electrode extraction terminal 7.
-A brazing material layer 3 containing no inorganic powder containing Cu-Ti as a main component is formed, on which 20% by volume of carbon powder and Ag-
This is a ceramic heater in which a brazing material layer 2 composed of 80% by volume of a Cu alloy powder and in which an inorganic powder is dispersed is formed, and a stress relaxation layer 8 to which a Ni lead wire 6 is bonded is further formed thereon.

【0028】この場合も、無機粉末を分散させたロウ材
層2を備えたことにより、熱膨張差による応力を緩和す
ることができる。
Also in this case, by providing the brazing material layer 2 in which the inorganic powder is dispersed, the stress due to the difference in thermal expansion can be reduced.

【0029】なお、本発明において、無機粉末とロウ材
の濡れ角は、以下のようにして評価する。板状に加工し
表面を平面研削した無機粉末焼結体上に、成形圧1to
n/cm2 で成形し5mmφ×5mmに加工したロウ材
を載せた後、10-3torr以下の真空炉中でロウ材の融点
以上の温度で熱処理してロウ材を溶融させ、ロウ材の形
状を真横から観察し、無機粉末焼結体とロウ材の接触部
分の角度を測定する。
In the present invention, the wetting angle between the inorganic powder and the brazing material is evaluated as follows. Forming pressure 1 to on inorganic powder sintered body processed into plate shape and surface ground
A brazing material molded at n / cm 2 and processed to 5 mmφ × 5 mm is placed and then heat-treated at a temperature not lower than the melting point of the brazing material in a vacuum furnace of 10 −3 torr or less to melt the brazing material. The shape is observed from the side, and the angle of the contact portion between the inorganic powder sintered body and the brazing material is measured.

【0030】ロウ材と良く濡れる材料をロウ材中に入れ
ても、溶融時に完全に一体化してしまい応力緩和効果が
期待できないことから、少なくとも、ロウ材との濡れ角
が50°以上の材料を用いるのが好ましい。
Even if a material that wets well with the brazing material is put into the brazing material, the material is completely integrated during melting and a stress relaxation effect cannot be expected. Therefore, at least a material having a wetting angle with the brazing material of 50 ° or more is used. It is preferably used.

【0031】無機粉末の粒径および体積分率は、セラミ
ックスと金属の接合部分を直角にダイヤモンドカッター
を用いて切断し、切断面の100〜2000倍のSEM
(電子顕微鏡写真)から測定する。体積分率は、画像解
析装置を用いて評価する。それぞれ5回測定し、その平
均値をとる。
The particle diameter and the volume fraction of the inorganic powder are determined by cutting the joint between the ceramic and the metal at a right angle using a diamond cutter, and using an SEM 100 to 2000 times the cut surface.
(Electron micrograph). The volume fraction is evaluated using an image analyzer. Measure each five times and take the average value.

【0032】[0032]

【実施例】実施例1 図1(c)を用いて本発明の実施例を説明する。まず、
平均粒径2μmの炭素粉末の表面に、厚み0.2μmの
Niメッキを施す。その後、前記炭素粉末20体積%
と、Au−Cu−Ti合金粉末80体積%とを混合し、
適量のバインダーを加えた後1ton/cm2 でプレス
成形し、900〜1000℃で予備焼結させたロウ材の
焼結体を得る。これが、無機粉末を分散させたロウ材層
2となる。
Embodiment 1 An embodiment of the present invention will be described with reference to FIG. First,
The surface of the carbon powder having an average particle size of 2 μm is plated with Ni having a thickness of 0.2 μm. Then, the carbon powder 20% by volume
And 80% by volume of Au—Cu—Ti alloy powder,
After adding an appropriate amount of binder, it is press-formed at 1 ton / cm 2 and a sintered body of brazing material pre-sintered at 900 to 1000 ° C. is obtained. This becomes the brazing material layer 2 in which the inorganic powder is dispersed.

【0033】次に、接合面を#320番の砥石で研磨し
た円柱状窒化珪素からなるセラミック体4と、相手材の
Niからなる金属体1のそれぞれの接合面に、Ag−C
u−Ti系のロウ材を塗布した後、10-3torr以下の真
空炉中で無機粉末を含まないロウ材層3’を形成する。
前記円柱状窒化珪素からなるセラミック体4の表面の無
機粉末を含まないロウ材層3上に、前記無機粉末を分散
させたロウ材の焼結体と金属体1を重ねて、10-3torr
以下の真空炉中で熱処理してこれらを接合する。
Next, Ag-C is applied to each of the joining surfaces of the ceramic body 4 made of columnar silicon nitride whose joining surface is polished with a # 320 grindstone and the metal body 1 made of Ni as a mating material.
After applying the u-Ti brazing material, a brazing material layer 3 ′ containing no inorganic powder is formed in a vacuum furnace of 10 −3 torr or less.
The sintered body of the brazing material in which the inorganic powder is dispersed and the metal body 1 are superposed on the brazing material layer 3 containing no inorganic powder on the surface of the ceramic body 4 made of the cylindrical silicon nitride, and 10 −3 torr
These are joined by heat treatment in the following vacuum furnace.

【0034】その結果、窒化珪素セラミック表面にロウ
接した前述の無機粉末を分散したロウ材層2は、光沢の
ない銀色ないしは灰黒色を呈した。このように無機粉末
を分散したロウ材層2の両側に無機粉末を含まないロウ
材層3’を設けた後、加熱ロウ付けすることにより、緩
衝材を間に挟んだ構造のセラミック体と金属体の接合体
が得られる。
As a result, the brazing material layer 2 in which the above-mentioned inorganic powder was dispersed and brazed to the surface of the silicon nitride ceramic exhibited a dull silver or gray black color. After the brazing material layer 3 'containing no inorganic powder is provided on both sides of the brazing material layer 2 in which the inorganic powder is dispersed in this manner, the brazing material layer is heated and brazed to form a ceramic body and metal having a structure in which a buffer material is interposed therebetween. A conjugate of the body is obtained.

【0035】この方法で接合した円柱状の金属体とセラ
ミック体の接合体に対し、接合面に対して平行に4点曲
げ応力を印加して、破断強度を測定した。強度として
は、5個のデータを平均したものを用いた。本発明の試
料は、4点曲げ試験強度で380MPaと高い接合強度
が得られた。この時の破断は、セラミックス界面のメタ
ライズ層を一部含む炭素粒子を含有する金属層内部で起
きた。
A four-point bending stress was applied to the cylindrical body and ceramic body joined in this manner in parallel to the joint surface, and the breaking strength was measured. As the intensity, an average of five data was used. The sample of the present invention exhibited a high bonding strength of 380 MPa in a four-point bending test strength. The fracture at this time occurred inside the metal layer containing the carbon particles partially including the metallized layer at the ceramic interface.

【0036】比較のため無機粉末を含まないロウ材層で
接合した金属体とセラミック体の接合体を作成し4点曲
げ強度を測定した。図3(b)に示したように、セラミ
ック体4上に無機粉末を含まないロウ材層3を形成し、
その上に金属体1を重ねて真空中で熱処理してこれらを
接合することにより測定用サンプルを準備した。4点曲
げ強度測定後のサンプルの破壊面を観察したところ、一
部接合界面を含むセラミック内部で破断し、その強度は
210MPaと低いものであった。
For comparison, a joined body of a metal body and a ceramic body joined with a brazing material layer containing no inorganic powder was prepared, and the four-point bending strength was measured. As shown in FIG. 3B, a brazing material layer 3 containing no inorganic powder is formed on the ceramic body 4,
The sample for measurement was prepared by stacking the metal body 1 thereon and heat-treating it in a vacuum to join them. Observation of the fracture surface of the sample after the four-point bending strength measurement revealed that the fracture occurred inside the ceramic including a part of the bonding interface, and the strength was as low as 210 MPa.

【0037】実施例2 本発明の他の実施例を図1(b)を用いて説明する。図
1(b)に示すように円柱状の窒化珪素(Si3 4
セラミック体4と円柱状のNiからなる金属体1を接合
する場合である。まず、平均粒径5μmの鱗片状炭素粉
末の表面に、不図示のNiメッキを施し、さらに、前記
炭素粒子を水素ガスを含む還元雰囲気中1000℃で熱
処理する。その後、前記炭素粉末20体積%と、Ag−
Cu−Ti合金粉末80体積%とを混合し、適量のバイ
ンダーを加えた後1ton/cm2 でプレス成形し、7
00〜800℃で予備焼結させたロウ材層の焼結体を得
る。これが無機粉末を分散させたロウ材層2となる。
Embodiment 2 Another embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1B, cylindrical silicon nitride (Si 3 N 4 )
This is a case where the ceramic body 4 and the metal body 1 made of cylindrical Ni are joined. First, Ni plating (not shown) is applied to the surface of the flaky carbon powder having an average particle size of 5 μm, and the carbon particles are further heat-treated at 1000 ° C. in a reducing atmosphere containing hydrogen gas. Then, the carbon powder 20% by volume and Ag-
After mixing with 80% by volume of Cu-Ti alloy powder, adding an appropriate amount of binder, press-forming at 1 ton / cm 2 ,
A sintered body of a brazing material layer pre-sintered at 00 to 800 ° C is obtained. This becomes the brazing material layer 2 in which the inorganic powder is dispersed.

【0038】この時、前述のロウ材層2の焼結体の気孔
率は、10%以下にする。気孔率を10%以下にするの
は10%を越えるとロウ材層自身の強度が低くなりロウ
材層部分から破壊する可能性があるからである。
At this time, the porosity of the sintered body of the brazing material layer 2 is set to 10% or less. The reason why the porosity is set to 10% or less is that if the porosity exceeds 10%, the strength of the brazing material layer itself is reduced, and there is a possibility that the brazing material layer is broken from the portion.

【0039】次に、接合面を#320番の砥石で研磨し
た円柱状窒化珪素からなるセラミック体4に、Ag−C
uを主成分としたロウ材を塗布した後、10-3torr以下
の真空炉中700〜900℃で熱処理し、無機粉末を含
まないロウ材層3を形成する。前記無機粉末を含まない
ロウ材層3の表面に、前記無機粉末を分散させたロウ材
層2と金属体1を重ねて超音波接合により両者を接合す
る。
Next, Ag-C was added to the ceramic body 4 made of columnar silicon nitride whose joining surface was polished with a # 320 grindstone.
After a brazing material containing u as a main component is applied, heat treatment is performed at 700 to 900 ° C. in a vacuum furnace of 10 −3 torr or less to form a brazing material layer 3 containing no inorganic powder. The brazing material layer 2 in which the inorganic powder is dispersed and the metal body 1 are superimposed on the surface of the brazing material layer 3 containing no inorganic powder, and the two are joined by ultrasonic joining.

【0040】このサンプルの4点曲げ強度を測定したと
ころ、380MPaと高い接合強度が得られた。
When the four-point bending strength of this sample was measured, a high bonding strength of 380 MPa was obtained.

【0041】実施例3 図2に示したセラミックヒータの製造方法を説明する。
無機導電材からなる発熱体およびリード部を内蔵したセ
ラミック体4の電極取出用の端子部上7にAg−Cu−
Tiを主成分とするロウ材を塗布し、10-3torr以下の
真空中900〜1000℃で熱処理して無機粉末を含ま
ないロウ材層3を形成する。その後、炭素粉末20体積
%と、Ag−Cu合金粉末80体積%とを混合、適量の
バインダーを加えた後1ton/cm2 で所定の形状に
プレス成形し、850〜950℃で予備焼結させたロウ
材の焼結体を得る。これが無機粉末を分散させたロウ材
層2となる。前記無機粉末を含まないロウ材層3上に無
機粉末を分散させたロウ材層2およびNiリード線6を
固定した応力緩和層8を重ねて、超音波接合によりこれ
らを一体化して完成したセラミックヒータを得た。
Embodiment 3 A method for manufacturing the ceramic heater shown in FIG. 2 will be described.
Ag-Cu- is formed on the terminal 7 for taking out an electrode of the ceramic body 4 containing a heating element made of an inorganic conductive material and a lead portion.
A brazing material containing Ti as a main component is applied and heat-treated at 900 to 1000 ° C. in a vacuum of 10 −3 torr or less to form a brazing material layer 3 containing no inorganic powder. Thereafter, 20% by volume of the carbon powder and 80% by volume of the Ag-Cu alloy powder are mixed, and after adding an appropriate amount of a binder, the mixture is press-formed into a predetermined shape at 1 ton / cm 2 and pre-sintered at 850 to 950 ° C. A sintered body of the brazing material is obtained. This becomes the brazing material layer 2 in which the inorganic powder is dispersed. The brazing material layer 2 in which the inorganic powder is dispersed and the stress relaxation layer 8 to which the Ni lead wires 6 are fixed are superposed on the brazing material layer 3 not containing the inorganic powder, and these are integrated by ultrasonic bonding to complete the ceramic. A heater was obtained.

【0042】実施例4 ここで、図1(b)に示すテストサンプルを、無機粉末
の粒径を1〜130μm間、また体積分率を4〜50%
間で変量したサンプルを作製して、各条件のサンプルに
ついて、4点曲げ強度を測定しその破壊モードを確認し
た。その結果を、表1に示した。無機粉末として鱗片状
炭素粒子であるグラファイトを用いて、粒径と体積分率
を変量して作製したサンプルの評価結果を表1に示し
た。本発明の範囲内であるサンプル2、3、5、6、
7、8、10、11、12は、4点曲げ強度が350M
Pa以上と高い値を示しているが、サンプル1に示した
ようにグラファイトの粒径が1μm程度と小さくなる
と、4点曲げ強度が205MPa程度と低くなる。逆に
グラファイトの粒径が100μmより大きくなるとロウ
材層内部で破壊し、4点曲げ強度が200MPaと低下
してしまう。また、グラファイトの体積分率が10%よ
り低いサンプル4は、磁器内部にクラックが発生し、4
点曲げ強度が190MPa程度と低くなる。逆にグラフ
ァイトの体積分率が40%より多いサンプル9は、メタ
ライズ層内部で破壊し、4点曲げ強度は190MPaと
低くなる。
Example 4 Here, the test sample shown in FIG. 1 (b) was prepared by adjusting the particle size of the inorganic powder to 1 to 130 μm and the volume fraction to 4 to 50%.
Samples varied between the samples were prepared, and the four-point bending strength of the sample under each condition was measured to confirm the fracture mode. The results are shown in Table 1. Table 1 shows the evaluation results of the samples prepared by using graphite, which is flaky carbon particles, as the inorganic powder and varying the particle size and volume fraction. Samples 2, 3, 5, 6, within the scope of the invention
7, 8, 10, 11, and 12 have a 4-point bending strength of 350M.
Although the value is as high as Pa or more, as shown in Sample 1, when the graphite particle size is reduced to about 1 μm, the four-point bending strength is reduced to about 205 MPa. Conversely, if the graphite particle size is larger than 100 μm, the graphite will be broken inside the brazing material layer, and the four-point bending strength will be reduced to 200 MPa. Sample 4 having a graphite volume fraction lower than 10% had cracks inside the porcelain,
The point bending strength is as low as about 190 MPa. Conversely, Sample 9 having a graphite volume fraction of more than 40% is broken inside the metallized layer, and the four-point bending strength is as low as 190 MPa.

【0043】無機粉末の例としては、実施例に示した炭
素粒子以外に、窒化ホウ素粉末、マイカ等の鱗片状粉末
や炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミ
ニウム、酸化シリコン、酸化マグネシウム等のセラミッ
クス粉末が使用可能である。無機粉末としては、ロウ材
と反応し難い、できれば鱗片状のものを用いる方が好ま
しい。
Examples of the inorganic powder include, in addition to the carbon particles shown in the examples, scaly powders such as boron nitride powder and mica, and silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, silicon oxide and magnesium oxide. Ceramic powder can be used. As the inorganic powder, it is preferable to use a scaly one which does not easily react with the brazing material, if possible.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明によれば、セラミックスと金属の
接合に際して、両者の間に挟まれるロウ材中に無機粉末
を分散させることにより、無機粉末表面においてロウ材
の滑りもしくは変形により、セラミックス、金属、ロウ
材間の熱膨張差を緩和することにより、セラミックスに
発生するクラックの発生を防止し、信頼性の高い接合を
行うことを可能にすることができる。
According to the present invention, at the time of joining a ceramic and a metal, the inorganic powder is dispersed in a brazing material sandwiched between the ceramic and the metal. By alleviating the difference in thermal expansion between the metal and the brazing material, it is possible to prevent the occurrence of cracks in the ceramics and to perform highly reliable bonding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明のセラミック体と金属体の接合
構造の断面構造図、(b)(c)は4点曲げ強度測定サ
ンプルを示す図である。
FIG. 1A is a cross-sectional structural view of a joint structure between a ceramic body and a metal body according to the present invention, and FIGS. 1B and 1C are views showing a sample for measuring four-point bending strength.

【図2】本発明のセラミックヒ−タのリ−ド接合部の拡
大図である。
FIG. 2 is an enlarged view of a lead joint of the ceramic heater according to the present invention.

【図3】(a)は従来のセラミック体と金属体の接合構
造の断面図、(b)は4点曲げ強度測定サンプルを示し
た図である。
3A is a cross-sectional view of a conventional joint structure between a ceramic body and a metal body, and FIG. 3B is a view showing a sample for measuring a four-point bending strength.

【符号の説明】[Explanation of symbols]

1:金属体 2:無機粉末を分散させたロウ材層 3:無機粉末を含まないロウ材層 4:セラミック体 6:Niリード線 7:リード取出部 8:応力緩衝層 1: metal body 2: brazing material layer in which inorganic powder is dispersed 3: brazing material layer not containing inorganic powder 4: ceramic body 6: Ni lead wire 7: lead extraction portion 8: stress buffer layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 33/00 310 B23K 33/00 310A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 33/00 310 B23K 33/00 310A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】セラミック体と金属体をロウ材を介して接
合した接合構造において、上記ロウ材中に、該ロウ材の
濡れ角が50°以上であり、かつ融点が1200℃以上
である無機粉末が分散していることを特徴とするセラミ
ック体と金属体の接合構造。
In a bonding structure in which a ceramic body and a metal body are bonded via a brazing material, an inorganic material having a wetting angle of 50 ° or more and a melting point of 1200 ° C. or more in the brazing material. A bonded structure of a ceramic body and a metal body, wherein the powder is dispersed.
【請求項2】前記無機粉末形状が、鱗片状、もしくは板
状であり、且つその平均粒径が2〜100μmである事
を特徴とする請求項1記載のセラミック体と金属体の接
合構造。
2. The joint structure between a ceramic body and a metal body according to claim 1, wherein said inorganic powder is in the form of a scale or a plate, and has an average particle size of 2 to 100 μm.
【請求項3】前記無機粉末の含有量が10〜40体積%
であることを特徴とする請求項1記載のセラミック体と
金属体の接合構造。
3. The content of the inorganic powder is 10 to 40% by volume.
The joint structure for a ceramic body and a metal body according to claim 1, wherein:
【請求項4】上記無機粉末が炭素粒子である事を特徴と
する請求項1及至3記載のセラミック体と金属体の接合
構造。
4. A joint structure between a ceramic body and a metal body according to claim 1, wherein said inorganic powder is carbon particles.
【請求項5】セラミック体表面に無機粉末を含まないロ
ウ材層を形成した後、この上に、ロウ材の濡れ角が50
°以上であり、且つ融点が1200℃以上である無機粉
末を分散させたロウ材層を形成し、更にその上に金属体
を重ねて超音波接合もしくは熱処理を施す工程からなる
セラミック体と金属体の接合方法。
5. After a brazing material layer containing no inorganic powder is formed on the surface of the ceramic body, the wetting angle of the brazing material is
° or more, and a step of forming a brazing material layer in which an inorganic powder having a melting point of 1200 ° C. or more is dispersed, further superposing a metal body thereon and subjecting it to ultrasonic bonding or heat treatment. Joining method.
【請求項6】上記無機粉末が炭素粒子であり、その表面
にNiメッキを施してロウ材粉末中に分散させたことを
特徴とする請求項5記載のセラミック体と金属体の接合
方法。
6. The method according to claim 5, wherein the inorganic powder is carbon particles, and the surface thereof is plated with Ni and dispersed in the brazing material powder.
【請求項7】発熱体を備えたセラミック体に金属リ−ド
を接合してなるセラミックヒ−タにおいて、請求項1〜
4記載の接合構造を用いて上記セラミック体と金属リ−
ドを接合したことを特徴とするセラミックヒ−タ。
7. A ceramic heater in which a metal lead is joined to a ceramic body having a heating element.
The above ceramic body and metal lead are formed using the joint structure described in Item 4.
A ceramic heater characterized by joining a metal.
JP30862698A 1998-10-29 1998-10-29 Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same Pending JP2000128655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30862698A JP2000128655A (en) 1998-10-29 1998-10-29 Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30862698A JP2000128655A (en) 1998-10-29 1998-10-29 Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same

Publications (1)

Publication Number Publication Date
JP2000128655A true JP2000128655A (en) 2000-05-09

Family

ID=17983322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30862698A Pending JP2000128655A (en) 1998-10-29 1998-10-29 Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same

Country Status (1)

Country Link
JP (1) JP2000128655A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500455A1 (en) * 2003-07-24 2005-01-26 Ansaldo Ricerche S.p.A. Method for obtaining high-resistance brazed joints of multiple-layer composite materials of ceramic/ceramic and metal/ceramic type, and multiple-layer composite materials obtained through the said method
JP2007043128A (en) * 2005-07-04 2007-02-15 Kyocera Corp Junction, wafer supporting member using same, and wafer processing method
JP2008159831A (en) * 2006-12-25 2008-07-10 Kyocera Corp Jointer, wafer support member using the same, and method for processing wafer
JP2012201582A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conduction member
JP2014118310A (en) * 2012-12-14 2014-06-30 Denki Kagaku Kogyo Kk Ceramic circuit board
JP2015166297A (en) * 2014-03-04 2015-09-24 日本碍子株式会社 honeycomb structure
JP2016046289A (en) * 2014-08-20 2016-04-04 デンカ株式会社 Ceramics circuit board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500455A1 (en) * 2003-07-24 2005-01-26 Ansaldo Ricerche S.p.A. Method for obtaining high-resistance brazed joints of multiple-layer composite materials of ceramic/ceramic and metal/ceramic type, and multiple-layer composite materials obtained through the said method
JP2007043128A (en) * 2005-07-04 2007-02-15 Kyocera Corp Junction, wafer supporting member using same, and wafer processing method
JP2008159831A (en) * 2006-12-25 2008-07-10 Kyocera Corp Jointer, wafer support member using the same, and method for processing wafer
JP2012201582A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conduction member
JP2014118310A (en) * 2012-12-14 2014-06-30 Denki Kagaku Kogyo Kk Ceramic circuit board
JP2015166297A (en) * 2014-03-04 2015-09-24 日本碍子株式会社 honeycomb structure
JP2016046289A (en) * 2014-08-20 2016-04-04 デンカ株式会社 Ceramics circuit board

Similar Documents

Publication Publication Date Title
JP3845925B2 (en) Semiconductor device member using aluminum nitride substrate and method for manufacturing the same
JP2001010874A (en) Production of composite material of inorganic material with metal containing aluminum and product related to the same
JP2004273736A (en) Joint member and electrostatic chuck
JP2000323618A (en) Copper circuit clad substrate and manufacture thereof
JP2003212670A (en) Joined product of different kinds of materials and its manufacturing process
JP2000128655A (en) Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same
JP3095490B2 (en) Ceramic-metal joint
JP3495051B2 (en) Ceramic-metal joint
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JP3716045B2 (en) Ceramic heater
JP2006120973A (en) Circuit board and manufacturing method thereof
JP6146707B2 (en) Ceramic-metal bonded body and method for manufacturing the same
JP4220869B2 (en) Manufacturing method of ceramic package
JP2689685B2 (en) Lightweight substrates for semiconductor devices
JP3302714B2 (en) Ceramic-metal joint
JP3370060B2 (en) Ceramic-metal joint
JP2019182667A (en) Metal/ceramic conjugate
JP2000323619A (en) Semiconductor device material using ceramic, and manufacture thereof
JPH06329480A (en) Joined body of ceramics and metal and its production
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH11329676A (en) Joined ceramics and metal body, ceramic heater using same, and its manufacture
JP2002043481A (en) Ceramic module and its manufacturing method
JP5809884B2 (en) BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
RU90787U1 (en) HEAT DISCHARGE ELEMENT
JP2003335585A (en) Process for joining ceramics through active metal soldering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051227