JP2000081408A - Biosensor - Google Patents

Biosensor

Info

Publication number
JP2000081408A
JP2000081408A JP11184273A JP18427399A JP2000081408A JP 2000081408 A JP2000081408 A JP 2000081408A JP 11184273 A JP11184273 A JP 11184273A JP 18427399 A JP18427399 A JP 18427399A JP 2000081408 A JP2000081408 A JP 2000081408A
Authority
JP
Japan
Prior art keywords
enzyme
sensor
biosensor
trehalose
reaction layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11184273A
Other languages
Japanese (ja)
Other versions
JP2000081408A5 (en
JP3770757B2 (en
Inventor
Keiko Yugawa
系子 湯川
Toshihiko Yoshioka
俊彦 吉岡
Shiro Nankai
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18427399A priority Critical patent/JP3770757B2/en
Publication of JP2000081408A publication Critical patent/JP2000081408A/en
Publication of JP2000081408A5 publication Critical patent/JP2000081408A5/ja
Application granted granted Critical
Publication of JP3770757B2 publication Critical patent/JP3770757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a biosensor excellent in storage stability by restraining a decrease in enzyme activity during storage. SOLUTION: This biosensor is provided with an insulating substrate, an electrode system having at least a working electrode and counter electrode formed on the substrate, and a reaction layer containing at least an enzyme and saccharine formed on the electrode system. The enzyme is at least one kind selected from a group comprising a glucose oxidase, glucose dehydrogenase and fructose dehydrogenase; the saccharine is at least one kind selected from a group comprising a trehalose, sucrose, glycerol, mannitol and ribose. When the enzyme is the glucose dehydrogenase whose coenzyme is a pyrroloquinoline quinone, the saccharine is preferably the trehalose.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料中の特定成分
について、迅速かつ高精度な定量を簡便に実施すること
ができるバイオセンサに関する。
[0001] The present invention relates to a biosensor capable of easily and quickly performing high-precision quantification of a specific component in a sample.

【0002】[0002]

【従来の技術】従来、試料中の特定成分について、試料
液の希釈や撹拌などを行うことなく簡易に定量する方式
として、様々なバイオセンサが提案されている。バイオ
センサの一例として、次のようなセンサが知られている
(特開平2−062952号公報)。このバイオセンサ
は、絶縁性の基板上にスクリーン印刷等の方法で作用
極、対極および参照極からなる電極系を形成し、この電
極系上に接して親水性高分子と酸化還元酵素と電子受容
体を含む酵素反応層を形成したものである。
2. Description of the Related Art Conventionally, various biosensors have been proposed as a system for simply quantifying a specific component in a sample without diluting or stirring the sample solution. The following sensor is known as an example of a biosensor (Japanese Patent Application Laid-Open No. 2-062952). In this biosensor, an electrode system consisting of a working electrode, a counter electrode and a reference electrode is formed on an insulating substrate by a method such as screen printing, and a hydrophilic polymer, an oxidoreductase, and an electron acceptor are brought into contact with the electrode system. It is one in which an enzyme reaction layer containing a body is formed.

【0003】このようにして作製したバイオセンサの酵
素反応層上に基質を含む試料液を滴下すると、酵素反応
層が溶解して酵素と基質が反応し、これに伴い電子受容
体が還元される。酵素反応終了後、還元された電子受容
体を電気化学的に酸化し、このとき得られる酸化電流値
から試料液中の基質濃度を求めることができる。上記の
ようなバイオセンサは、測定対象物質を基質とする酵素
を選択することによって、様々な物質に対する測定が原
理的には可能である。酵素は、蛋白質を主成分とし、通
常、乾燥状態でセンサ内に保持されている。ところが、
空気の温度、湿度などの条件によって、空気中の水分が
酵素表面から酵素内に出入りする。そのため、酵素と空
気が長時間接すると、酵素内に存在するごくわずかな水
分量が変化して酵素が変性し、酵素の活性が低下する。
センサを作製した後、保存中のセンサ内に含まれる酵素
の活性が経時的に低下すると、基質と反応する酵素量が
不足するようになる。そのため、得られる応答電流値は
基質の濃度に比例しなくなるという問題が生じた。
When a sample solution containing a substrate is dropped onto the enzyme reaction layer of the biosensor produced in this way, the enzyme reaction layer dissolves and the enzyme reacts with the substrate, whereby the electron acceptor is reduced. . After completion of the enzymatic reaction, the reduced electron acceptor is electrochemically oxidized, and the substrate concentration in the sample solution can be determined from the oxidation current value obtained at this time. The biosensor as described above can measure various substances in principle by selecting an enzyme using the substance to be measured as a substrate. The enzyme has a protein as a main component and is usually held in the sensor in a dry state. However,
Depending on conditions such as the temperature and humidity of the air, moisture in the air flows into and out of the enzyme from the enzyme surface. Therefore, when the enzyme and the air are in contact for a long time, the amount of water present in the enzyme changes very little, the enzyme is denatured, and the activity of the enzyme decreases.
When the activity of the enzyme contained in the sensor during storage decreases over time after the production of the sensor, the amount of the enzyme that reacts with the substrate becomes insufficient. Therefore, there has been a problem that the obtained response current value is not proportional to the substrate concentration.

【0004】この問題を解決するためには、酵素の活性
が長期間保持されるような環境を酵素の近傍に整えるこ
とが重要である。また、酵素反応時に電子や基質の移動
などを円滑に行い、センサの応答性を高めることも必要
である。
[0004] In order to solve this problem, it is important to prepare an environment near the enzyme so that the activity of the enzyme is maintained for a long time. It is also necessary to smoothly transfer electrons and substrates during the enzymatic reaction to enhance the responsiveness of the sensor.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記課題に
鑑み、保存中のセンサ内に含まれる酵素の活性の低下を
抑制して、保存安定性の高いバイオセンサを提供するこ
とを目的とする。本発明は、特に小型で安価な使い捨て
タイプのバイオセンサを提供する。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a biosensor having high storage stability by suppressing a decrease in the activity of an enzyme contained in a sensor during storage. I do. The present invention provides a particularly small and inexpensive disposable biosensor.

【0006】[0006]

【課題を解決するための手段】本発明のバイオセンサ
は、絶縁性の基板、前記基板上に設けられた少なくとも
作用極と対極を有する電極系、および前記電極系上に形
成された少なくとも酵素および糖類を含む反応層を具備
し、前記酵素が、グルコースオキシダーゼ、グルコース
デヒドロゲナーゼおよびフルクトースデヒドロゲナーゼ
からなる群より選ばれる少なくとも1種であり、前記糖
類が、トレハロース、スクロース、グリセロール、マニ
トールおよびリボースからなる群より選ばれる少なくと
も1種であることを特徴とする。本発明の好ましい態様
において、前記酵素はピロロキノリンキノンを補酵素と
するグルコースデヒドロゲナーゼであり、前記糖類はト
レハロースである。
The biosensor of the present invention comprises an insulating substrate, an electrode system provided on the substrate and having at least a working electrode and a counter electrode, and at least an enzyme formed on the electrode system. A reaction layer containing a saccharide, wherein the enzyme is at least one selected from the group consisting of glucose oxidase, glucose dehydrogenase and fructose dehydrogenase, and the saccharide is a group consisting of trehalose, sucrose, glycerol, mannitol and ribose. It is characterized by being at least one selected from. In a preferred embodiment of the present invention, the enzyme is glucose dehydrogenase having pyrroloquinoline quinone as a coenzyme, and the saccharide is trehalose.

【0007】[0007]

【発明の実施の形態】本発明によるバイオセンサは、上
記のように、反応層中に糖類を含有する。酵素溶液に糖
類を添加し、この溶液を滴下し乾燥させて反応層を作成
すると、酵素表面は糖類によって被覆される。そのた
め、温度、湿度などの環境の変化から酵素を保護するこ
とができ、酵素活性を長期間安定させることができる。
また、糖類は水に容易に溶けるため、試料溶液を反応層
に添加すると、反応層は直ちに溶解し、酵素反応と電極
反応を円滑に進めることができて都合がよい。このよう
な効果が期待できる糖類には種々のものがある。また、
本発明のバイオセンサに適用できる酵素として、種々の
ものを選択することができる。グルコースオキシダー
ゼ、グルコースデヒドロゲナーゼおよびフルクトースデ
ヒドロゲナーゼからなる群より選ばれる少なくとも1種
の酵素を用いるときは、トレハロース、スクロース、グ
リセロール、マニトールおよびリボースからなる群より
選ばれる少なくとも1種の糖を反応層に含ませるのが好
適である。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, a biosensor according to the present invention contains a saccharide in a reaction layer. When a saccharide is added to the enzyme solution and the solution is dropped and dried to form a reaction layer, the enzyme surface is coated with the saccharide. Therefore, the enzyme can be protected from environmental changes such as temperature and humidity, and the enzyme activity can be stabilized for a long time.
In addition, since saccharides are easily dissolved in water, when a sample solution is added to a reaction layer, the reaction layer immediately dissolves, and the enzyme reaction and the electrode reaction can proceed smoothly, which is convenient. There are various sugars that can be expected to have such an effect. Also,
Various enzymes can be selected as enzymes applicable to the biosensor of the present invention. When using at least one enzyme selected from the group consisting of glucose oxidase, glucose dehydrogenase and fructose dehydrogenase, the reaction layer contains at least one sugar selected from the group consisting of trehalose, sucrose, glycerol, mannitol and ribose. Is preferred.

【0008】特に、酵素にピロロキノリンキノンを補酵
素とするグルコースデヒドロゲナーゼを用いる場合は、
糖類にトレハロースを用いると、前記酵素の活性維持に
著しい効果があり、センサを長期間保存した後も、良好
なセンサ応答性が得られる。酵素がピロロキノリンキノ
ンを補酵素とするグルコースデヒドロゲナーゼであり、
糖類がトレハロースである場合、試料液を血液3〜4μ
lとする使い捨てタイプのセンサチップ当たりの前記酵
素およびトレハロースの量は、それぞれ1〜40ユニッ
トおよび4〜400nM(nanomole)が適当であり、よ
り好ましくはそれぞれ5〜20ユニットおよび40〜2
00nMである。
In particular, when glucose dehydrogenase having pyrroloquinoline quinone as a coenzyme is used as an enzyme,
The use of trehalose as a saccharide has a remarkable effect on maintaining the activity of the enzyme, and good sensor responsiveness can be obtained even after the sensor has been stored for a long period of time. An enzyme is a glucose dehydrogenase having pyrroloquinoline quinone as a coenzyme,
When the saccharide is trehalose, the sample solution is 3-4 μm of blood.
The amount of the enzyme and trehalose per disposable sensor chip is 1 to 40 units and 4 to 400 nM (nanomole), respectively, and more preferably 5 to 20 units and 40 to 2 units, respectively.
00 nM.

【0009】電子受容体としては、フェリシアン化イオ
ン、p−ベンゾキノンおよびその誘導体、フェナジンメ
トサルフェート、メチレンブルー、フェロセンおよびそ
の誘導体等が挙げられる。また、試料液中の溶存酸素を
電子受容体とした場合にもセンサ応答が得られる。
Examples of the electron acceptor include ferricyanide ion, p-benzoquinone and its derivatives, phenazine methosulfate, methylene blue, ferrocene and its derivatives. A sensor response can also be obtained when dissolved oxygen in the sample liquid is used as an electron acceptor.

【0010】本発明によるバイオセンサの反応層には、
上記酵素類や糖類および電子受容体のほかに、親水性高
分子を含有させてもよい。反応層中に親水性高分子を添
加することにより、電極系表面からの反応層剥離を防ぐ
ことができる。さらに、反応層表面の割れを防ぐ効果も
有しており、バイオセンサの信頼性を高めるのに効果的
である。このような親水性高分子としては、カルボキシ
メチルセルロース、ヒドロキシエチルセルロース、ヒド
ロキシプロピルセルロース、メチルセルロース、エチル
セルロース、エチルヒドロキシエチルセルロース、カル
ボキシメチルエチルセルロース、ポリビニルピロリド
ン、ポリビニルアルコール、ポリリジンなどのポリアミ
ノ酸、ポリスチレンスルホン酸、ゼラチンおよびその誘
導体、アクリル酸またはその塩の重合体、メタクリル酸
またはその塩の重合体、スターチおよびその誘導体、無
水マレイン酸またはその塩の重合体、アガロースゲルお
よびその誘導体が好適に用いられる。
The reaction layer of the biosensor according to the present invention includes:
A hydrophilic polymer may be contained in addition to the enzymes, saccharides, and electron acceptors. By adding a hydrophilic polymer to the reaction layer, separation of the reaction layer from the surface of the electrode system can be prevented. Furthermore, it also has the effect of preventing cracks on the surface of the reaction layer, which is effective for improving the reliability of the biosensor. Such hydrophilic polymers include carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, carboxymethylethylcellulose, polyvinylpyrrolidone, polyvinylalcohol, polyamino acids such as polylysine, polystyrenesulfonic acid, gelatin and A derivative thereof, a polymer of acrylic acid or a salt thereof, a polymer of methacrylic acid or a salt thereof, starch and a derivative thereof, a polymer of maleic anhydride or a salt thereof, agarose gel and a derivative thereof are preferably used.

【0011】バイオセンサ内における反応層の配置に
は、電気絶縁性の基板上に形成された電極系上に形成す
る以外にも種々の形態がある。例えば、前記基板の電極
系上以外の場所や、前記基板に組み合わされて基板との
間に前記電極系に試料液を供給する試料液供給路を形成
するカバー部材を用い、このカバー部材の試料液供給路
に露出する面に配置することができる。酸化電流の測定
方法としては、作用極と対極のみの二極電極方式と、参
照極を加えた三極方式があり、三極の方がより正確な測
定が可能である。
The arrangement of the reaction layer in the biosensor has various forms other than the arrangement on the electrode system formed on the electrically insulating substrate. For example, using a cover member that forms a sample liquid supply path that supplies a sample liquid to the electrode system between the substrate and a place other than on the electrode system of the substrate or the substrate in combination with the substrate, It can be arranged on the surface exposed to the liquid supply path. As a method for measuring the oxidation current, there are a bipolar electrode method using only a working electrode and a counter electrode, and a triode method using a reference electrode, and a more accurate measurement is possible with a triode.

【0012】[0012]

【実施例】以下に、具体的な実施例を挙げて、本発明を
より詳細に説明する。図1は、本発明の一実施例におけ
るバイオセンサの反応層を取り除いた概略平面図であ
る。ポリエチレンテレフタレートからなる電気絶縁性の
基板1上に、スクリーン印刷により銀ペーストを印刷
し、リード2、3を形成している。次いで、樹脂バイン
ダーを含む導電性カーボンペーストを基板1上に印刷し
て作用極4を形成している。この作用極4は、リード2
と接触している。さらに、この基板1上に、絶縁性ペー
ストを印刷して絶縁層6を形成している。絶縁層6は、
作用極4の外周部を覆っており、これにより作用極4の
露出部分の面積を一定に保っている。そして、樹脂バイ
ンダーを含む導電性カーボンペーストをリード3と接触
するように基板1上に印刷してリング状の対極5を形成
している。図2は、図1のバイオセンサの縦断面図であ
る。図1のようにして作成した電極系上に、親水性高分
子層7および少なくとも酵素および糖類を含む反応層8
が形成されている。
The present invention will be described below in more detail with reference to specific examples. FIG. 1 is a schematic plan view of a biosensor according to one embodiment of the present invention, from which a reaction layer has been removed. Leads 2 and 3 are formed by printing silver paste by screen printing on an electrically insulating substrate 1 made of polyethylene terephthalate. Next, the working electrode 4 is formed by printing a conductive carbon paste containing a resin binder on the substrate 1. The working electrode 4 is connected to the lead 2
Is in contact with Further, an insulating paste is printed on the substrate 1 to form an insulating layer 6. The insulating layer 6
The outer peripheral portion of the working electrode 4 is covered so that the area of the exposed portion of the working electrode 4 is kept constant. Then, a conductive carbon paste containing a resin binder is printed on the substrate 1 so as to be in contact with the leads 3 to form a ring-shaped counter electrode 5. FIG. 2 is a longitudinal sectional view of the biosensor of FIG. On the electrode system prepared as shown in FIG. 1, a hydrophilic polymer layer 7 and a reaction layer 8 containing at least an enzyme and a saccharide are provided.
Are formed.

【0013】《実施例1》図1の基板1の電極上に、親
水性高分子であるカルボキシメチルセルロースのナトリ
ウム塩(以下、CMCと略す。)の0.5wt%水溶液
を滴下し、50℃の温風乾燥器中で10分間乾燥させ、
CMC層7を形成した。続いて、ピロロキノリンキノン
(以下、PQQと略す。)を補酵素とするグルコースデ
ヒドロゲナーゼ(以下、GDHと略す。)5000ユニ
ットとトレハロース20μMおよびフェリシアン化カリ
ウム50μMを水1mlに溶解した混合溶液4μlをC
MC層7上に滴下し乾燥して、反応層8を形成し、グル
コースセンサを作製した。試料液として、種々の濃度に
調整したグルコース水溶液を用意した。そして、この調
製した試料液を反応層8上に滴下した。グルコースを含
む試料液が反応層に供給されると、試料内のグルコース
はGDHにより酸化される。そして、これと同時に反応
層中のフェリシアン化カリウムがフェロシアン化カリウ
ムに還元される。
Example 1 A 0.5 wt% aqueous solution of a sodium salt of carboxymethyl cellulose (hereinafter abbreviated as CMC), which is a hydrophilic polymer, was dropped on an electrode of a substrate 1 shown in FIG. Dry in a warm air oven for 10 minutes,
CMC layer 7 was formed. Subsequently, 4 μl of a mixed solution obtained by dissolving 5000 units of glucose dehydrogenase (hereinafter abbreviated as GDH) using pyrroloquinoline quinone (hereinafter abbreviated as PQQ) as a coenzyme, 20 μM of trehalose and 50 μM of potassium ferricyanide in 1 ml of water was used.
The reaction layer 8 was formed by being dropped on the MC layer 7 and dried to form a glucose sensor. Glucose aqueous solutions adjusted to various concentrations were prepared as sample liquids. Then, the prepared sample solution was dropped on the reaction layer 8. When a sample solution containing glucose is supplied to the reaction layer, glucose in the sample is oxidized by GDH. At the same time, potassium ferricyanide in the reaction layer is reduced to potassium ferrocyanide.

【0014】試料液を滴下した1分後に、対極5を基準
にして作用極4に+0.5Vの電圧を印加して、フェロ
シアン化カリウムを酸化した。そして、5秒後に対極と
作用極の間を流れる電流値を測定した。同様にして、種
々の濃度のグルコース水溶液に対する電流値を測定し、
横軸にグルコース濃度、縦軸に電流値をプロットしてセ
ンサの応答特性図を作成した。その結果を図3に示す。
また、同様にして作製したバイオセンサを6ヶ月間保存
した後、同様にして応答特性図を作成した。その結果を
図3に示す。図3より、濃度と電流値との間には、一定
の相関性があり、優れた直線性を有した。また、センサ
作製直後と6ヶ月保存後には変化はなく、良好な保存性
を示した。
One minute after the sample solution was dropped, a voltage of +0.5 V was applied to the working electrode 4 with reference to the counter electrode 5 to oxidize potassium ferrocyanide. After 5 seconds, the value of the current flowing between the counter electrode and the working electrode was measured. Similarly, measuring the current value for various concentrations of glucose aqueous solution,
The response characteristic diagram of the sensor was created by plotting the glucose concentration on the horizontal axis and the current value on the vertical axis. The result is shown in FIG.
After storing the biosensor similarly manufactured for 6 months, a response characteristic diagram was similarly created. The result is shown in FIG. 3. From FIG. 3, there is a certain correlation between the concentration and the current value, and excellent linearity was obtained. Also, there was no change immediately after the production of the sensor and after storage for 6 months, indicating good storage properties.

【0015】《比較例1》反応層8中にトレハロースを
添加しなかった以外は、実施例1と同様にしてグルコー
スセンサを作製した。そして、実施例1と同様にして、
センサ作製直後と6ヶ月間保存後のセンサの応答特性図
を作成した。その結果を図3に示す。図3より、得られ
た応答電流値は実施例1よりも低かった。また、6ヶ月
間保存後のセンサは、濃度と電流値との間の相関性は低
下し、また応答電流値も作製直後のものよりも低下して
いた。
Comparative Example 1 A glucose sensor was manufactured in the same manner as in Example 1 except that trehalose was not added to the reaction layer 8. Then, as in the first embodiment,
Response characteristic diagrams of the sensor immediately after the production of the sensor and after storage for 6 months were created. The result is shown in FIG. From FIG. 3, the obtained response current value was lower than that in Example 1. In the sensor after storage for 6 months, the correlation between the concentration and the current value was reduced, and the response current value was also lower than that immediately after the production.

【0016】次に、反応層中のトレハロースの量を一定
(80nM)とし、PQQを補酵素とするGDHの量を
変えてセンサを作製し、6ケ月保存後に種々のグルコー
ス濃度の試料液を反応層に供給してセンサ応答を調べ
た。その結果を図4に示す。また、PQQを補酵素とす
るGDHの量を一定(20ユニット)とし、トレハロー
スの量を4、40、200、および400nMとしたセ
ンサを作製した。そして、グルコース濃度10mM(mi
llimole)の試料液を供給して各々初度および6ヶ月保
存後のセンサ応答を調べた。保存後の応答値の初度の応
答値に対する割合を図5に示す。
Next, the amount of trehalose in the reaction layer was kept constant (80 nM), and the amount of GDH containing PQQ as a coenzyme was changed to prepare a sensor. After storage for 6 months, sample solutions having various glucose concentrations were reacted. The sensor response was examined by feeding the layers. FIG. 4 shows the results. Further, sensors were prepared in which the amount of GDH containing PQQ as a coenzyme was constant (20 units) and the amounts of trehalose were 4, 40, 200, and 400 nM. And a glucose concentration of 10 mM (mi
(llimole) sample solution was supplied, and the sensor response at the initial time and after storage for 6 months was examined. FIG. 5 shows the ratio of the response value after storage to the initial response value.

【0017】これらの結果から、酵素の量が1ユニット
の場合、グルコース濃度600mg/dl以下でグルコ
ース濃度とセンサ応答とが直線性を示すことがわかる。
酵素量が40ユニットを超える程多量になるとコスト的
に不利である。これらからセンサチップ当たりの酵素量
は1〜40ユニットが適当であり、より好ましくは5〜
20ユニットである。一方、トレハロースの量は、4n
Mおよび400nMで若干保存性が低下している。従っ
て、4nM〜400nMの範囲が適当であり、より好ま
しくは40〜200nMの範囲である。
These results show that when the amount of the enzyme is 1 unit, the glucose concentration and the sensor response show linearity at a glucose concentration of 600 mg / dl or less.
If the amount of the enzyme exceeds 40 units and becomes large, it is disadvantageous in terms of cost. From these, the amount of enzyme per sensor chip is suitably 1 to 40 units, more preferably 5 to 40 units.
20 units. On the other hand, the amount of trehalose is 4n
At M and 400 nM, the preservability was slightly reduced. Therefore, the range of 4 nM to 400 nM is appropriate, and more preferably the range is 40 to 200 nM.

【0018】《実施例2》グルコースデヒドロゲナーゼ
の代わりに、グルコースオキシダーゼを用いた他は、実
施例1と同様にしてグルコースセンサを作製した。そし
て、実施例1と同様にしてセンサ作製直後と6ヶ月間保
存後のセンサの応答特性図を作成した。その結果、グル
コース濃度と電流値との間には高い相関性があった。ま
た、6カ月間保存後も、センサ作製直後のものと差はな
く、良好な保存性を示した。
Example 2 A glucose sensor was produced in the same manner as in Example 1 except that glucose oxidase was used instead of glucose dehydrogenase. Then, in the same manner as in Example 1, a response characteristic diagram of the sensor immediately after the production of the sensor and after storage for 6 months was created. As a result, there was a high correlation between the glucose concentration and the current value. In addition, even after storage for 6 months, there was no difference from that immediately after the production of the sensor, showing good preservability.

【0019】《比較例2》反応層8中にトレハロースを
添加しなかった以外は、実施例2と同様にしてグルコー
スセンサを作製した。そして、実施例1と同様にして、
センサ作製直後と6ヶ月間保存後のセンサの応答特性図
を作製した。その結果、得られた応答電流値は実施例2
よりも低かった。また、6ヶ月間保存後のセンサは、濃
度と電流値との間の相関性は低下し、また応答電流値も
作製直後のものよりも低下していた。
Comparative Example 2 A glucose sensor was manufactured in the same manner as in Example 2 except that trehalose was not added to the reaction layer 8. Then, as in the first embodiment,
Response characteristic diagrams of the sensor immediately after the production of the sensor and after storage for 6 months were produced. As a result, the obtained response current value was
Was lower than. In the sensor after storage for 6 months, the correlation between the concentration and the current value was reduced, and the response current value was also lower than that immediately after the production.

【0020】《実施例3》グルコースデヒドロゲナーゼ
の代わりに、フルクトースデヒドロゲナーゼを用いた他
は、実施例1と同様にしてセンサを作製した。試料液と
して、種々の濃度のフルクトース溶液を調製した。そし
て、この試料液を用い、実施例1と同様にして、センサ
作製直後と6ヶ月間保存後のセンサ応答特性図を作成し
た。その結果、フルクトース濃度と電流値との間には高
い相関性があった。また、6カ月間保存後も、そのセン
サ作製直後のものと差はなく、良好な保存性を示した。
Example 3 A sensor was produced in the same manner as in Example 1 except that fructose dehydrogenase was used instead of glucose dehydrogenase. Fructose solutions of various concentrations were prepared as sample solutions. Then, in the same manner as in Example 1 using this sample liquid, a sensor response characteristic diagram was created immediately after the sensor was manufactured and after storage for 6 months. As a result, there was a high correlation between the fructose concentration and the current value. In addition, even after storage for 6 months, there was no difference from that immediately after the production of the sensor, indicating good storage stability.

【0021】《比較例3》反応層8中にトレハロースを
添加しなかった以外は、実施例3と同様にしてセンサを
作製した。そして、実施例3と同様にして、センサ作製
直後と6ヶ月間保存後のセンサの応答特性図を作製し
た。その結果、得られた応答電流値は実施例3よりも低
かった。また、6ヶ月間保存後のセンサは、濃度と電流
値との間の相関性は低下し、また応答電流値も作製直後
のものよりも低下していた。
Comparative Example 3 A sensor was manufactured in the same manner as in Example 3 except that trehalose was not added to the reaction layer 8. Then, in the same manner as in Example 3, response characteristic diagrams of the sensor immediately after the production of the sensor and after storage for 6 months were produced. As a result, the obtained response current value was lower than that of Example 3. In the sensor after storage for 6 months, the correlation between the concentration and the current value was reduced, and the response current value was also lower than that immediately after the production.

【0022】[0022]

【発明の効果】上記のように、本発明によれば、長期保
存性の優れたバイオセンサを得ることができる。
As described above, according to the present invention, a biosensor having excellent long-term storage properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例におけるバイオセンサの反応
層を除いた概略平面図である。
FIG. 1 is a schematic plan view excluding a reaction layer of a biosensor according to an embodiment of the present invention.

【図2】同バイオセンサの要部の縦断面図である。FIG. 2 is a longitudinal sectional view of a main part of the biosensor.

【図3】本発明の実施例および比較例のバイオセンサの
応答特性を示す図である。
FIG. 3 is a diagram showing response characteristics of biosensors of an example of the present invention and a comparative example.

【図4】酵素量の異なる反応層を有するセンサの応答特
性を示す図である。
FIG. 4 is a diagram showing response characteristics of a sensor having reaction layers having different amounts of enzymes.

【図5】トレハロースの量の異なる反応層を有するセン
サの保存後の応答値の初度の応答値に対する割合を比較
した図である。
FIG. 5 is a diagram comparing the ratios of response values after storage to initial response values of sensors having reaction layers with different amounts of trehalose.

【符号の説明】[Explanation of symbols]

1 絶縁性の基板 2、3 リード 4 作用極 5 対極 6 絶縁層 7 CMC層 8 反応層 DESCRIPTION OF SYMBOLS 1 Insulating substrate 2, 3 Lead 4 Working electrode 5 Counter electrode 6 Insulating layer 7 CMC layer 8 Reaction layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性の基板、前記基板上に設けられた
少なくとも作用極と対極を有する電極系、および前記電
極系上に形成された少なくとも酵素および糖類を含む反
応層を具備し、前記酵素が、グルコースオキシダーゼ、
グルコースデヒドロゲナーゼおよびフルクトースデヒド
ロゲナーゼからなる群より選ばれる少なくとも1種であ
り、前記糖類が、トレハロース、スクロース、グリセロ
ール、マニトールおよびリボースからなる群より選ばれ
る少なくとも1種であることを特徴とするバイオセン
サ。
1. An enzyme comprising: an insulating substrate, an electrode system having at least a working electrode and a counter electrode provided on the substrate, and a reaction layer formed on the electrode system and containing at least an enzyme and a saccharide. But glucose oxidase,
A biosensor, which is at least one selected from the group consisting of glucose dehydrogenase and fructose dehydrogenase, and wherein the saccharide is at least one selected from the group consisting of trehalose, sucrose, glycerol, mannitol, and ribose.
【請求項2】 前記酵素がピロロキノリンキノンを補酵
素とするグルコースデヒドロゲナーゼであり、前記糖類
がトレハロースである請求項1記載のバイオセンサ。
2. The biosensor according to claim 1, wherein the enzyme is glucose dehydrogenase using pyrroloquinoline quinone as a coenzyme, and the saccharide is trehalose.
【請求項3】 前記反応層が、センサチップ当たり前記
グルコースデヒドロゲナーゼを1〜40ユニット、トレ
ハロースを4〜400nM含む請求項2記載のバイオセ
ンサ。
3. The biosensor according to claim 2, wherein the reaction layer contains 1 to 40 units of the glucose dehydrogenase and 4 to 400 nM of trehalose per sensor chip.
【請求項4】 前記反応層が、センサチップ当たり前記
グルコースデヒドロゲナーゼを5〜20ユニット、トレ
ハロースを40〜200nM含む請求項2記載のバイオ
センサ。
4. The biosensor according to claim 2, wherein the reaction layer contains 5 to 20 units of the glucose dehydrogenase and 40 to 200 nM of trehalose per sensor chip.
JP18427399A 1998-07-03 1999-06-29 Biosensor Expired - Lifetime JP3770757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18427399A JP3770757B2 (en) 1998-07-03 1999-06-29 Biosensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18879998 1998-07-03
JP10-188799 1998-07-03
JP18427399A JP3770757B2 (en) 1998-07-03 1999-06-29 Biosensor

Publications (3)

Publication Number Publication Date
JP2000081408A true JP2000081408A (en) 2000-03-21
JP2000081408A5 JP2000081408A5 (en) 2005-03-10
JP3770757B2 JP3770757B2 (en) 2006-04-26

Family

ID=26502403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18427399A Expired - Lifetime JP3770757B2 (en) 1998-07-03 1999-06-29 Biosensor

Country Status (1)

Country Link
JP (1) JP3770757B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073419A1 (en) * 2000-03-29 2001-10-04 Matsushita Electric Industrial Co., Ltd. Biosensor
JP2001343350A (en) * 2000-03-29 2001-12-14 Matsushita Electric Ind Co Ltd Biosensor
JP2002207022A (en) * 2000-11-09 2002-07-26 Matsushita Electric Ind Co Ltd Biosensor
WO2002073181A1 (en) * 2001-03-13 2002-09-19 Koji Sode Enzyme electrode
JP2010183895A (en) * 2009-02-13 2010-08-26 Aisin Seiki Co Ltd Method for activating aldose dehydrogenase
JP2011214839A (en) * 2010-03-31 2011-10-27 Cci Corp Biosensor
JP2015194378A (en) * 2014-03-31 2015-11-05 シーシーアイ株式会社 biosensor with improved storage stability

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073419A1 (en) * 2000-03-29 2001-10-04 Matsushita Electric Industrial Co., Ltd. Biosensor
JP2001343350A (en) * 2000-03-29 2001-12-14 Matsushita Electric Ind Co Ltd Biosensor
US6911131B2 (en) 2000-03-29 2005-06-28 Matsushita Electric Industrial Co., Ltd. Biosensor
US7648617B2 (en) 2000-03-29 2010-01-19 Panasonic Corporation Biosensor
JP4627911B2 (en) * 2000-03-29 2011-02-09 パナソニック株式会社 Biosensor
US8673127B2 (en) 2000-03-29 2014-03-18 Panasonic Corporation Biosensor
JP2002207022A (en) * 2000-11-09 2002-07-26 Matsushita Electric Ind Co Ltd Biosensor
JP4627912B2 (en) * 2000-11-09 2011-02-09 パナソニック株式会社 Biosensor
WO2002073181A1 (en) * 2001-03-13 2002-09-19 Koji Sode Enzyme electrode
JP2010183895A (en) * 2009-02-13 2010-08-26 Aisin Seiki Co Ltd Method for activating aldose dehydrogenase
JP2011214839A (en) * 2010-03-31 2011-10-27 Cci Corp Biosensor
JP2015194378A (en) * 2014-03-31 2015-11-05 シーシーアイ株式会社 biosensor with improved storage stability

Also Published As

Publication number Publication date
JP3770757B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US6656702B1 (en) Biosensor containing glucose dehydrogenase
US7005048B1 (en) Glucose sensor
KR100293873B1 (en) Biosensor
US5958199A (en) Biosensor
JP3267936B2 (en) Biosensor
JPH1142098A (en) Quantitative determination of substrate
JPH06109698A (en) Method for measuring substrate concentration
JP2960265B2 (en) Biosensor and measurement method using the same
JP3024394B2 (en) Biosensor and measurement method using the same
JP3267933B2 (en) Substrate quantification method
JP3770757B2 (en) Biosensor
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JP2001249103A (en) Biosensor
JP2000180399A (en) Determination method of substrate
JP3267907B2 (en) Biosensor and Substrate Quantification Method Using It
JPH07114705B2 (en) Biosensor
JP3070818B2 (en) Biosensor and manufacturing method thereof
JP3333183B2 (en) Biosensor
JP3494398B2 (en) Biosensor
JP3370414B2 (en) Manufacturing method of biosensor
JP3245103B2 (en) Biosensor and Substrate Quantification Method Using It
JP3297623B2 (en) Biosensor
JP3222985B2 (en) Biosensor
JP3163218B2 (en) Biosensor manufacturing method
JPH0688804A (en) Fructose sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Ref document number: 3770757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term