JP2000114594A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2000114594A
JP2000114594A JP28414698A JP28414698A JP2000114594A JP 2000114594 A JP2000114594 A JP 2000114594A JP 28414698 A JP28414698 A JP 28414698A JP 28414698 A JP28414698 A JP 28414698A JP 2000114594 A JP2000114594 A JP 2000114594A
Authority
JP
Japan
Prior art keywords
layer
light emitting
light
emission
furthermore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28414698A
Other languages
Japanese (ja)
Inventor
Masahiro Yamamoto
雅裕 山本
Shinya Nunogami
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28414698A priority Critical patent/JP2000114594A/en
Publication of JP2000114594A publication Critical patent/JP2000114594A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a structure for long wavelength and enable a light emitting device of low operational voltage by providing a structure wherein a compound containing a specific element in semiconductor is used for a superlattice well or a barrier layer. SOLUTION: Since sapphire, for example, is used for a board, a lamination structure formed thereon has a compound containing P or As of hexagonal system in a semiconductor lattice well or a barrier. Furthermore, an InGaN/ InGaP quantum well layer which becomes a light emitting layer also has a hexagonal system structure. Since a hexagonal system InGaAlNAsP thin film is a compound of direct transition type in a thin region, highly effective light emission or laser oscillation is realized. Furthermore, since P is incorporated, emission of light with a long wavelength is possible and emission of green light which has been extremely difficult in the InGaAlN system alone, or light emission and laser oscillation at still longer wavelengths are possible. Furthermore, enough refractive index distribution is possible and mode control is also possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電流注入により発光
させる半導体装置にかかわり、特に、InGaAlN 系の材料
を用いている発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device that emits light by current injection, and more particularly to a light emitting device using an InGaAlN-based material.

【0002】[0002]

【従来の技術】DVD に代表される次世代高密度記録装置
には青色光源が必要であり、近年、盛んに研究されてい
る。特に、GaN に代表される、InGaAlN 系は紫外光をふ
くむ光源として有望であり、注目を集めている。しか
し、この材料系では、Inを多く含むことで長波長化して
いるが、Inを多量に含むような領域での結晶成長が難し
く、導波モードが不安定になる。そのため、本来必要で
あるモード制御が難しい。そのため動作電圧が高くなる
という欠点を有していた。
2. Description of the Related Art A next-generation high-density recording apparatus represented by a DVD requires a blue light source, and has been actively studied in recent years. In particular, the InGaAlN system represented by GaN is promising as a light source including ultraviolet light, and is attracting attention. However, in this material system, the wavelength is increased by including a large amount of In, but it is difficult to grow a crystal in a region including a large amount of In, and the waveguide mode becomes unstable. Therefore, it is difficult to perform the mode control that is originally required. Therefore, there is a disadvantage that the operating voltage is increased.

【0003】[0003]

【発明が解決しようとする課題】上述したように従来の
GaN 系材料では本質的にIn組成が大きくならない。この
ため、長波長化が困難である。仮に、Inを多く含む層を
具備する構造をとれた場合でも、動作電圧が従来の装置
に比べ高くなる傾向になってしまう。本発明は上記事情
を考慮してなされたもので、その目的は、長波長化の構
造を提供するもので、あわせて、低動作電圧の発光デバ
イスを提供することである。
SUMMARY OF THE INVENTION As described above, the conventional
The GaN-based material does not essentially increase the In composition. Therefore, it is difficult to increase the wavelength. Even if a structure having a layer containing a large amount of In is employed, the operating voltage tends to be higher than that of a conventional device. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a structure having a longer wavelength and to provide a light emitting device having a low operating voltage.

【0004】[0004]

【課題を解決するための手段】本発明の骨子は、半導体
超格子の井戸、または、バリアに六方晶のP またはAsを
含む化合物をもちいる構造を有することを特徴とする半
導体発光装置を提供することである。
The gist of the present invention is to provide a semiconductor light emitting device having a structure using a compound containing hexagonal P or As for a well or a barrier of a semiconductor superlattice. It is to be.

【0005】[0005]

【発明の実施の形態】本発明によれば、電極下部にInGa
AlN 層を有する半導体発光装置において、半導体超格子
の井戸、またはバリア層に六方晶のP またはAsを含む化
合物を用いる構造を具備する構造を用いるがこの事は重
要な意味を持つ。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, InGa
In a semiconductor light emitting device having an AlN 2 layer, a structure having a structure using a compound containing hexagonal P or As for a barrier layer or a well of a semiconductor superlattice is important.

【0006】前述のように従来のGaN 系半導体発光素子
では、長波長化が十分にできない。これは、十分な屈折
率差がとれないためモード制御が十分にできない、さら
に、動作電圧が高いという問題となっていた。そこで本
発明のように半導体超格子の井戸、またはバリアに六方
晶のP またはAsを含む化合物を用いる構造を有すること
により問題点を解決したのが本発明でありこれを以下に
説明する。
As described above, the conventional GaN-based semiconductor light emitting device cannot sufficiently increase the wavelength. This has been a problem that mode control cannot be sufficiently performed because a sufficient refractive index difference cannot be obtained, and that an operating voltage is high. Therefore, the present invention solves the problem by having a structure using a compound containing hexagonal P or As for the well or barrier of the semiconductor superlattice as in the present invention, and the present invention solves the problem, which will be described below.

【0007】まず、本発明の積層構造について説明する
が、半導体超格子の井戸またはバリアに六方晶のP また
はAsを含む化合物を有する構造をとる。六方晶InGaAlNA
sPは、薄い領域では直接遷移の化合物となることが著者
たちの実験からわかった。ゆえに、この構造を用いるこ
とにより、図1に示すように、より広い範囲で発光が可
能となり、さらに屈折率分布を十分とることも可能とな
りモード制御が可能となる。
First, the laminated structure of the present invention will be described. A structure having a compound containing hexagonal P or As in a well or barrier of a semiconductor superlattice will be described. Hexagonal InGaAlNA
Our experiments show that sP is a direct transition compound in thin regions. Therefore, by using this structure, as shown in FIG. 1, light can be emitted in a wider range, the refractive index distribution can be made sufficient, and mode control becomes possible.

【0008】以下、本発明の実施の形態を図示の実施例
によって説明する。図2は本発明の一実施例にかかわる
半導体レーザの概略構造を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a diagram showing a schematic structure of a semiconductor laser according to one embodiment of the present invention.

【0009】図中11はサファイア基板であり、12は
n型GaN コンタクト層、13はn型AlGaN クラッド層、
14は、GaN ガイド層、15はInGaN ガイド層、16は
InGaN/InGaP からなる量子井戸層である。17はp型In
GaN ガイド層、18は、GaN ガイド層、19はGaN 電流拡
散防止層、20はp型AlGaN クラッド層、21はp型Ga
N コンタクト層、22は、23はそれぞれ、nとp側電
極である。
In the figure, 11 is a sapphire substrate, 12 is an n-type GaN contact layer, 13 is an n-type AlGaN cladding layer,
14 is a GaN guide layer, 15 is an InGaN guide layer, 16 is
This is a quantum well layer made of InGaN / InGaP. 17 is p-type In
GaN guide layer, 18 is a GaN guide layer, 19 is a GaN current diffusion preventing layer, 20 is a p-type AlGaN cladding layer, 21 is a p-type Ga
The N contact layer 22 and 23 are n and p side electrodes, respectively.

【0010】素子構造の形成には、フォトレジストを使
用し、パターニングを行ったのち、ドライエッチングに
より段差、表面形状を形成した。
In forming the element structure, a photoresist was used, patterning was performed, and then a step and a surface shape were formed by dry etching.

【0011】本実施形態においては、基板にサファイア
を用いているため、その上に成長される積層構造が六方
晶となり、発光層となるInGaN/InGaP 量子井戸層も六方
晶構造となる。上述したように六方晶InGaAlNAsP薄膜
は、直接遷移の化合物となるため、高効率の発光および
レーザ発振が実現できる。またP を含むために長波長化
が可能となり、InGaAlN 系のみでは極めて困難であった
緑色、あるいはより長波長での発光およびレーザ発振が
可能となる。
In this embodiment, since sapphire is used for the substrate, the laminated structure grown thereon becomes hexagonal, and the InGaN / InGaP quantum well layer serving as the light emitting layer also has a hexagonal structure. As described above, since the hexagonal InGaAlNAsP thin film is a compound of direct transition, highly efficient light emission and laser oscillation can be realized. Further, since P is included, it is possible to increase the wavelength, and it is possible to emit light and oscillate at a green wavelength or a longer wavelength, which was extremely difficult with the InGaAlN system alone.

【0012】本実施形態の半導体レーザは、2.5V で
立ち上がり、従来より、0.5V 以上立ち上がり電圧が
減少した。さらに、垂直横モード。水平横モードともに
従来より狭くなった。またレーザ光は、波長550nm で緑
色であった。また、基板はサファイアを用いているが、
たとえば、一部をクロライドVPE により成長作製した
後、MOVPE によりn型GaN 膜を成長しているAlGaN/GaN
基板を用いてもよい。
The semiconductor laser according to the present embodiment rises at 2.5 V, and the rising voltage is reduced by 0.5 V or more as compared with the prior art. In addition, vertical and horizontal modes. Both horizontal and horizontal modes are narrower than before. The laser light was green at a wavelength of 550 nm. Also, although the substrate uses sapphire,
For example, AlGaN / GaN grown by MOVPE after growing a part by chloride VPE
A substrate may be used.

【0013】次に図3の実施例を説明する。図中21は
サファイア基板であり、22はn型GaN コンタクト層、
23はn型AlGaN クラッド層、24はGaN ガイド層、2
5はInGaN/InGaAs量子井戸層、26はp型AlGaN 補償
層、27はGaN ガイド層、28はAlGaN 電流拡散防止
層、29はp型AlGaN クッラド層、230 はp型GaN コン
タクト層、231 ,232 はそれぞれnとpの電極である。
Next, the embodiment shown in FIG. 3 will be described. In the figure, 21 is a sapphire substrate, 22 is an n-type GaN contact layer,
23 is an n-type AlGaN cladding layer, 24 is a GaN guide layer, 2
5 is an InGaN / InGaAs quantum well layer, 26 is a p-type AlGaN compensation layer, 27 is a GaN guide layer, 28 is an AlGaN current diffusion prevention layer, 29 is a p-type AlGaN cladding layer, 230 is a p-type GaN contact layer, 231 and 232 Are n and p electrodes, respectively.

【0014】結晶成長はMOVPE を使用しており、ただ
し、Asを含む層は、MBE 法を使用している。レジストを
用い、パターニングを行い、ドライエッチングで島状構
造を形成した。この構造のレーザのしきい値は、1kA
/cm2であり、しきい値電圧は2.04Vであった。発振
波長は630nm であり、赤色であった。
The crystal growth uses MOVPE. However, the layer containing As uses the MBE method. Patterning was performed using a resist, and an island structure was formed by dry etching. The threshold value of the laser having this structure is 1 kA.
/ Cm2 and the threshold voltage was 2.04V. The oscillation wavelength was 630 nm and the color was red.

【0015】第3の実施例では、P 層とAs層の格子定数
の補償効果を使っている。図中31はサファイア基板で
あり、32はn型GaN コンタクト層、33はn型AlGaN
クラッド層、34は、GaN ガイド層、35は、InGaN/Ga
As/InGaN/InGaP量子井戸補償層、36はp型AlGaN 補償
層、330は、p型GaNP/GaNコンタクト層、331,3
32はそれぞれ、nとpの電極である。結晶成長はMOVP
E を使用しており、超格子構造はMBE を使用した。素子
形状はレジストを用いパターニングを行い形成した。こ
の構造のレーザのしきい値は1kA/cm2 であり、しきい値
電圧は2V であった。発振波長は630nmであった。ま
た、活性層の組成、構造を変化させることで、発振波長
は400nm から1600nmまでの広範囲で発振可能であった。
In the third embodiment, the effect of compensating the lattice constants of the P layer and the As layer is used. In the figure, 31 is a sapphire substrate, 32 is an n-type GaN contact layer, and 33 is an n-type AlGaN
Cladding layer, 34 is a GaN guide layer, 35 is InGaN / Ga
As / InGaN / InGaP quantum well compensation layer, 36 is a p-type AlGaN compensation layer, 330 is a p-type GaNP / GaN contact layer, 331, 3
Reference numeral 32 denotes n and p electrodes, respectively. MOVP for crystal growth
E was used, and MBE was used for the superlattice structure. The element shape was formed by patterning using a resist. The laser of this structure had a threshold value of 1 kA / cm2 and a threshold voltage of 2V. The oscillation wavelength was 630 nm. Also, by changing the composition and structure of the active layer, oscillation was possible in a wide range from 400 nm to 1600 nm.

【0016】なお、本発明は上述した実施例に限定され
るものではない。たとえば、実施例では材料系としてIn
GaNAsP系を用いたが、適宜変更可能である。また、同一
基板上に複数の素子を集積化することも可能である。そ
の他、本発明の要旨を逸脱しない範囲で種々変形して実
施することができる。
The present invention is not limited to the embodiment described above. For example, in the embodiment, the material system is In
Although a GaNAsP system was used, it can be changed as appropriate. In addition, a plurality of elements can be integrated on the same substrate. In addition, various modifications can be made without departing from the scope of the present invention.

【0017】[0017]

【発明の効果】以上詳述したように本発明によれば、従
来得られなかった広範囲の発振波長を同一材料で実現で
きる発光ダイオードやレーザダイオード装置を提供でき
る。
As described above in detail, according to the present invention, it is possible to provide a light emitting diode or a laser diode device capable of realizing a wide range of oscillation wavelengths, which could not be obtained conventionally, with the same material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の材料と本発明の材料との波長範囲の比較
を示す図である。
FIG. 1 is a diagram showing a comparison of a wavelength range between a conventional material and a material of the present invention.

【図2】本発明の第1の実施の形態に係る窒化ガリウム
系化合物半導体レーザを示す図である。
FIG. 2 is a diagram showing a gallium nitride-based compound semiconductor laser according to a first embodiment of the present invention.

【図3】本発明の第2の実施の形態に係る窒化ガリウム
系化合物半導体レーザを示す図である。
FIG. 3 is a diagram showing a gallium nitride-based compound semiconductor laser according to a second embodiment of the present invention.

【図4】本発明の第3の実施の形態に係る窒化ガリウム
系化合物半導体レーザを示す図である。
FIG. 4 is a diagram showing a gallium nitride-based compound semiconductor laser according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 サファイア基板 12 n型GaN コンタクト層 13 n型AlGaN クラッド層 14 GaNガイド層 15 InGaNガイド層 16 InGaN/InGaP 17 p型InGaN ガイド層 18 GaNガイド層 19 GaN電流拡散防止層 20 p型AlGaN クラッド層 21 p型GaN コンタクト層 22 n側電極 23 p側電極 Reference Signs List 11 sapphire substrate 12 n-type GaN contact layer 13 n-type AlGaN cladding layer 14 GaN guide layer 15 InGaN guide layer 16 InGaN / InGaP 17 p-type InGaN guide layer 18 GaN guide layer 19 GaN current diffusion prevention layer 20 p-type AlGaN cladding layer 21 p-type GaN contact layer 22 n-side electrode 23 p-side electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 pn接合を形成するように積層され、基
本的にIII 族窒化物からなる複数の層を有する積層膜
と、前記pn接合に電流を供給するように前記積層膜に
接合されたn側およびp側電極と発光層を挟む前記半導
体層において、量子井戸に六方晶のPを含む化合物を含
む構造を具備することを特徴とする窒化ガリウム系化合
物半導体装置。
1. A laminated film having a plurality of layers which are basically formed of a group III nitride and are laminated so as to form a pn junction, and are joined to the laminated film so as to supply a current to the pn junction. A gallium nitride-based compound semiconductor device, characterized in that the semiconductor layer sandwiching the light emitting layer and the n-side and p-side electrodes has a structure in which a quantum well contains a compound containing hexagonal P.
【請求項2】 pn接合を形成するように積層され、基
本的にIII 族窒化物からなる複数の層を有する積層膜
と、前記pn接合に電流を供給するように前記積層膜に
接合されたn側およびp側電極と発光層を挟む前記半導
体層において、量子井戸に六方晶のAsを含む化合物を含
む構造を具備することを特徴とする窒化ガリウム系化合
物半導体装置。
2. A laminated film having a plurality of layers which are basically formed of a group III nitride and are laminated so as to form a pn junction, and are joined to the laminated film so as to supply a current to the pn junction. A gallium nitride-based compound semiconductor device, characterized in that the semiconductor layer sandwiching the light emitting layer with the n-side and p-side electrodes has a structure in which a quantum well contains a compound containing hexagonal As.
【請求項3】 pn接合を形成するように積層され、基
本的にIII 族窒化物からなる複数の層を有する積層膜
と、前記pn接合に電流を供給するように前記積層膜に
接合されたn側およびp側電極と発光層を挟む前記半導
体層において、量子井戸に六方晶のAs、Pを含む化合物
を含む構造を具備することを特徴とする窒化ガリウム系
化合物半導体装置。
3. A laminated film having a plurality of layers which are basically formed of a group III nitride and are laminated so as to form a pn junction, and are joined to the laminated film so as to supply a current to the pn junction. A gallium nitride-based compound semiconductor device, characterized in that the semiconductor layer sandwiching the light emitting layer with the n-side and p-side electrodes has a structure in which a quantum well contains a compound containing hexagonal As and P.
JP28414698A 1998-10-06 1998-10-06 Semiconductor light emitting device Pending JP2000114594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28414698A JP2000114594A (en) 1998-10-06 1998-10-06 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28414698A JP2000114594A (en) 1998-10-06 1998-10-06 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2000114594A true JP2000114594A (en) 2000-04-21

Family

ID=17674774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28414698A Pending JP2000114594A (en) 1998-10-06 1998-10-06 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2000114594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2962331A4 (en) * 2013-02-27 2016-11-09 Univ North Carolina Incoherent type-iii materials for charge carriers control devices
US10203526B2 (en) 2015-07-06 2019-02-12 The University Of North Carolina At Charlotte Type III hetrojunction—broken gap HJ

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243613A (en) * 1992-03-02 1993-09-21 Matsushita Electric Ind Co Ltd Light-emitting device and its manufacture
JPH0637355A (en) * 1992-07-20 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> Iii-v alloy semiconductor and its manufacture
JPH07162097A (en) * 1993-11-02 1995-06-23 Xerox Corp Laser diode
JPH07263744A (en) * 1994-03-23 1995-10-13 Shiro Sakai Laminated superlattice structure of iii-v compound semiconductor and light emitting diode thereof
JPH0856054A (en) * 1994-08-11 1996-02-27 Fujitsu Ltd Semiconductor light emitting device
JPH0864870A (en) * 1994-08-26 1996-03-08 Rohm Co Ltd Semiconductor light emitting element
JPH08125221A (en) * 1994-10-19 1996-05-17 Sharp Corp Semiconductor light-emitting element
JPH08181077A (en) * 1994-12-22 1996-07-12 Nec Corp Growing method of nitride iii-v compound semiconductor crystal
JPH08264896A (en) * 1995-03-22 1996-10-11 Toshiba Corp Semiconductor device
JPH08316581A (en) * 1995-05-18 1996-11-29 Sanyo Electric Co Ltd Semiconductor device and semiconductor light emitting element
JPH09307188A (en) * 1996-05-14 1997-11-28 Hitachi Ltd Nitride based iii-v compound semiconductor element and its manufacture
JPH10256670A (en) * 1997-03-14 1998-09-25 Toshiba Corp Compound semiconductor element
JPH10270804A (en) * 1997-03-26 1998-10-09 Hitachi Ltd Optical information processor, solid-state light source suitable for it, and semiconductor light emitting device
JPH11340510A (en) * 1998-03-27 1999-12-10 Sharp Corp Semiconductor element and manufacture thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243613A (en) * 1992-03-02 1993-09-21 Matsushita Electric Ind Co Ltd Light-emitting device and its manufacture
JPH0637355A (en) * 1992-07-20 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> Iii-v alloy semiconductor and its manufacture
JPH07162097A (en) * 1993-11-02 1995-06-23 Xerox Corp Laser diode
JPH07263744A (en) * 1994-03-23 1995-10-13 Shiro Sakai Laminated superlattice structure of iii-v compound semiconductor and light emitting diode thereof
JPH0856054A (en) * 1994-08-11 1996-02-27 Fujitsu Ltd Semiconductor light emitting device
JPH0864870A (en) * 1994-08-26 1996-03-08 Rohm Co Ltd Semiconductor light emitting element
JPH08125221A (en) * 1994-10-19 1996-05-17 Sharp Corp Semiconductor light-emitting element
JPH08181077A (en) * 1994-12-22 1996-07-12 Nec Corp Growing method of nitride iii-v compound semiconductor crystal
JPH08264896A (en) * 1995-03-22 1996-10-11 Toshiba Corp Semiconductor device
JPH08316581A (en) * 1995-05-18 1996-11-29 Sanyo Electric Co Ltd Semiconductor device and semiconductor light emitting element
JPH09307188A (en) * 1996-05-14 1997-11-28 Hitachi Ltd Nitride based iii-v compound semiconductor element and its manufacture
JPH10256670A (en) * 1997-03-14 1998-09-25 Toshiba Corp Compound semiconductor element
JPH10270804A (en) * 1997-03-26 1998-10-09 Hitachi Ltd Optical information processor, solid-state light source suitable for it, and semiconductor light emitting device
JPH11340510A (en) * 1998-03-27 1999-12-10 Sharp Corp Semiconductor element and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2962331A4 (en) * 2013-02-27 2016-11-09 Univ North Carolina Incoherent type-iii materials for charge carriers control devices
US10374037B2 (en) 2013-02-27 2019-08-06 The University Of North Carolina At Charlotte Incoherent type-III materials for charge carriers control devices
US10203526B2 (en) 2015-07-06 2019-02-12 The University Of North Carolina At Charlotte Type III hetrojunction—broken gap HJ

Similar Documents

Publication Publication Date Title
US6526083B1 (en) Two section blue laser diode with reduced output power droop
US6285696B1 (en) Algainn pendeoepitaxy led and laser diode structures for pure blue or green emission
KR100432762B1 (en) Semiconductor laser and method of manufacturing the same
US20090078944A1 (en) Light emitting device and method of manufacturing the same
JP4505147B2 (en) Semiconductor structure and processing method using group III nitride quaternary material system with little phase separation
US6855959B2 (en) Nitride based semiconductor photo-luminescent device
US20050230695A1 (en) Semiconductor light-emitting element and method for manufacturing the same
JPWO2006013698A1 (en) Nitride semiconductor device and manufacturing method thereof
JP2003332697A (en) Nitride semiconductor element and its manufacturing method
JP2011101039A (en) Nitride semiconductor laser device
KR20120054590A (en) Nitride-semiconductor laser diode
JPH1051070A (en) Semiconductor laser
JP2000031533A (en) Semiconductor light emitting element
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JPH11274644A (en) Semiconductor light emitting element and fabrication thereof
JP2004134650A (en) Semiconductor light emitting element
JPH10321957A (en) Semiconductor device, semiconductor light emitting device, and optical information processing device
US20050058169A1 (en) Semiconductor laser device and method for fabricating the same
JP2003243772A (en) Semiconductor light emitting device and its manufacturing method
JP4365898B2 (en) Gallium nitride semiconductor laser device and semiconductor laser light source device
US11411141B2 (en) Micro semiconductor device
JP2000114594A (en) Semiconductor light emitting device
JP2000307193A (en) Semiconductor laser, its manufacture, semiconductor device and manufacture of the same
JP3347633B2 (en) Semiconductor device and method of manufacturing the same
JP2007049209A (en) Semiconductor optical device and manufacturing method thereof