JP2000123824A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000123824A
JP2000123824A JP10298417A JP29841798A JP2000123824A JP 2000123824 A JP2000123824 A JP 2000123824A JP 10298417 A JP10298417 A JP 10298417A JP 29841798 A JP29841798 A JP 29841798A JP 2000123824 A JP2000123824 A JP 2000123824A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
negative electrode
positive electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10298417A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yoshihisa
洋悦 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP10298417A priority Critical patent/JP2000123824A/en
Publication of JP2000123824A publication Critical patent/JP2000123824A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of improving a charge and discharge cycle characteristic and safely against overcharge. SOLUTION: This nonaqueous electrolyte secondary battery is formed of a positive electrode made of a positive electrode current collector 2 containing a positive electrode mix 1, and a negative electrode made of a negative electrode current collector 4 containing a negative electrode mix 3 arranged via a separator 5. At least one of the positive and negative electrodes is made to contain a liquid electrolyte comprising a non-crosslinking polymer having hetero-atoms in molecules and molecular weight 200 to 20000 and lithium salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
に関するもので、さらに詳しく言えば、充放電サイクル
特性が向上でき、過充電に対する安全性を高めることが
できる非水電解質二次電池に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery capable of improving charge / discharge cycle characteristics and enhancing safety against overcharge. Things.

【0002】[0002]

【従来の技術】近年、高性能化、小型化が進む電子機器
用電源、電力貯蔵用電源、電気自動車用電源として、高
起電力、高エネルギー密度が得られる種々の非水電解質
二次電池が注目されている。
2. Description of the Related Art In recent years, various non-aqueous electrolyte secondary batteries capable of obtaining a high electromotive force and a high energy density have been used as power supplies for electronic equipment, power storage, and electric vehicles, which have been improved in performance and miniaturization. Attention has been paid.

【0003】このような非水電解質二次電池には、正極
と負極に、固有の電位水準においてリチウムを吸蔵また
は放出、吸蔵および放出が可能な材料を活物質として使
用し、電解質に液体を用いた非水系のものと電解質に固
体またはゲルを用いた高分子系のものとがある。
In such a non-aqueous electrolyte secondary battery, a material capable of occluding or releasing lithium at a specific potential level is used as an active material for a positive electrode and a negative electrode, and a liquid is used for an electrolyte. There are a non-aqueous type and a polymer type using a solid or gel as an electrolyte.

【0004】上記した非水系のものは、電解質がリチウ
ムイオン伝導性を良好にできる液体であることから、高
分子系のものよりハイレート放電に適しているが、漏液
による周辺機器の破損や可燃性ガスの発生による電池の
発火といった危険性があるため、近年はこのような危険
性が回避できる高分子系のものが研究開発の主流を占め
るようになってきている。
The above-mentioned non-aqueous type is more suitable for high-rate discharge than the polymer type because the electrolyte is a liquid capable of improving lithium ion conductivity. Since there is a risk of ignition of the battery due to generation of a volatile gas, in recent years, polymer-based materials that can avoid such a risk have become the mainstream of research and development.

【0005】すなわち、高分子系のものは、正極に、活
物質としてのコバルト酸リチウムなど、導電剤としての
アセチレンブラックなど、結着剤としてのビスフェノー
ルAなどを含んだものが合剤として使用され、負極に、
活物質としての黒鉛等の炭素材料など、結着剤としての
ビスフェノールAなどを含んだものが合剤として使用さ
れ、正極と負極との間に介在させる隔離体にはフィルム
状の高分子電解質が使用される。
[0005] That is, in the case of the polymer type, the positive electrode contains lithium cobaltate or the like as an active material, acetylene black or the like as a conductive agent, or bisphenol A or the like as a binder. , To the negative electrode,
A carbon material such as graphite as an active material or a material containing bisphenol A as a binder is used as a mixture, and a film-like polymer electrolyte is used as a separator interposed between a positive electrode and a negative electrode. used.

【0006】前述した高分子電解質としては、エチレン
カーボネート、プロピレンカーボネートなどの環状炭酸
エステルやジメチルカーボネート、ジエチルカーボネー
トなどの鎖状炭酸エステルといったエステル系溶媒、ジ
メトキシエタンなどの鎖状エーテルやテトラヒドロフラ
ンなどの環状エーテルといったエーテル系溶媒を主体と
する混合溶媒に、過塩素酸リチウム、ヘキサフルオロ燐
酸リチウム、テトラフルオロ硼酸リチウム、リチウムト
リフロロメタスルフォネートなどのリチウム塩を溶解さ
せた電解液と、アクリロニトリル、ポリフッ化ビニリデ
ン、ポリエチレンオキシドなどのポリマーとを混合した
高分子ゲル電解質や前記ポリマーに前記リチウム塩を溶
解させて得た高分子固体電解質がある。
Examples of the above-mentioned polymer electrolyte include ester solvents such as cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as dimethyl carbonate and diethyl carbonate, and chain ethers such as dimethoxyethane and cyclic solvents such as tetrahydrofuran. An electrolyte in which a lithium salt such as lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, or lithium trifluorometasulfonate is dissolved in a mixed solvent mainly containing an ether solvent such as ether, acrylonitrile, polyfluorinated There are a polymer gel electrolyte obtained by mixing a polymer such as vinylidene and polyethylene oxide, and a polymer solid electrolyte obtained by dissolving the lithium salt in the polymer.

【0007】[0007]

【発明が解決しようとする課題】上記した従来の非水電
解質二次電池、特に、隔離体にフィルム状の高分子電解
質を用いた電池では、上述した安全性はあるが、高温雰
囲気下でのハイレート放電特性は十分であるとは言え
ず、放電後の充電時には電池電圧をモニターしながら充
電を行わないと過充電になって電池に膨れや発熱を生じ
ることがあり、信頼性の点で好ましくないという問題が
あった。
The above-mentioned conventional non-aqueous electrolyte secondary battery, particularly a battery using a film-shaped polymer electrolyte for the separator, has the above-mentioned safety, but is not suitable for use in a high-temperature atmosphere. The high-rate discharge characteristics cannot be said to be sufficient.If the battery is not charged while monitoring the battery voltage at the time of charging after discharging, the battery may be overcharged and may swell or generate heat, which is preferable in terms of reliability. There was no problem.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、リチウムを吸蔵または放
出、吸蔵および放出が可能な材料を活物質として含む正
極と負極とが隔離体を介して配されてなる非水電解質二
次電池において、前記正極または負極の少なくとも一方
に、分子内にヘテロ原子を有し、分子量が200〜20
000である非架橋形ポリマーとリチウム塩とからなる
液状電解質を含むことを特徴とするものであり、これに
より、高温雰囲気下でのハイレート放電特性を改善する
ことができる。
In order to solve the above-mentioned problems, the invention according to claim 1 is an invention in which a positive electrode and a negative electrode containing a material capable of occluding or releasing lithium, and capable of occluding and releasing lithium as an active material form an isolator. In a non-aqueous electrolyte secondary battery, the hetero-atom is present in at least one of the positive electrode and the negative electrode, and has a molecular weight of 200 to 20.
A liquid electrolyte comprising a non-crosslinked polymer having a molecular weight of 000 and a lithium salt is included, whereby high-rate discharge characteristics in a high-temperature atmosphere can be improved.

【0009】また、請求項2記載の発明は、請求項1記
載の非水電解質二次電池において、少なくとも負極は、
活物質を液状電解質によって膨潤させない3次元架橋形
樹脂からなる結着剤を含むことを特徴とするものであ
り、これにより、充放電の反復によって負極が不導態化
し、充放電サイクル特性の低下を防止することができ
る。
Further, according to a second aspect of the present invention, in the non-aqueous electrolyte secondary battery according to the first aspect, at least the negative electrode comprises:
It contains a binder made of a three-dimensional cross-linked resin that does not cause the active material to swell with the liquid electrolyte, whereby the negative electrode is rendered inconducting by repeated charge and discharge, and the charge / discharge cycle characteristics deteriorate. Can be prevented.

【0010】また、請求項3記載の発明は、請求項1記
載の非水電解質二次電池において、正極または負極の少
なくとも一方に含まれる液状電解質の正極または負極合
剤に対する容積比率は30〜70%であることを特徴と
するものであり、これにより、ハイレート放電特性を改
善することができる。
According to a third aspect of the present invention, in the non-aqueous electrolyte secondary battery according to the first aspect, the volume ratio of the liquid electrolyte contained in at least one of the positive electrode and the negative electrode to the positive electrode or negative electrode mixture is 30 to 70. %, Whereby the high-rate discharge characteristics can be improved.

【0011】また、請求項4記載の発明は、請求項1記
載の非水電解質二次電池において、分子量が200〜2
0000である非架橋形ポリマーはポリエーテルである
ことを特徴とするものであり、これにより、過充電によ
る電池電圧の上昇を防止することができる。
According to a fourth aspect of the present invention, there is provided the non-aqueous electrolyte secondary battery according to the first aspect, wherein the molecular weight is 200 to 2 times.
The non-crosslinked polymer of 0000 is characterized in that it is a polyether, which can prevent an increase in battery voltage due to overcharge.

【0012】また、請求項5記載の発明は、請求項1〜
4のいずれか一項記載の非水電解質二次電池において、
隔離体は分子内にヘテロ原子を有する3次元架橋形ポリ
マーとリチウム塩とを主体とする固体電解質であること
を特徴とするものであり、これにより、高温雰囲気下で
の充放電時の安全性を向上することができる。
[0012] The invention described in claim 5 is the first invention.
4. The non-aqueous electrolyte secondary battery according to any one of 4.
The separator is a solid electrolyte mainly composed of a three-dimensionally crosslinked polymer having a heteroatom in the molecule and a lithium salt, thereby providing safety during charge and discharge in a high-temperature atmosphere. Can be improved.

【0013】[0013]

【発明の実施の形態】以下、本発明をその実施の形態に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on its embodiments.

【0014】本発明の実施の形態の特徴は、リチウムを
吸蔵または放出、吸蔵および放出が可能な材料を活物質
として含む正極と負極とが隔離体を介して配されてなる
非水電解質二次電池において、前記正極または負極の少
なくとも一方に、分子内にヘテロ原子を有し、分子量が
200〜20000である非架橋形ポリマーとリチウム
塩とからなる液状電解質を含んでいることである。
A feature of the embodiment of the present invention is that a non-aqueous electrolyte secondary battery in which a positive electrode containing a material capable of occluding or releasing lithium, and capable of occluding and releasing lithium as an active material and a negative electrode are arranged via an isolator is provided. In the battery, at least one of the positive electrode and the negative electrode contains a liquid electrolyte comprising a non-crosslinked polymer having a heteroatom in a molecule and having a molecular weight of 200 to 20,000 and a lithium salt.

【0015】前述した非架橋形ポリマーとしては、分子
内にヘテロ原子、好ましくは、酸素原子、硫黄原子、窒
素原子、燐原子を有し、分子量が200〜20000、
好ましくは、300〜5000であるものがよく、具体
的には直鎖形のポリエチレングリコールジアルキルエー
テルのようなポリエーテルがよい。なお、ポリマーの分
子量や直鎖形、側鎖形、分岐形といった形状は電池の動
作温度や放電電流の大きさに応じて任意に選択すること
ができるが、電池の動作温度において液状、すなわち液
体またはゲルであることが必要である。たとえば、室温
で動作する電池では、直鎖形で、分子量が200〜50
0のものがよく、周囲温度が50〜60℃で動作する電
池では、分子量が1000〜3000のものがよい。
The above-mentioned non-crosslinked polymer has a hetero atom, preferably an oxygen atom, a sulfur atom, a nitrogen atom and a phosphorus atom in the molecule, and has a molecular weight of 200 to 20,000.
Preferably, it is 300 to 5000, and specifically, a polyether such as linear polyethylene glycol dialkyl ether. The shape of the polymer such as the molecular weight and the linear, side chain, or branched shape can be arbitrarily selected according to the operating temperature of the battery and the magnitude of the discharge current. Or it needs to be a gel. For example, a battery operating at room temperature is linear and has a molecular weight of 200 to 50.
A battery having a molecular weight of 1000 to 3000 is preferable for a battery operating at an ambient temperature of 50 to 60 ° C.

【0016】また、前記ポリマーとリチウム塩とからな
る液状電解質は、正極または負極合剤に対して容積比率
で30〜70%、好ましくは、40〜60%であるのが
よい。すなわち、容積比率が30%より小さくなると、
合剤中のイオンの移動速度が小さくなり、容積比率が7
0%より大きくなると、合剤中の電子電導性が低下し、
いずれも電流を大きくすることができなくなるためであ
る。さらに、好ましくは、上述した容積比率に加えて、
合剤中の液状電解質のチャネルの太さ、すなわち液状電
解質の占有径を5μm以上にするのがよい。
The volume ratio of the liquid electrolyte comprising the polymer and the lithium salt is preferably 30 to 70%, more preferably 40 to 60%, based on the volume of the positive electrode or negative electrode mixture. That is, when the volume ratio is smaller than 30%,
The movement speed of ions in the mixture becomes smaller, and the volume ratio becomes 7
If it is larger than 0%, the electron conductivity in the mixture decreases,
In either case, the current cannot be increased. Further, preferably, in addition to the volume ratio described above,
The thickness of the channel of the liquid electrolyte in the mixture, that is, the occupied diameter of the liquid electrolyte is preferably 5 μm or more.

【0017】また、少なくとも負極中に含まれる結着剤
は、活物質を液状電解質によって膨潤させないビスフェ
ノールAジアクリレートの架橋体のようなのものがよ
く、その合剤に対する重量比率を2〜10%、好ましく
は、3〜5%とすれば、活物質間のイオン伝導性が良好
にできるとともに、合剤と集電体との間の電子電導性も
良好にできる。
At least the binder contained in the negative electrode is preferably a crosslinked product of bisphenol A diacrylate that does not swell the active material with the liquid electrolyte, and the weight ratio to the mixture is 2 to 10%. Preferably, when the content is 3 to 5%, the ionic conductivity between the active materials can be improved, and the electron conductivity between the mixture and the current collector can be improved.

【0018】また、隔離体としては、厚さが30〜50
μmの、分子内に酸素原子などのヘテロ原子を有する3
次元架橋形ポリマーとリチウム塩からなる固体電解質が
よく、前記ポリマーの具体例としては、アクリレート基
などの重合性官能基を有するポリエーテルの3次元架橋
体がよい。
The thickness of the isolator is 30 to 50.
3 μm having a hetero atom such as an oxygen atom in the molecule.
A solid electrolyte composed of a three-dimensionally crosslinked polymer and a lithium salt is preferred. A specific example of the polymer is a three-dimensionally crosslinked body of polyether having a polymerizable functional group such as an acrylate group.

【0019】[0019]

【実施例】図1は本発明の実施例および比較例に係る非
水電解質二次電池の断面図で、正極は正極合剤1を正極
集電体2上に担持したものであり、負極は負極合剤3を
負極集電体4上に担持したものであり、これらが隔離体
5を介して積層されるとともに、フレーム樹脂6によっ
て封口されている。
FIG. 1 is a sectional view of a nonaqueous electrolyte secondary battery according to Examples and Comparative Examples of the present invention. The positive electrode has a positive electrode mixture 1 supported on a positive electrode current collector 2, and the negative electrode has a negative electrode. The negative electrode mixture 3 is carried on a negative electrode current collector 4, which are stacked via an isolator 5 and sealed with a frame resin 6.

【0020】前記正極は、厚さが約100μmであり、
正極活物質としての平均粒径が約10μmのコバルト酸
リチウム、導電剤としてのカーボンブラック粉末、結着
剤としてのビスフェノールAジアクリレートの架橋体お
よび液状電解質としての、分子内にヘテロ原子を有し、
分子量が200〜20000である非架橋形ポリマーと
リチウム塩を含む正極合剤1を、アルミニウム箔からな
る正極集電体2上に担持したものである。前記結着剤の
正極合剤1に占める割合は2〜10重量%、さらに好ま
しくは3〜5重量%であるのがよく、前記液状電解質の
正極合剤1に占める割合は30〜70重量%、さらに好
ましくは40〜60重量%であるのがよい。本実施例で
は、室温において液体である直鎖形のポリエチレングリ
コールジアルキルエーテルを用いた。
The positive electrode has a thickness of about 100 μm,
Lithium cobaltate having an average particle size of about 10 μm as a positive electrode active material, carbon black powder as a conductive agent, a crosslinked product of bisphenol A diacrylate as a binder, and a heteroatom in the molecule as a liquid electrolyte. ,
A positive electrode mixture 1 containing a non-crosslinked polymer having a molecular weight of 200 to 20,000 and a lithium salt is supported on a positive electrode current collector 2 made of aluminum foil. The ratio of the binder in the positive electrode mixture 1 is preferably 2 to 10% by weight, more preferably 3 to 5% by weight, and the ratio of the liquid electrolyte in the positive electrode mixture 1 is 30 to 70% by weight. And more preferably 40 to 60% by weight. In this example, a linear polyethylene glycol dialkyl ether which is liquid at room temperature was used.

【0021】前記負極は、厚さが約90μmであり、負
極活物質としての平均粒径が約5μmの炭素粉末、結着
剤としてのビスフェノールAジアクリレートの架橋体お
よび液状電解質としての、分子内にヘテロ原子を有し、
分子量が200〜20000である非架橋形ポリマーと
リチウム塩を含む負極合剤3を、銅箔からなる負極集電
体4上に担持したものである。前記結着剤の負極合剤3
に占める割合は2〜10重量%、さらに好ましくは3〜
5重量%であるのがよく、前記液状電解質の負極合剤3
に占める割合は30〜40重量%であるのがよい。本実
施例では、正極と同一組成のものを用いた。
The negative electrode has a thickness of about 90 μm, a carbon powder having an average particle diameter of about 5 μm as a negative electrode active material, a crosslinked product of bisphenol A diacrylate as a binder and an intramolecular as a liquid electrolyte. Has a heteroatom,
A negative electrode mixture 3 containing a non-crosslinked polymer having a molecular weight of 200 to 20,000 and a lithium salt is supported on a negative electrode current collector 4 made of copper foil. Negative electrode mixture 3 of the binder
2 to 10% by weight, more preferably 3 to 10% by weight.
5% by weight, and the negative electrode mixture 3 of the liquid electrolyte
Is preferably 30 to 40% by weight. In this example, the same composition as that of the positive electrode was used.

【0022】前記隔離体5は、厚さが30〜50μmで
あり、分子内にヘテロ原子を有する3次元架橋形ポリマ
ーとリチウム塩とを主体とする高分子電解質で、前記正
極および負極の全面を覆っている。本実施例では、室温
において固体であるアクリレート基等の重合性官能基を
有するポリエーテルの3次元架橋体を用いたが、前記ポ
リマーとリチウム塩とを主体とする高分子電解質を不織
布やポリオレフィン製の多孔性フィルムに含浸させたも
のを用いてもよい。
The separator 5 has a thickness of 30 to 50 μm and is a polymer electrolyte mainly composed of a three-dimensionally crosslinked polymer having a hetero atom in the molecule and a lithium salt. Covering. In this embodiment, a three-dimensional crosslinked product of a polyether having a polymerizable functional group such as an acrylate group, which is solid at room temperature, is used. However, a polymer electrolyte mainly composed of the polymer and a lithium salt is made of a nonwoven fabric or a polyolefin. May be used.

【0023】前記フレーム樹脂6は、ポリプロピレン製
で、前記正極集電体2としてのアルミニウム箔および負
極集電体4としての銅箔の内面に融着されており、封口
材であると同時に絶縁材も兼ねている。
The frame resin 6 is made of polypropylene and is fused to the inner surface of an aluminum foil as the positive electrode current collector 2 and a copper foil as the negative electrode current collector 4. Doubles as well.

【0024】次に、上記した本発明電池(A)として、
非架橋形ポリマーに、分子量1000のポリエチレング
リコールジメチルエーテルを、隔離体に、3次元架橋形
ポリエチレンオキシドを用いたものを、従来電池(B)
として、正極および負極中に液状電解質を含まず、隔離
体がゲル電解質であるものを、従来電池(C)として、
正極および負極中に液状電解質を含まず、隔離体が固体
電解質であるものをそれぞれ準備し、周囲温度が60℃
における種々の放電レート(C)と放電容量の関係を調
査し、結果を図2に示す。なお、本試験に供した電池は
いずれも公称容量は1000mAのものである。
Next, as the battery (A) of the present invention,
A battery using a non-crosslinked polymer of polyethylene glycol dimethyl ether having a molecular weight of 1000 and a separator using a three-dimensional crosslinked polyethylene oxide is referred to as a conventional battery (B).
As a conventional battery (C), a battery containing no liquid electrolyte in the positive electrode and the negative electrode, and the separator is a gel electrolyte,
A liquid electrolyte was not contained in the positive electrode and the negative electrode, and a separator having a solid electrolyte was prepared.
The relationship between various discharge rates (C) and discharge capacities was investigated, and the results are shown in FIG. The batteries used in this test have a nominal capacity of 1000 mA.

【0025】図2から、本発明電池(A)では、従来電
池(B)に比較して特性は劣るものの、従来電池(C)
に比較して特性は格段に向上することがわかる。
FIG. 2 shows that the battery of the present invention (A) has inferior characteristics to the conventional battery (B),
It can be seen that the characteristics are remarkably improved as compared with.

【0026】次に、上記した本発明電池(A1)とし
て、非架橋形ポリマーに、分子量300のポリエチレン
グリコールジメチルエーテルを用いたものを、本発明電
池(A2)として、非架橋形ポリマーに、分子量200
0のポリエチレングリコールジメチルエーテルを用いた
ものを準備するとともに、上記した従来電池(B),
(C)および正極および負極中に液状電解質を含まず、
隔離体に電解液を含浸した液体電解質である従来電池
(D)を準備し、周囲温度が60℃における短絡試験を
行い、安全性を比較した結果を表1に示す。なお、本試
験に供した電池はいずれも公称容量は1000mAhの
ものである。
Next, as the battery (A1) of the present invention, a non-crosslinked polymer using polyethylene glycol dimethyl ether having a molecular weight of 300 was used, and as the battery (A2) of the present invention, a non-crosslinked polymer was used having a molecular weight of 200.
A battery using polyethylene glycol dimethyl ether was prepared, and the above-mentioned conventional battery (B),
(C) and no liquid electrolyte in the positive electrode and the negative electrode,
A conventional battery (D), which is a liquid electrolyte in which an electrolyte is impregnated in a separator, was prepared, a short-circuit test was performed at an ambient temperature of 60 ° C., and the results of safety comparison are shown in Table 1. The nominal capacity of each of the batteries used in this test was 1000 mAh.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から、本発明電池(A1),(A2)
は、従来電池(B),(D)に比較して格段に安全性が
向上し、従来電池(C)に匹敵するものであることがわ
かる。
From Table 1, it can be seen that the batteries (A1) and (A2) of the present invention.
Shows that the safety is remarkably improved as compared with the conventional batteries (B) and (D), and is comparable to the conventional battery (C).

【0029】次に、上記した本発明電池(A)を公称容
量の800%まで定電流で過充電した時の端子電圧の変
化を調査し、結果を図3(イ)に示すとともに、この過
充電した電池を放電レート0.1Cで放電した時の端子
電圧の変化を調査し、結果を図3(ロ)に示す。
Next, a change in terminal voltage when the above-mentioned battery (A) of the present invention was overcharged with a constant current to 800% of the nominal capacity was examined. The results are shown in FIG. The change in terminal voltage when the charged battery was discharged at a discharge rate of 0.1 C was investigated, and the results are shown in FIG.

【0030】図3(イ)から、本発明電池(A)は過充
電をしても端子電圧が4.3V以上にならず、それによ
る電池の膨れも認められなかったことがわかり、過充電
後の放電も正常な放電特性を示したことがわかる。この
ことから、本発明電池は過充電による安全上の問題が生
じることはなく、端子電圧をモニターせずに充電を行う
ことが可能になる。なお、この場合、安全上、より信頼
性を高めるために端子電圧をモニターしながら充電を行
ってもよい。
FIG. 3A shows that the battery (A) of the present invention did not have a terminal voltage of 4.3 V or more even when overcharged, and no swelling of the battery was observed. It can be seen that the subsequent discharge also showed normal discharge characteristics. Thus, the battery of the present invention does not cause a safety problem due to overcharging, and can be charged without monitoring the terminal voltage. Note that, in this case, charging may be performed while monitoring the terminal voltage in order to further enhance reliability in terms of safety.

【0031】[0031]

【発明の効果】上記した如く、本発明は、充放電サイク
ル性能にすぐれ、過充電に対する安全性の向上が図れる
非水電解質二次電池を得ることができ、きわめて工業的
価値の高いものである。
As described above, according to the present invention, a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle performance and improved safety against overcharging can be obtained, and has a very high industrial value. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解質二次電池の断面図である。FIG. 1 is a sectional view of a non-aqueous electrolyte secondary battery of the present invention.

【図2】本発明電池および従来電池について、放電レー
トと放電容量の関係を調査した図である。
FIG. 2 is a diagram illustrating a relationship between a discharge rate and a discharge capacity of a battery of the present invention and a conventional battery.

【図3】本発明電池を過充電した時の端子電圧の変化を
示す図である。
FIG. 3 is a diagram showing a change in terminal voltage when the battery of the present invention is overcharged.

【符号の説明】[Explanation of symbols]

1 正極合剤 3 負極合剤 5 隔離体 1 Positive electrode mixture 3 Negative electrode mixture 5 Isolator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵または放出、吸蔵および
放出が可能な材料を活物質として含む正極と負極とが隔
離体を介して配されてなる非水電解質二次電池におい
て、前記正極または負極の少なくとも一方に、分子内に
ヘテロ原子を有し、分子量が200〜20000である
非架橋形ポリマーとリチウム塩とからなる液状電解質を
含むことを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery in which a positive electrode containing a material capable of occluding or releasing lithium and occluding and releasing lithium as an active material and a negative electrode are disposed via an isolator. A non-aqueous electrolyte secondary battery comprising at least one of them containing a liquid electrolyte comprising a non-crosslinked polymer having a heteroatom in the molecule and having a molecular weight of 200 to 20,000 and a lithium salt.
【請求項2】 請求項1記載の非水電解質二次電池にお
いて、少なくとも負極は、活物質を液状電解質によって
膨潤させない3次元架橋形樹脂からなる結着剤を含むこ
とを特徴とする非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least the negative electrode contains a binder made of a three-dimensional crosslinked resin that does not swell the active material with the liquid electrolyte. Rechargeable battery.
【請求項3】 請求項1記載の非水電解質二次電池にお
いて、正極または負極の少なくとも一方に含まれる液状
電解質の正極または負極合剤に対する容積比率は30〜
70%であることを特徴とする非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a volume ratio of the liquid electrolyte contained in at least one of the positive electrode and the negative electrode to the positive electrode or negative electrode mixture is 30 to 40%.
Non-aqueous electrolyte secondary battery characterized by being 70%.
【請求項4】 請求項1記載の非水電解質二次電池にお
いて、分子量が200〜20000である非架橋形ポリ
マーはポリエーテルであることを特徴とする非水電解質
二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-crosslinked polymer having a molecular weight of 200 to 20,000 is a polyether.
【請求項5】 請求項1〜4のいずれか一項記載の非水
電解質二次電池において、隔離体は分子内にヘテロ原子
を有する3次元架橋形ポリマーとリチウム塩とを主体と
する高分子電解質であることを特徴とする非水電解質二
次電池。
5. The nonaqueous electrolyte secondary battery according to claim 1, wherein the separator is a polymer mainly composed of a three-dimensional crosslinked polymer having a hetero atom in a molecule and a lithium salt. A non-aqueous electrolyte secondary battery, which is an electrolyte.
JP10298417A 1998-10-20 1998-10-20 Nonaqueous electrolyte secondary battery Pending JP2000123824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298417A JP2000123824A (en) 1998-10-20 1998-10-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298417A JP2000123824A (en) 1998-10-20 1998-10-20 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000123824A true JP2000123824A (en) 2000-04-28

Family

ID=17859443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298417A Pending JP2000123824A (en) 1998-10-20 1998-10-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000123824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280072A (en) * 2001-03-19 2002-09-27 National Institute Of Advanced Industrial & Technology Battery incorporating organic/inorganic composite polymer solid electrolyte
JP2004055544A (en) * 2002-07-10 2004-02-19 Samsung Sdi Co Ltd Positive electrode for lithium-sulfur battery, and lithium-sulfur battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280072A (en) * 2001-03-19 2002-09-27 National Institute Of Advanced Industrial & Technology Battery incorporating organic/inorganic composite polymer solid electrolyte
JP2004055544A (en) * 2002-07-10 2004-02-19 Samsung Sdi Co Ltd Positive electrode for lithium-sulfur battery, and lithium-sulfur battery
US7291424B2 (en) 2002-07-10 2007-11-06 Samsung Sdi Co., Ltd. Positive electrode for lithium-sulfur battery and lithium-sulfur battery fabricated using same

Similar Documents

Publication Publication Date Title
Zaghib et al. LiFePO4/polymer/natural graphite: low cost Li-ion batteries
KR100281589B1 (en) Blended Polymer Gel Electrolytes
JP4801304B2 (en) How to charge a lithium-sulfur battery
JP3736045B2 (en) All solid lithium battery
JP2004014373A (en) Solid electrolyte battery
JPH11111266A (en) High polymer electrolyte secondary battery
KR20220015222A (en) Anode for lithium secondary battery and lithium secondary battery including the same
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JP3060077B2 (en) Non-aqueous electrolyte secondary battery and method for producing active material thereof
US6468696B1 (en) Polymer gel electrolyte systems
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
JP3107300B2 (en) Lithium secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP2000123824A (en) Nonaqueous electrolyte secondary battery
JPWO2002067355A1 (en) Lithium polymer battery
JPH08124597A (en) Solid electrolytic secondary cell
JP2000164211A (en) Positive electrode material and battery using the same
JP3448544B2 (en) Non-aqueous electrolyte battery
JP4054925B2 (en) Lithium battery
JP4438103B2 (en) Non-aqueous electrolyte battery
JPH11238503A (en) Nonaqueous electrolyte secondary battery
JPH08241733A (en) Lithium secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery