JP2000123842A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2000123842A
JP2000123842A JP10290340A JP29034098A JP2000123842A JP 2000123842 A JP2000123842 A JP 2000123842A JP 10290340 A JP10290340 A JP 10290340A JP 29034098 A JP29034098 A JP 29034098A JP 2000123842 A JP2000123842 A JP 2000123842A
Authority
JP
Japan
Prior art keywords
layer
fuel cell
conductive fine
carbon
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10290340A
Other languages
Japanese (ja)
Other versions
JP3444530B2 (en
Inventor
Eiichi Yasumoto
栄一 安本
Hisaaki Gyoten
久朗 行天
Makoto Uchida
誠 内田
Yasushi Sugawara
靖 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP29034098A priority Critical patent/JP3444530B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to CNA2003101239308A priority patent/CN1516311A/en
Priority to PCT/JP1999/003123 priority patent/WO1999066578A1/en
Priority to CNB998074764A priority patent/CN1159788C/en
Priority to US09/719,664 priority patent/US6746793B1/en
Priority to KR10-2000-7014308A priority patent/KR100413645B1/en
Priority to CNA2003101239312A priority patent/CN1516312A/en
Priority to EP99925304A priority patent/EP1096587A4/en
Publication of JP2000123842A publication Critical patent/JP2000123842A/en
Application granted granted Critical
Publication of JP3444530B2 publication Critical patent/JP3444530B2/en
Priority to US10/797,676 priority patent/US20040170885A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce contact resistance of an electrode catalyst layer and a gas diffusing layer, and to improve a battery characteristic by arranging a layer composed of conductive particulates between the electrode catalyst layer and the gas diffusing layer. SOLUTION: A conductive particulate layer 2 is formed on a gas diffusing layer 1 by coating, and an electrode catalyst layer 3 is also formed by coating. The layer 2 composed of these conductive particulates is desirably partially intruded into the gas diffusing layer 1. The layer 2 composed of the conductive particulates is desirably a material having the average primary particle size of 10 to 100 nm, and is desirably constituted of at least one of a carbon material, a metallic material, a carbon-polymer composite material and a metal- polymer composite material. The carbon-polymer composite material is desirably carbon powder stuck polytetrafluoroethylene, and the polytetrafluoroethylene is desirably included in the conductive particulates by 5 to 75 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質型燃
料電池に関し、特にその構成要素である電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell, and more particularly to an electrode which is a component of the fuel cell.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池に用いる電極
は、一般的に電極触媒層となる貴金属を担持した炭素微
粉末を、ガス拡散層となる多孔質導電性電極基材上に形
成したものを用いる。多孔質導電性基材は、炭素繊維か
らなるカーボンペーパーやカーボンクロスなどを用い
る。通常これらの電極は、貴金属を担持した炭素微粉末
をイソプロピルアルコールなどの有機溶媒を用いてイン
ク化しスクリーン印刷法や転写法を用いて基材上に成形
するのが一般的である。
2. Description of the Related Art An electrode used in a polymer electrolyte fuel cell is generally formed by forming a fine carbon powder carrying a noble metal serving as an electrode catalyst layer on a porous conductive electrode substrate serving as a gas diffusion layer. Is used. As the porous conductive substrate, carbon paper or carbon cloth made of carbon fiber is used. In general, these electrodes are generally formed by inking carbon fine powder supporting a noble metal with an organic solvent such as isopropyl alcohol, and forming the ink on a substrate using a screen printing method or a transfer method.

【0003】近年、安全性と作業性の観点から、有機溶
媒系に変えて水系の溶媒を用いた電極用のインクが提案
されている。しかしながら、これらの方法を用いる場
合、電極触媒となる貴金属を担持した炭素粉末がガス拡
散層となる電極基材上に一部貫入するため、比較的多量
の電極触媒を用いたり、電池の締め付け圧を上げ接合面
の導電性を保つなどの対策が必要である。またこのため
に、予め高分子電解質膜に電極触媒層を塗布形成すると
いう方法も提案されている。これらの電極と高分子電解
質膜はホットプレスなどの手法により接合して用いる。
In recent years, from the viewpoint of safety and workability, an ink for an electrode using an aqueous solvent instead of an organic solvent has been proposed. However, when using these methods, a relatively large amount of the electrode catalyst is used or the tightening pressure of the battery is increased because the carbon powder supporting the noble metal serving as the electrode catalyst partially penetrates the electrode base material serving as the gas diffusion layer. It is necessary to take countermeasures such as raising the bonding surface and maintaining the conductivity of the bonding surface. For this purpose, a method has been proposed in which an electrode catalyst layer is applied to a polymer electrolyte membrane in advance. These electrodes and the polymer electrolyte membrane are joined and used by a method such as hot pressing.

【0004】[0004]

【発明が解決しようとする課題】従来の高分子電解質型
燃料電池に用いる電極は、電極触媒となる貴金属を担持
した炭素粉末を多量に用いる必要がある。また、ガス拡
散層となるカーボンペーパーやカーボンクロスと電極触
媒との接触抵抗を向上させるため、電池の締結圧を上げ
て用いる必要がある。
The electrodes used in conventional polymer electrolyte fuel cells require the use of a large amount of carbon powder carrying a noble metal as an electrode catalyst. Further, in order to improve the contact resistance between the electrode catalyst and carbon paper or carbon cloth serving as a gas diffusion layer, it is necessary to increase the fastening pressure of the battery.

【0005】このように高分子電解質型燃料電池には、
電極触媒の利用率が高く、しかもガス拡散層となるカー
ボンペーパーやカーボンクロスなどと、電極触媒層との
接触抵抗が小さな電極が強く求められている。
As described above, the polymer electrolyte fuel cell includes:
There is a strong demand for an electrode which has a high utilization rate of the electrode catalyst and has a low contact resistance between the electrode catalyst layer and carbon paper or carbon cloth serving as a gas diffusion layer.

【0006】[0006]

【課題を解決するための手段】以上の課題を解決するた
め本発明の燃料電池は、触媒層とガス拡散層からなる電
極を、高分子電解質の両側に備えた燃料電池において、
前記電極触媒層と前記ガス拡散層との間に導電性微粒子
からなる層を配置したことを特徴とする。
Means for Solving the Problems To solve the above problems, a fuel cell according to the present invention is a fuel cell comprising electrodes comprising a catalyst layer and a gas diffusion layer on both sides of a polymer electrolyte.
A layer made of conductive fine particles is arranged between the electrode catalyst layer and the gas diffusion layer.

【0007】このとき、導電性微粒子からなる層が、ガ
ス拡散層に少なくとも一部貫入していることが好まし
い。
At this time, it is preferable that the layer made of the conductive fine particles at least partially penetrates the gas diffusion layer.

【0008】また、導電性微粒子からなる層を、10n
m以上100nm以下の平均一次粒子径を持つ導電性材
料で構成したことが好ましい。
Further, the layer made of conductive fine particles is
It is preferable to use a conductive material having an average primary particle diameter of not less than m and not more than 100 nm.

【0009】また、導電性微粒子は、高分子電解質の両
側で異なる材料であることが望ましい。
It is desirable that the conductive fine particles be made of a different material on both sides of the polymer electrolyte.

【0010】また、導電性微粒子からなる層を、炭素材
料、金属材料、炭素−高分子複合材料、金属−高分子複
合材料の少なくとも一つで構成したことが好ましい。
It is preferable that the layer made of the conductive fine particles is made of at least one of a carbon material, a metal material, a carbon-polymer composite material, and a metal-polymer composite material.

【0011】また、炭素−高分子複合材料は、ポリテト
ラフルオロエチレンを付着させた炭素粉末であることが
望ましい、このとき、導電性微粒子からなる層が含有す
るポリテトラフルオロエチレンは、5重量%以上で75
重量%以下であることが好ましい。
Preferably, the carbon-polymer composite material is a carbon powder to which polytetrafluoroethylene is adhered. At this time, the polytetrafluoroethylene contained in the layer composed of the conductive fine particles is 5% by weight. 75 above
It is preferable that the content be not more than weight%.

【0012】[0012]

【発明の実施の形態】以上のように、本発明による燃料
電池は、電極触媒層とガス拡散層の間に導電性微粒子か
らなる層を配置しているため、電極触媒層とガス拡散層
の接触抵抗が小さくなり電池特性が向上する。また、導
電性微粒子からなる層が一部ガス拡散層に貫入した場合
はその効果がより向上する。また、電極触媒層がガス拡
散層に貫入することがなくなるため、電極触媒層に用い
る貴金属触媒の使用量を従来よりも減らすことができ、
コスト低減効果が期待できる。
As described above, in the fuel cell according to the present invention, since the layer made of conductive fine particles is arranged between the electrode catalyst layer and the gas diffusion layer, the fuel cell of the electrode catalyst layer and the gas diffusion layer are disposed. The contact resistance is reduced and the battery characteristics are improved. Further, when a layer made of conductive fine particles partially penetrates the gas diffusion layer, the effect is further improved. Further, since the electrode catalyst layer does not penetrate the gas diffusion layer, the amount of the noble metal catalyst used for the electrode catalyst layer can be reduced as compared with the conventional case,
Cost reduction can be expected.

【0013】さらに、通常高分子電解質膜と電極の接合
にはホットプレスなどの手法が用いられる。この場合、
導電性微粒子層にPTFEを付着させた炭素材料を用い
ると、電極触媒層とガス拡散層の物理的な結着性も高ま
り、取り扱いが容易になるという利点もある。さらにこ
の場合、PTFEを導入しているため、特に空気極で発
生した生成水を一部は電解質膜内に取り込み余分な生成
水はガス拡散層側に排出するという副次的な効果も期待
できる。この場合空気極と燃料極でPTFEの含有量を
変えるとより効果的である。
Further, a method such as hot pressing is generally used for joining the polymer electrolyte membrane and the electrode. in this case,
When a carbon material in which PTFE is attached to the conductive fine particle layer is used, there is an advantage that physical binding between the electrode catalyst layer and the gas diffusion layer is enhanced, and handling is facilitated. Further, in this case, since PTFE is introduced, it is expected that a side effect that particularly generated water generated at the air electrode is partially taken into the electrolyte membrane and excess generated water is discharged to the gas diffusion layer side. . In this case, it is more effective to change the PTFE content between the air electrode and the fuel electrode.

【0014】このように本発明による燃料電池は、電極
触媒層とガス拡散層の間に導電性微粒子層を配したた
め、従来よりも高性能な燃料電池を構成することができ
る。
As described above, in the fuel cell according to the present invention, since the conductive fine particle layer is disposed between the electrode catalyst layer and the gas diffusion layer, it is possible to construct a fuel cell having higher performance than before.

【0015】以下、本発明の燃料電池について図面を参
照して述べる。
Hereinafter, the fuel cell of the present invention will be described with reference to the drawings.

【0016】[0016]

【実施例】(実施例1)まず初めに、本発明の燃料電池
に用いた電極の作製法について述べる。平均一次粒径が
50nmのアセチレンブラックを酢酸ブチルでインク化
して、ガス拡散層1となるカーボンペーパー(東レ製、
TGP-H-120、膜厚360μm)上に、スクリーン印刷法
により塗工し導電性微粒子層2を形成した。さらに、白
金を25重量%担持したカーボン粉末からなる電極触媒
粉末を、Flemion溶液(旭硝子製)、酢酸ブチル
と混合してインク化し、先の導電性微粒子層上に先と同
じくスクリーン印刷法を用いて塗工し電極触媒層3を形
成した。ここで単位面積あたりの白金量は0.2mg/
cm2とした。
EXAMPLES (Example 1) First, a method for producing an electrode used in the fuel cell of the present invention will be described. Acetylene black having an average primary particle size of 50 nm is made into an ink with butyl acetate, and carbon paper (manufactured by Toray;
The conductive fine particle layer 2 was formed by applying a screen printing method on TGP-H-120 (thickness: 360 μm). Further, an electrode catalyst powder composed of carbon powder carrying 25% by weight of platinum is mixed with a Flemion solution (manufactured by Asahi Glass) and butyl acetate to form an ink, and the same screen printing method is used on the conductive fine particle layer as before. To form an electrode catalyst layer 3. Here, the amount of platinum per unit area is 0.2 mg /
cm 2 .

【0017】このようにして作製した電極をNafio
n膜(Dupon製、Nafion112)の両側に配
してホットプレスを行い電極−電解質接合体を作製し
た。このとき電極の端部の一部に剥がれの部分が見られ
たが、電極−電解質接合体全体としては十分接合されて
いた。この接合体の電極部の断面図を図1に示した。こ
れより導電性微粒子層の一部がカーボンペーパー内に貫
入していることが分かる。さらに比較のために導電性微
粒子層を持たない電極触媒層とガス拡散層だけの電極も
作製した。これらを単電池測定用の装置にセットして単
電池を構成した。
The electrode manufactured in this manner was replaced with Nafio.
An n-film (manufactured by Duponn, Nafion 112) was arranged on both sides and hot pressed to produce an electrode-electrolyte assembly. At this time, a peeled part was observed at a part of the end of the electrode, but the whole electrode-electrolyte assembly was sufficiently bonded. FIG. 1 shows a cross-sectional view of the electrode part of the joined body. This indicates that a part of the conductive fine particle layer penetrates into the carbon paper. For comparison, an electrode having no conductive fine particle layer and an electrode having only a gas diffusion layer were also prepared. These were set in a unit for measuring a single cell to constitute a single cell.

【0018】これらの単電池は、燃料極に水素ガスを空
気極に空気を流し、電池温度を75℃、燃料利用率を8
0%、空気利用率を30%、ガス加湿は水素ガスを75
℃、空気を65℃の露点になるように調整した。この時
の電池の電流−電圧特性を比較して図2に示した。これ
より導電性微粒子層を持つものが持たないものより、よ
り高い特性を示すことが分かった。これは、導電性微粒
子層を入れることで電極触媒とガス拡散層間の接触抵抗
が低減したことと、実際に反応に寄与する白金触媒の反
応面積が増加したためと考えられた。このことにより、
よりPt使用量を低減できることを示した。
In these cells, hydrogen gas is supplied to the fuel electrode, air is supplied to the air electrode, the cell temperature is 75 ° C., and the fuel utilization is 8%.
0%, air utilization rate 30%, gas humidification 75% hydrogen gas
° C and air were adjusted to a dew point of 65 ° C. FIG. 2 shows a comparison of the current-voltage characteristics of the batteries at this time. From this, it was found that those having the conductive fine particle layer exhibited higher characteristics than those having no conductive fine particle layer. This is considered to be because the contact resistance between the electrode catalyst and the gas diffusion layer was reduced by inserting the conductive fine particle layer, and the reaction area of the platinum catalyst actually contributing to the reaction was increased. This allows
It was shown that the Pt usage can be further reduced.

【0019】(実施例2)次に、導電性微粒子層を構成
するカーボンの平均一次粒径を変えた場合について調べ
た。実施例1で用いた50nmのアセチレンブラックの
他に粒径の異なる5種類のカーボンを用いた場合につい
て、実施例1と同じ単電池を作製して電池性能を調べ
た。電極の作製法、電池運転条件は全て実施例1と同じ
にした。表1に、電流密度700mA/cm2におけ
る、電池電圧を比較して示した。
Example 2 Next, the case where the average primary particle size of carbon constituting the conductive fine particle layer was changed was examined. In the case where five kinds of carbons having different particle diameters were used in addition to the acetylene black of 50 nm used in Example 1, the same single cell as in Example 1 was produced, and the battery performance was examined. The manufacturing method of the electrodes and the battery operating conditions were all the same as in Example 1. Table 1 shows a comparison between battery voltages at a current density of 700 mA / cm 2 .

【0020】これより粒径が10nm〜100nmの場
合に、電池性能が高くなることが分かった。これは、粒
径が小さすぎると多孔質なカーボンペーパー内にカーボ
ン微粒子が完全に貫入してしまいガス拡散が悪くなった
ために特性が低下したためと考えられる。また、粒径が
500nmの場合には粒径が大きすぎてカーボンペーパ
ーとの接触が悪くなり電池特性が低下したものと考えら
れる。
From this, it was found that when the particle size was 10 nm to 100 nm, the battery performance was improved. This is considered to be because if the particle size is too small, the carbon fine particles completely penetrate into the porous carbon paper and the gas diffusion becomes worse, so that the characteristics are lowered. When the particle size is 500 nm, it is considered that the particle size is too large and the contact with the carbon paper is deteriorated, and the battery characteristics are degraded.

【0021】[0021]

【表1】 [Table 1]

【0022】また、次に導電性微粒子層を構成する材料
を変えた場合について検討した。カーボン粒子の他に、
チタン、ニッケルについて同様に電極を作製し、単電池
測定装置にセットして電池性能を調べた。この結果、ど
の材料を用いた場合も初期電池特性は同等であった。
Next, the case where the material constituting the conductive fine particle layer was changed was examined. In addition to carbon particles,
Electrodes were prepared in the same manner for titanium and nickel, and set in a unit cell measuring device to check the battery performance. As a result, no matter which material was used, the initial battery characteristics were equivalent.

【0023】これらの結果より、本実施例の燃料電池
は、電極触媒層とガス拡散層の間に導電性微粒子層を配
したため、従来よりも接触抵抗を低減でき電池特性が向
上する事が分かった。また10〜100nmの粒径の材
料を用いる場合に電池特性が高くなることも分かった。
使用する導電性材料に関しても本実施例で調べた材料は
すべて良好な結果を示した。この材料に関しては本実施
例に限定されるものではなく、本発明が適用できるもの
であればどんなものでも構わない。
From these results, it can be seen that the fuel cell of the present embodiment has the conductive fine particle layer disposed between the electrode catalyst layer and the gas diffusion layer, so that the contact resistance can be reduced and the cell characteristics can be improved as compared with the prior art. Was. It was also found that when a material having a particle size of 10 to 100 nm was used, battery characteristics were improved.
Regarding the conductive materials to be used, all the materials examined in this example showed good results. This material is not limited to this embodiment, but may be any material to which the present invention can be applied.

【0024】本発明では、導電性微粒子層をスクリーン
印刷法を用いて形成したが、電極触媒層とガス拡散層の
間に形成することができるものであれば、これ以外の方
法であっても構わない。使用する高分子電解質膜や電極
触媒、ガス拡散層も本実施例に限定されるものではな
い。
In the present invention, the conductive fine particle layer is formed by a screen printing method, but any other method can be used as long as it can be formed between the electrode catalyst layer and the gas diffusion layer. I do not care. The polymer electrolyte membrane, the electrode catalyst, and the gas diffusion layer to be used are not limited to this embodiment.

【0025】(実施例3)本実施例では、ポリテトラフ
ルオロエチレン(PTFE)を付着させたカーボン粉末
を導電性微粒子層に使用した場合について調べた。PT
FEを付着したカーボン粉末(PTFE/C)は、アセ
チレンブラックとPTFE分散液(ダイキン工業製、D
−1)、界面活性剤(TritonX−100)をコロ
イドミルを用いて混合後熱処理して作製した。作製した
PTFE/CのPTFE量は30重量%とした。
Example 3 In this example, the case where carbon powder to which polytetrafluoroethylene (PTFE) was adhered was used for the conductive fine particle layer was examined. PT
The carbon powder (PTFE / C) to which FE is attached is composed of acetylene black and a PTFE dispersion (manufactured by Daikin Industries,
-1) A surfactant (Triton X-100) was prepared by mixing using a colloid mill followed by heat treatment. The PTFE content of the prepared PTFE / C was 30% by weight.

【0026】これを実施例1と同様にカーボンペーパー
上にスクリーン印刷して導電性微粒子層を形成した後、
電極触媒を同様に形成して電極を作製した。このように
して作製した電極をNafion膜の両側に配してホッ
トプレスを行い電極−電解質接合体(MEA)を作製し
た。このMEAは、電極端部の剥がれ等もなく、実施例
1で作製したものより接合性が良くなっていた。これは
PTFEが結着剤として一部機能しているためと考え
る。
This was screen-printed on carbon paper in the same manner as in Example 1 to form a conductive fine particle layer.
An electrode was prepared by forming an electrode catalyst in the same manner. The electrodes thus produced were arranged on both sides of the Nafion film and hot pressed to produce an electrode-electrolyte assembly (MEA). This MEA had no peeling of the electrode end and the like, and had better bondability than that manufactured in Example 1. This is because PTFE partially functions as a binder.

【0027】このMEAを用いて実施例1と同様に単電
池を構成して電池性能を調べた。図3に、この結果を実
施例1のアセチレンブラックを導電性微粒子層に用いた
場合と比較して示した。これよりPTFE/Cを用いた
方がより電池特性が向上することが分かった。これはP
TFEを導入したことにより電極近傍での撥水性が向上
したためと考える。
A cell was constructed using this MEA in the same manner as in Example 1, and the battery performance was examined. FIG. 3 shows the results in comparison with the case where acetylene black of Example 1 was used for the conductive fine particle layer. Thus, it was found that using PTFE / C further improved the battery characteristics. This is P
It is considered that the introduction of TFE improved the water repellency near the electrodes.

【0028】次に、付着させるPTFE量を変化させた
場合の電池特性について調べた。PTFE量は、PTF
E分散液の濃度を調整することによって変化させた。表
2に、PTFEを変化させた場合、電流密度700mA
/cm2の電池電圧を示した。
Next, the battery characteristics when the amount of PTFE to be attached was changed were examined. The amount of PTFE is PTF
It was varied by adjusting the concentration of the E dispersion. Table 2 shows that when the PTFE was changed, the current density was 700 mA.
/ Cm 2 .

【0029】これよりPTFE量が5〜75重量%の場
合に電池性能が高くなることが分かった。PTFE量が
多い場合には導電性が低くなり電池性能が低下し、低い
場合には電極部での撥水性が低下したためと考える。
From this, it was found that the battery performance was improved when the amount of PTFE was 5 to 75% by weight. It is considered that when the amount of PTFE is large, the conductivity is lowered and the battery performance is lowered, and when the amount is low, the water repellency at the electrode portion is lowered.

【0030】これらの結果より、導電性微粒子層にPT
FE/Cを用いることによりMEAの接合性が向上する
と同時に電池性能も向上することが分かった。今回はP
TFE量の調整には担持量の異なるPTFE/Cを用い
たが、これ以外にPTFE/Cとカーボン粉末を混合し
てPTFE量を調整することもでき、本実施例に限定さ
れるものではない。
From these results, it was found that the conductive fine particle layer
It has been found that the use of FE / C improves the joining performance of the MEA and also improves the battery performance. This time is P
Although the PTFE / C having different loading amounts was used to adjust the TFE amount, the PTFE amount could also be adjusted by mixing PTFE / C and carbon powder, and the present invention is not limited to this example. .

【0031】[0031]

【表2】 [Table 2]

【0032】(実施例4)本実施例では、燃料極と空気
極で異なる組成のPTFE/Cを導電性微粒子層に用い
た場合について調べた。PTFE担持量が60重量%の
PTFE/Cを燃料極の導電性微粒子層に、PTFE担
持量が30重量%のPTFE/Cを空気極の導電性微粒
子層に用いて、実施例2と同様に各々の電極を作製し
た。このようにして作製した電極をNafion膜の両
側に各々配してホットプレスを行い電極−電解質接合体
(MEA)を作製した。
Example 4 In this example, the case where PTFE / C having different compositions for the fuel electrode and the air electrode were used for the conductive fine particle layer was examined. As in Example 2, PTFE / C having a PTFE loading of 60% by weight was used for the conductive fine particle layer of the fuel electrode, and PTFE / C having a PTFE loading of 30% by weight was used for the conductive fine particle layer of the air electrode. Each electrode was produced. The electrodes thus produced were arranged on both sides of the Nafion film, respectively, and hot pressed to produce an electrode-electrolyte assembly (MEA).

【0033】これを単電池試験装置にPTFE担持量6
0重量%のPTFE/Cを用いた電極が燃料ガス流路側
になるように配置して電池性能を調べた。ここで単電池
の試験条件等は実施例2と同様にした。図4に、この電
池の電流−電圧特性を実施例2の両極にPTFE担持量
30重量%のPTFE/Cを用いた場合と比較して示し
た。
The PTFE carrying amount was set to 6
An electrode using 0% by weight of PTFE / C was arranged so as to be on the fuel gas flow path side, and the cell performance was examined. Here, the test conditions and the like for the unit cells were the same as in Example 2. FIG. 4 shows the current-voltage characteristics of this battery in comparison with the case where PTFE / C having a PTFE carrying amount of 30% by weight was used for both electrodes in Example 2.

【0034】これよりPTFE担持量を燃料極、空気極
で異なる組成にしたものを用いた場合の方が、同じもの
に比べて特性が向上することが分かった。これは、電池
運転時の燃料極と空気極での高分子電解質膜の加湿条件
が、同じ組成のものを用いた場合よりもより良くなった
ためと考えられる。ここでは、導電性微粒子層にPTF
E担持量の異なるPTFE/Cを用いたが、これ以外の
炭素材料、金属微粒子、炭素材料とPTFE/Cの混合
物などの複合材料も使用できる。
From the results, it was found that the characteristics of the fuel electrode and the air electrode having different compositions for the fuel electrode and the air electrode were improved as compared with the same material. This is presumably because the humidifying conditions of the polymer electrolyte membrane at the fuel electrode and the air electrode during the operation of the battery were better than those using the same composition. Here, PTF is added to the conductive fine particle layer.
Although PTFE / C having different amounts of E carried was used, other composite materials such as carbon material, metal fine particles, and a mixture of the carbon material and PTFE / C can also be used.

【0035】[0035]

【発明の効果】以上、実施例の説明から明らかなよう
に、本発明による燃料電池は、電極触媒層とガス拡散層
の間に導電性微粒子からなる層を配置しているため、電
極触媒層とガス拡散層の接触抵抗が小さくなり電池特性
が向上する。また、導電性微粒子からなる層が一部ガス
拡散層に貫入した場合はその効果がより向上する。ま
た、電極触媒層がガス拡散層に貫入することがなくなる
ため、電極触媒層に用いる貴金属触媒の使用量を従来よ
りも減らすことができ、コスト低減効果が期待できる。
さらに、導電性微粒子層にPTFEを付着させた炭素材
料を用いると、電極触媒層とガス拡散層の物理的な結着
性も高まり、取り扱いが容易になるという利点もある。
さらにこの場合、PTFEを導入しているため、特に空
気極で発生した生成水を一部は電解質膜内に取り込み余
分な生成水はガス拡散層側に排出するという副次的な効
果も期待できる。このように本発明による燃料電池は、
電極触媒層とガス拡散層の間に導電性微粒子層を配した
ため、従来よりも高性能な燃料電池を構成することがで
きる。
As described above, the fuel cell according to the present invention has a layer made of conductive fine particles between the electrode catalyst layer and the gas diffusion layer. And the contact resistance of the gas diffusion layer is reduced, and the battery characteristics are improved. Further, when a layer made of conductive fine particles partially penetrates the gas diffusion layer, the effect is further improved. Further, since the electrode catalyst layer does not penetrate the gas diffusion layer, the amount of the noble metal catalyst used for the electrode catalyst layer can be reduced as compared with the conventional case, and a cost reduction effect can be expected.
Further, when a carbon material in which PTFE is attached to the conductive fine particle layer is used, there is an advantage that physical binding between the electrode catalyst layer and the gas diffusion layer is enhanced, and handling is facilitated.
Further, in this case, since PTFE is introduced, it is expected that a side effect that particularly generated water generated at the air electrode is partially taken into the electrolyte membrane and excess generated water is discharged to the gas diffusion layer side. . As described above, the fuel cell according to the present invention
Since the conductive fine particle layer is provided between the electrode catalyst layer and the gas diffusion layer, a fuel cell having higher performance than before can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例で用いた電極の断面を示
す図
FIG. 1 is a diagram showing a cross section of an electrode used in a first embodiment of the present invention.

【図2】本発明の第1の実施例である燃料電池単セルの
電流と電圧の関係を示す図
FIG. 2 is a diagram showing a relationship between current and voltage of a single fuel cell according to the first embodiment of the present invention;

【図3】本発明の第2の実施例である燃料電池単セルの
電流と電圧の関係を示す図
FIG. 3 is a diagram showing a relationship between current and voltage of a single fuel cell according to a second embodiment of the present invention;

【図4】本発明の第3の実施例である燃料電池単セルの
電流と電圧の関係を示す図
FIG. 4 is a diagram showing a relationship between current and voltage of a single fuel cell according to a third embodiment of the present invention;

【符号の説明】[Explanation of symbols]

1 ガス拡散層 2 導電性微粒子層 3 電極触媒層 Reference Signs List 1 gas diffusion layer 2 conductive fine particle layer 3 electrode catalyst layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA02 AA06 AS01 BB01 BB03 BB08 DD06 DD08 EE02 EE05 EE17 EE19 HH01 HH05 5H026 AA02 AA06 BB01 BB02 BB04 CX03 CX04 CX07 EE02 EE05 EE18 EE19 HH01 HH05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Makoto Uchida 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Terms (reference) 5H018 AA02 AA06 AS01 BB01 BB03 BB08 DD06 DD08 EE02 EE05 EE17 EE19 HH01 HH05 5H026 AA02 AA06 BB01 BB02 BB04 CX03 CX04 CX07 EE02 EE05 EE18 EE19 HH01 HH05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 触媒層とガス拡散層からなる電極を、高
分子電解質の両側に備えた燃料電池において、前記電極
触媒層と前記ガス拡散層との間に導電性微粒子からなる
層を配置したことを特徴とする燃料電池。
1. A fuel cell having electrodes composed of a catalyst layer and a gas diffusion layer on both sides of a polymer electrolyte, wherein a layer composed of conductive fine particles is disposed between the electrode catalyst layer and the gas diffusion layer. A fuel cell, characterized in that:
【請求項2】 導電性微粒子からなる層が、ガス拡散層
に少なくとも一部貫入していること特徴とする請求項1
に記載の燃料電池。
2. The gas diffusion layer according to claim 1, wherein the layer made of conductive fine particles at least partially penetrates the gas diffusion layer.
A fuel cell according to claim 1.
【請求項3】 導電性微粒子からなる層を、10nm以
上100nm以下の平均一次粒子径を持つ導電性材料で
構成したことを特徴とする請求項1または2記載の燃料
電池。
3. The fuel cell according to claim 1, wherein the layer made of conductive fine particles is made of a conductive material having an average primary particle diameter of 10 nm or more and 100 nm or less.
【請求項4】 導電性微粒子は、高分子電解質の両側で
異なる材料であることを特徴とする請求項1、2または
3記載の燃料電池。
4. The fuel cell according to claim 1, wherein the conductive fine particles are made of different materials on both sides of the polymer electrolyte.
【請求項5】 導電性微粒子からなる層を、炭素材料、
金属材料、炭素−高分子複合材料、金属−高分子複合材
料の少なくとも一つで構成したことを特徴とする請求項
1、2、3または4記載の燃料電池。
5. The method according to claim 1, wherein the layer comprising the conductive fine particles comprises a carbon material,
5. The fuel cell according to claim 1, wherein the fuel cell comprises at least one of a metal material, a carbon-polymer composite material, and a metal-polymer composite material.
【請求項6】 炭素−高分子複合材料は、ポリテトラフ
ルオロエチレンを付着させた炭素粉末であることを特徴
とする請求項5記載の燃料電池。
6. The fuel cell according to claim 5, wherein the carbon-polymer composite material is carbon powder to which polytetrafluoroethylene is attached.
【請求項7】 導電性微粒子からなる層が含有するポリ
テトラフルオロエチレンは、5重量%以上で75重量%
以下であることを特徴とする請求項6記載の燃料電池。
7. The polytetrafluoroethylene contained in the layer made of conductive fine particles is at least 5% by weight and at least 75% by weight.
The fuel cell according to claim 6, wherein:
JP29034098A 1998-06-16 1998-10-13 Fuel cell Expired - Lifetime JP3444530B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP29034098A JP3444530B2 (en) 1998-10-13 1998-10-13 Fuel cell
PCT/JP1999/003123 WO1999066578A1 (en) 1998-06-16 1999-06-10 Polymer electrolyte fuel cell
CNB998074764A CN1159788C (en) 1998-06-16 1999-06-10 Polymer electrolyte fuel cell
US09/719,664 US6746793B1 (en) 1998-06-16 1999-06-10 Polymer electrolyte fuel cell
CNA2003101239308A CN1516311A (en) 1998-06-16 1999-06-10 High-molecular electrolyte fuel battery
KR10-2000-7014308A KR100413645B1 (en) 1998-06-16 1999-06-10 Polymer electrolyte fuel cell
CNA2003101239312A CN1516312A (en) 1998-06-16 1999-06-10 High-molecular electrolyte fuel battery
EP99925304A EP1096587A4 (en) 1998-06-16 1999-06-10 Polymer electrolyte fuel cell
US10/797,676 US20040170885A1 (en) 1998-06-16 2004-03-10 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29034098A JP3444530B2 (en) 1998-10-13 1998-10-13 Fuel cell

Publications (2)

Publication Number Publication Date
JP2000123842A true JP2000123842A (en) 2000-04-28
JP3444530B2 JP3444530B2 (en) 2003-09-08

Family

ID=17754797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29034098A Expired - Lifetime JP3444530B2 (en) 1998-06-16 1998-10-13 Fuel cell

Country Status (1)

Country Link
JP (1) JP3444530B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102059A (en) * 1999-10-01 2001-04-13 Toshiba Corp Proton-exchange membrane fuel cell system
JP2001345110A (en) * 2000-05-31 2001-12-14 Japan Gore Tex Inc Solid polymer electrolyte fuel cell
JP2002313359A (en) * 2001-04-17 2002-10-25 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell
JP2003109604A (en) * 2001-09-27 2003-04-11 Matsushita Electric Ind Co Ltd Gas diffusion electrode for fuel cell and method of manufacturing the same
KR20030043113A (en) * 2001-11-27 2003-06-02 (주)세티 Gas Diffusion Layer of Fuel Cell and Method of Preparing the same
JP2006024556A (en) * 2004-06-08 2006-01-26 Dainippon Printing Co Ltd Fuel cell, junction of electrode and electrolyte membrane, electrode substrate with catalyst layer, process of manufacturing same, and transfer sheet
JP2006155921A (en) * 2004-11-25 2006-06-15 Nippon Steel Corp Electrode for solid polymer type fuel cell
WO2006118107A1 (en) * 2005-04-27 2006-11-09 Kabushiki Kaisha Toshiba Fuel cell and catalytic layer electrode for fuel cell
JP2007538370A (en) * 2004-05-20 2007-12-27 ゼネラル・モーターズ・コーポレーション A new approach to manufacturing high performance membrane electrode assemblies (MEAs) for PEM fuel cells
JP2010182692A (en) * 2010-04-12 2010-08-19 Nippon Steel Corp Electrode for solid-state molecular type fuel cell
WO2011030720A1 (en) * 2009-09-10 2011-03-17 日産自動車株式会社 Method for manufacturing fuel cell gas diffusion layer, fuel cell gas diffusion layer, and fuel cell
JP2011076849A (en) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd Gas diffusion electrode with micro porous layer of fuel cell, catalyst layer with micro porous layer, gas diffusion electrode with catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
WO2013099720A1 (en) 2011-12-26 2013-07-04 東レ株式会社 Gas diffusion electrode substrate for fuel cell, membrane electrode assembly, and fuel cell
WO2013172174A1 (en) 2012-05-14 2013-11-21 東レ株式会社 Gas diffusion electrode substrate for fuel cell
WO2014030553A1 (en) 2012-08-24 2014-02-27 東レ株式会社 Gas-diffusion electrode base material for fuel cell
KR20160138459A (en) 2014-03-28 2016-12-05 도레이 카부시키가이샤 Gas diffusion electrode and method for manufacturing same
US9786925B2 (en) 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
KR20180091853A (en) 2015-12-24 2018-08-16 도레이 카부시키가이샤 Gas diffusion electrode and fuel cell
US10790516B2 (en) 2015-12-24 2020-09-29 Toray Industries, Inc. Gas diffusion electrode and method for manufacturing same
US10818934B2 (en) 2015-12-24 2020-10-27 Toray Industries, Inc. Gas diffusion electrode
US10950868B2 (en) 2015-12-24 2021-03-16 Toray Industries, Inc. Gas diffusion electrode and fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105888B2 (en) 2007-02-01 2012-12-26 キヤノン株式会社 Gas diffusion electrode, fuel cell, and method of manufacturing gas diffusion electrode

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102059A (en) * 1999-10-01 2001-04-13 Toshiba Corp Proton-exchange membrane fuel cell system
JP2001345110A (en) * 2000-05-31 2001-12-14 Japan Gore Tex Inc Solid polymer electrolyte fuel cell
JP2002313359A (en) * 2001-04-17 2002-10-25 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell
JP2003109604A (en) * 2001-09-27 2003-04-11 Matsushita Electric Ind Co Ltd Gas diffusion electrode for fuel cell and method of manufacturing the same
KR20030043113A (en) * 2001-11-27 2003-06-02 (주)세티 Gas Diffusion Layer of Fuel Cell and Method of Preparing the same
US9786925B2 (en) 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
JP2007538370A (en) * 2004-05-20 2007-12-27 ゼネラル・モーターズ・コーポレーション A new approach to manufacturing high performance membrane electrode assemblies (MEAs) for PEM fuel cells
US8101319B2 (en) * 2004-05-20 2012-01-24 GM Global Technology Operations LLC Approach to make a high performance membrane electrode assembly (MEA) for a PEM fuel cell
JP2006024556A (en) * 2004-06-08 2006-01-26 Dainippon Printing Co Ltd Fuel cell, junction of electrode and electrolyte membrane, electrode substrate with catalyst layer, process of manufacturing same, and transfer sheet
JP4533108B2 (en) * 2004-11-25 2010-09-01 新日本製鐵株式会社 Electrode for polymer electrolyte fuel cell
JP2006155921A (en) * 2004-11-25 2006-06-15 Nippon Steel Corp Electrode for solid polymer type fuel cell
WO2006118107A1 (en) * 2005-04-27 2006-11-09 Kabushiki Kaisha Toshiba Fuel cell and catalytic layer electrode for fuel cell
JPWO2006118107A1 (en) * 2005-04-27 2008-12-18 株式会社東芝 Fuel cell and catalyst layer electrode for fuel cell
WO2011030720A1 (en) * 2009-09-10 2011-03-17 日産自動車株式会社 Method for manufacturing fuel cell gas diffusion layer, fuel cell gas diffusion layer, and fuel cell
JP5010757B2 (en) * 2009-09-10 2012-08-29 日産自動車株式会社 Manufacturing method of gas diffusion layer for fuel cell
US8557327B2 (en) 2009-09-10 2013-10-15 Nissan Motor Co., Ltd. Method for manufacturing gas diffusion layer for fuel cell
JP2011076849A (en) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd Gas diffusion electrode with micro porous layer of fuel cell, catalyst layer with micro porous layer, gas diffusion electrode with catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP2010182692A (en) * 2010-04-12 2010-08-19 Nippon Steel Corp Electrode for solid-state molecular type fuel cell
WO2013099720A1 (en) 2011-12-26 2013-07-04 東レ株式会社 Gas diffusion electrode substrate for fuel cell, membrane electrode assembly, and fuel cell
KR20150015486A (en) 2012-05-14 2015-02-10 도레이 카부시키가이샤 Gas diffusion electrode substrate for fuel cell
WO2013172174A1 (en) 2012-05-14 2013-11-21 東レ株式会社 Gas diffusion electrode substrate for fuel cell
US10003079B2 (en) 2012-05-14 2018-06-19 Toray Industries, Inc. Gas diffusion electrode medium for fuel cell
WO2014030553A1 (en) 2012-08-24 2014-02-27 東レ株式会社 Gas-diffusion electrode base material for fuel cell
KR20150046102A (en) 2012-08-24 2015-04-29 도레이 카부시키가이샤 Gas-diffusion electrode base material for fuel cell
US9972847B2 (en) 2012-08-24 2018-05-15 Toray Industries, Inc. Gas diffusion electrode medium for fuel cell
KR20160138459A (en) 2014-03-28 2016-12-05 도레이 카부시키가이샤 Gas diffusion electrode and method for manufacturing same
KR20180091853A (en) 2015-12-24 2018-08-16 도레이 카부시키가이샤 Gas diffusion electrode and fuel cell
US10461334B2 (en) 2015-12-24 2019-10-29 Toray Industries, Inc. Gas diffusion electrode and fuel cell
US10790516B2 (en) 2015-12-24 2020-09-29 Toray Industries, Inc. Gas diffusion electrode and method for manufacturing same
US10818934B2 (en) 2015-12-24 2020-10-27 Toray Industries, Inc. Gas diffusion electrode
US10950868B2 (en) 2015-12-24 2021-03-16 Toray Industries, Inc. Gas diffusion electrode and fuel cell

Also Published As

Publication number Publication date
JP3444530B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
JP3444530B2 (en) Fuel cell
JP4824298B2 (en) Gas diffusion layer for fuel cell, electrode, membrane electrode assembly and method for producing the same
JP3608565B2 (en) Fuel cell and manufacturing method thereof
JP5069927B2 (en) Membrane electrode assembly for fuel cell and method for producing the same
US7226689B2 (en) Method of making a membrane electrode assembly for electrochemical fuel cells
JP5924530B2 (en) Gas diffusion layer for fuel cells
JP3747888B2 (en) FUEL CELL, FUEL CELL ELECTRODE AND METHOD FOR PRODUCING THE SAME
WO2007052650A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
JP4207120B2 (en) Catalytic electrode and electrochemical device
JP2003346814A (en) Catalyst carrier particle for fuel cell, compound electrolyte using the particles, catalyst electrode, fuel cell and method for manufacturing these articles
JP5153130B2 (en) Membrane electrode assembly
JP7314785B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP2004214045A (en) Fuel cell and its manufacturing method
JP4683021B2 (en) Catalyst support for forming fuel cell electrode and method for producing polymer electrolyte fuel cell
JP2000182626A (en) Fuel cell electrode, manufacture thereof and fuel cell
JP5391968B2 (en) Gas diffusion layer for polymer electrolyte fuel cell and method for producing the same
JP2001057217A (en) Polymer electrolyte type fuel cell
JP2003017070A (en) Electrode for fuel cell and its manufacturing method
JP2002025575A (en) Fuel cell
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP5345870B2 (en) Method for producing membrane-electrode assembly
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP2006286478A (en) Membrane electrode assembly
JP4179847B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4787474B2 (en) Method for producing laminated film for membrane-electrode assembly

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

EXPY Cancellation because of completion of term