JP2000079417A - Method for bending double-tube type heat exchanger - Google Patents

Method for bending double-tube type heat exchanger

Info

Publication number
JP2000079417A
JP2000079417A JP10251689A JP25168998A JP2000079417A JP 2000079417 A JP2000079417 A JP 2000079417A JP 10251689 A JP10251689 A JP 10251689A JP 25168998 A JP25168998 A JP 25168998A JP 2000079417 A JP2000079417 A JP 2000079417A
Authority
JP
Japan
Prior art keywords
tube
bending
heat exchanger
pipe
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10251689A
Other languages
Japanese (ja)
Other versions
JP3919354B2 (en
Inventor
Masaharu Ando
正治 安藤
Tadao Kitahara
忠夫 北原
Yasufumi Sakakibara
康文 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyasu Industries Co Ltd
Original Assignee
Maruyasu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyasu Industries Co Ltd filed Critical Maruyasu Industries Co Ltd
Priority to JP25168998A priority Critical patent/JP3919354B2/en
Publication of JP2000079417A publication Critical patent/JP2000079417A/en
Application granted granted Critical
Publication of JP3919354B2 publication Critical patent/JP3919354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bending method of a double-tube type heat exchanger which can be stably bent without generating uneven-thickness space and clogging phenomenon even when corrugated heat transfer fins are provided on the side of the internal tube. SOLUTION: In this bending method of the double-tube type heat exchanger where internal tube 12 and external tube 14 are provided, either of a high- temp.-side fluid passage and lower-temp.-side fluid passage is respectively provided on the sides of the internal tube 12 and external tube 14 and the corrugated heat transfer fins 22 are arranged in contact with the tube wall on the side of the internal tube 12, after filling up water in both the internal tube 12 and external tube 14, the tubes are closed so as not to outflow and, after freezing the water and bending it in the state where ice is made, the ice is molten and removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二重管式熱交換器
の曲げ加工方法に関する。特に、内管に高速の高温ガス
(気体)を、外管に冷却水(液体)を通過させて熱交換
を行う熱交換器、例えば、内燃機関の排気ガスを冷却水
により冷却する排気冷却器(高度の熱交換能が要求され
る)等を曲げ加工するのに好適な発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for bending a double tube heat exchanger. In particular, a heat exchanger that exchanges heat by passing high-speed high-temperature gas (gas) through the inner pipe and cooling water (liquid) through the outer pipe, for example, an exhaust cooler that cools exhaust gas of an internal combustion engine with cooling water The present invention is suitable for bending (for example, a high heat exchange ability is required).

【0002】[0002]

【背景技術】二重管式熱交換器としては、図1・2に示
す如く、内管12を外管14に挿通させ、外管14の両
端部を内管12の外壁に溶接したものがある。外管14
の両端部には、冷却水の入口ノズル16及び出口ノズル
18を向流/並流使用できるように形成されている(図
例では向流)。なお、20は管フランジである。
2. Description of the Related Art As shown in FIGS. 1 and 2, a double-pipe heat exchanger is one in which an inner pipe 12 is inserted into an outer pipe 14 and both ends of the outer pipe 14 are welded to the outer wall of the inner pipe 12. is there. Outer tube 14
The cooling water inlet nozzle 16 and outlet nozzle 18 are formed at both ends so that they can be used in countercurrent / cocurrent (countercurrent in the example in the figure). In addition, 20 is a pipe flange.

【0003】図1・2に示すような構成では、熱交換が
内管12の壁面だけであり、伝熱面積が小さく、かつ、
内管12の中心部側を流れる流体の熱交換が行い難く熱
交換効率が低い。即ち、全体として大きな熱交換能を得
難かった。
In the configuration shown in FIGS. 1 and 2, heat exchange is performed only on the wall surface of the inner tube 12, the heat transfer area is small, and
Heat exchange of the fluid flowing through the center of the inner tube 12 is difficult, and the heat exchange efficiency is low. That is, it was difficult to obtain a large heat exchange capacity as a whole.

【0004】このため、図3・4に示すような、複数本
(図例では4本)の細径の内管12Aを外管14の内側
に挿通させた多管式タイプが、通常、使用されている。
この構成では、伝熱面積が増大するとともに、中心部側
を流れる流体に対しても熱交換を行うことができ、大き
な熱交換能を得易い。
For this reason, as shown in FIGS. 3 and 4, a multi-tube type in which a plurality of (four in the illustrated example) small-diameter inner tubes 12A are inserted into the outer tube 14 is usually used. Have been.
With this configuration, the heat transfer area is increased, and heat exchange can be performed with respect to the fluid flowing on the central portion side, so that a large heat exchange capability is easily obtained.

【0005】しかし、図3・4に示す多管式タイプのも
のでは、製造工数がかさみ、かつ、重量も増大する傾向
にある。
However, the multi-tube type shown in FIGS. 3 and 4 tends to increase the number of manufacturing steps and increase the weight.

【0006】このため、本願発明者らは、先に、図1・
2に示す構成の二重管式熱交換器において、図5に示す
如く、内管12に、横断面放射状の波形チューブで形成
された波形の伝熱フィン22を、内管12の管壁内側に
接して配した熱交換器を提案した(特願平9−1825
71号:特開平 − 号公報参照、出願時未
公開)。伝熱面積の増大と内管12の中心部を流れる流
体の熱交換も可能として、熱交換能を増大させる。
[0006] For this reason, the inventors of the present invention have previously described FIG.
In the double-pipe heat exchanger having the configuration shown in FIG. 2, a corrugated heat transfer fin 22 formed of a corrugated tube having a radial cross section is provided on the inner pipe 12 as shown in FIG. (Japanese Patent Application No. 9-1825)
No. 71: See Japanese Patent Application Laid-Open No. Hei. The heat transfer area can be increased and the fluid flowing through the center of the inner tube 12 can be exchanged with heat, thereby increasing the heat exchange capacity.

【0007】該伝熱フィン22は、図6に示す如くプレ
ス加工等により形成した金属波板24をチューブ状にな
るように巻き回した状態で、内管12に挿入し、波板2
4の頂部24aを内管12の壁面にロウ付けして形成し
ていた。
The heat transfer fins 22 are inserted into the inner tube 12 in a state where a metal corrugated plate 24 formed by press working or the like is wound into a tube shape as shown in FIG.
4 was formed by brazing the top 24a to the wall surface of the inner tube 12.

【0008】[0008]

【発明が解決しようとする課題】図5に示す構成の熱交
換器において、省スペース化を図るため等の理由によ
り、曲げ加工をする必要が生じてきた。
In the heat exchanger having the structure shown in FIG. 5, it has become necessary to perform bending work for reasons such as space saving.

【0009】曲げ加工をする際の中間部の空間偏肉ない
し閉塞現象の発生を防止する見地から、砂、可撓性材料
等の不定型材料を注入して曲げ加工をする方法が従来周
知である。
[0009] From the viewpoint of preventing the occurrence of spatial unevenness or blockage of the intermediate portion during bending, a method of bending by injecting an indefinite material such as sand or a flexible material is well known. is there.

【0010】しかし、この曲げ加工方法の場合、二重管
内に充填する手間、特に、外側管への充填・排出の手間
がかかり、面倒であった。さらに、内管の管壁に接して
波形の伝熱フィンが存在するために、内管と伝熱フィン
との間に充填された充填物が排除できないおそれがあっ
た。
[0010] However, in the case of this bending method, it takes time and effort to fill the inside of the double pipe, and particularly, it takes time and effort to fill and discharge the outer pipe. Furthermore, since the corrugated heat transfer fins are present in contact with the inner wall of the inner tube, there is a possibility that the filler filled between the inner tube and the heat transfer fins cannot be removed.

【0011】この際、不定型材料として、水を注入して
凍らせて曲げ加工する方法もあるが、図5に示すよう
な、内管12側に波形の伝熱フィン22を備えたものに
おいては、困難視されていた。
At this time, as the irregular-shaped material, there is also a method of bending by injecting water and freezing it. However, as shown in FIG. 5, a material having a corrugated heat transfer fin 22 on the inner tube 12 side is used. Had been seen as difficult.

【0012】即ち、水を凍結させる際に、外側から凍っ
ていくが、内側までは閉塞ないし空間偏肉を阻止できる
ような十分な強度の凍結状態を確保するのは困難であ
る。したがって、従来は、単純二重構造のものしか適用
されていなかった(中村正信著「パイプ加工法」日刊工
業新聞社、p201〜202)。
That is, when freezing water, it freezes from the outside, but it is difficult to secure a frozen state of sufficient strength to prevent blockage or uneven thickness of the space up to the inside. Therefore, conventionally, only a simple double structure was applied (Nakamura Masanobu, "Pipe processing method", Nikkan Kogyo Shimbun, p. 201-202).

【0013】本発明は、上記にかんがみて、内管側に伝
熱フィンを備えていても、偏肉空間や閉塞現象を発生さ
せずに安定して曲げ加工ができる二重管式熱交換器の曲
げ加工方法を提供することを目的とする。
[0013] In view of the above, the present invention provides a double-pipe heat exchanger that can be bent stably without causing uneven wall thickness or clogging even if a heat transfer fin is provided on the inner pipe side. It is an object of the present invention to provide a bending method.

【0014】[0014]

【課題を解決するための手段】本願発明の二重管式熱交
換器の曲げ加工方法は、上記課題を、下記構成により解
決するものである。
SUMMARY OF THE INVENTION A method for bending a double-pipe heat exchanger according to the present invention solves the above-mentioned problems by the following constitution.

【0015】内管と外管とを備え、前記内管側および外
管側に、それぞれ、高温側流体通路および低温側流体通
路のどちらか一方づつを備え、内管側に波形の伝熱フィ
ンが管壁に接して配されているものである二重管式熱交
換器を曲げ加工するに際して、内管及び外管の双方に水
を充満させて流出不可に閉じて、該水を凍らさせて氷と
した状態で、曲げ加工を行った後、前記氷を解かして除
去することとを特徴とする。
An inner tube and an outer tube are provided, and one of a high-temperature fluid passage and a low-temperature fluid passage is provided on each of the inner tube side and the outer tube side, and a corrugated heat transfer fin is provided on the inner tube side. When bending the double-pipe heat exchanger, which is disposed in contact with the pipe wall, both the inner pipe and the outer pipe are filled with water and closed so that they cannot flow out, and the water is frozen. And performing bending in a state where the ice is used, and then melting and removing the ice.

【0016】二重管式熱交換器の内側曲げ角度は、通
常、150°〜0°とする。
The inside bending angle of the double-pipe heat exchanger is usually set to 150 ° to 0 °.

【0017】二重管式熱交換器の曲げ加工は、ドロー曲
げ又はプレス曲げにより行う。
The bending of the double-pipe heat exchanger is performed by draw bending or press bending.

【0018】[0018]

【発明の作用・効果】本発明の二重管式熱交換器の曲げ
加工方法は、後述の実施例で示す如く、内管側に伝熱フ
ィンを備えていても、偏肉空間や閉塞現象を発生させず
に安定して曲げ加工ができる。そして、二重乾式熱交換
器の偏肉空間や閉塞現象の発生阻止のための充填材の流
入・排出も水の状態で行うため容易であり、該水は再使
用できる。
According to the bending method of the double-pipe heat exchanger of the present invention, even if a heat transfer fin is provided on the inner pipe side, even if the inner pipe side is provided with a heat transfer fin, as shown in a later-described embodiment, the uneven wall space and the clogging phenomenon may occur. Bending can be performed stably without generating cracks. The inflow and outflow of the filler for preventing the occurrence of the uneven thickness space and the clogging phenomenon of the double dry heat exchanger is performed easily in the state of water, so that the water can be reused.

【0019】[0019]

【発明の実施の形態】以下、本発明の各種実施形態を図
例に基づいて説明をする。なお、前述例と同一部分につ
いては、同一図符号を付して、それらの説明の全部また
は一部を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the drawings. The same parts as those in the above-described example are denoted by the same reference numerals, and all or part of the description thereof will be omitted.

【0020】(1) 本発明の曲げ加工方法を適用する二重
管式熱交換器Hの一態様について、以下に、説明をす
る。
(1) One embodiment of the double tube heat exchanger H to which the bending method of the present invention is applied will be described below.

【0021】内管12と外管14とを備え、内管12側
および外管14側を、それぞれ、高温側流体通路および
低温側流体通路のいずれか一方づつとする二重管式熱交
換器Hである。図例では内管12側が高温ガス流体通路
とされ、外管14側が冷却水流体通路とされている。
A double-pipe heat exchanger including an inner pipe 12 and an outer pipe 14, wherein the inner pipe 12 and the outer pipe 14 each have one of a high-temperature fluid path and a low-temperature fluid path. H. In the illustrated example, the inner pipe 12 side is a high-temperature gas fluid passage, and the outer pipe 14 side is a cooling water fluid passage.

【0022】内管12に、横断面放射状の波形チューブ
で形成された伝熱フィン22が内管12の管壁内側に接
して配されている。
A heat transfer fin 22 formed of a corrugated tube having a radial cross section is disposed on the inner tube 12 in contact with the inner wall of the inner tube 12.

【0023】ここで、伝熱フィン22である波形チュー
ブは、通常、図6に示すような、熱伝導率が大きくバネ
性を有する金属製(例えば、鋼製)の金属波板24を筒
状に曲げて、内管12に挿入し、その後、蝋付けにより
固定して形成することが望ましい。蝋付け工程前の仮止
め作業が不要となるためである。勿論、波形チューブ
を、当初から引き抜き等により加工成形したものを、内
管12に挿入して、固定してもよい。この場合は、波形
チューブは、内管に対して締まり嵌めとなるようにして
おくことが、上記と同様蝋付け工程前の仮止めが不要と
なり望ましい。ここで、波形チューブ22の板厚は、材
質により異なるが、鋼製の場合、通常、0.01〜0.
8mm、望ましくは、0.05〜0.5mmとする。薄くし
すぎると、形態保持性とともに伝熱抵抗が大きくなり、
また、厚いと重量増大につながり望ましくない。
Here, the corrugated tube, which is the heat transfer fin 22, is generally formed of a metal (for example, steel) metal corrugated plate 24 having a large thermal conductivity and a spring property as shown in FIG. It is desirable to bend and insert into the inner tube 12 and then fix it by brazing. This is because temporary fixing work before the brazing process is not required. Of course, a corrugated tube formed by drawing or the like from the beginning may be inserted into the inner tube 12 and fixed. In this case, it is desirable that the corrugated tube be tightly fitted to the inner tube because the temporary fixing before the brazing step is not required similarly to the above. Here, the plate thickness of the corrugated tube 22 varies depending on the material.
8 mm, preferably 0.05 to 0.5 mm. If it is too thin, heat transfer resistance will increase along with shape retention,
On the other hand, when the thickness is large, the weight increases, which is not desirable.

【0024】また、内管12の内半径rと波板24の高
さLとの関係は、内管12の内径にもよるが、内管12
の内径10〜50mmの範囲で、通常L/r=0.1〜
0.8、望ましくは、L/r=0.2〜0.7とする。
そして内径の範囲に対応して、波の山の高さはL=4〜
20mmとする。
The relationship between the inner radius r of the inner tube 12 and the height L of the corrugated plate 24 depends on the inner diameter of the inner tube 12.
L / r = 0.1 to 10 to 50 mm
0.8, preferably L / r = 0.2 to 0.7.
And according to the range of the inner diameter, the height of the wave peak is L = 4 ~
20 mm.

【0025】また、波形チューブ22の波ピッチは、要
求伝熱面積に対応して2〜5mmとする。
The wave pitch of the corrugated tube 22 is set to 2 to 5 mm according to the required heat transfer area.

【0026】なお、波形チューブの形態は、波形の山・
谷がR状でなくても、山・谷が角ばっていてもよい。ま
た、長手方向で山を一定ピッチ毎にずらして形成した金
属製波板で形成したものを使用して形成してもよい。
It should be noted that the shape of the corrugated tube may be
The valleys may not be R-shaped, but the peaks and valleys may be square. Alternatively, the ridges may be formed by using a metal corrugated plate in which the peaks are shifted at regular intervals in the longitudinal direction.

【0027】また、内管12の肉厚は、伝熱性の見地か
ら可及的に薄い方が望ましいが、波形チューブに比して
剛性が要求されるため、波形チューブより厚肉とする。
例えば、内管12の内径が上記範囲の場合、通常0.1
〜1.0mm、望ましくは0.3〜0.8mmとする。
The wall thickness of the inner tube 12 is desirably as thin as possible from the viewpoint of heat transfer. However, since the rigidity is required as compared with the corrugated tube, the inner tube 12 is made thicker than the corrugated tube.
For example, when the inner diameter of the inner tube 12 is within the above range, it is usually 0.1
To 1.0 mm, preferably 0.3 to 0.8 mm.

【0028】外管14と内管12との隙間は、例えば、
内管12の内径が上記範囲の場合、通常、1〜5mmの範
囲とする。
The gap between the outer pipe 14 and the inner pipe 12 is, for example,
When the inner diameter of the inner tube 12 is in the above range, it is usually in the range of 1 to 5 mm.

【0029】(2) 次に、上記態様の二重管式熱交換器H
の曲げ加工方法について、説明をする。即ち、図7に直
管状の状態から、図8に示す曲げ状態に、曲げ加工を行
う。このときの内側曲げ角度αが150°〜0°、望ま
しくは、120°〜0°とする。150°を越えるもの
については、充填材を入れなくても、閉塞等の現象が発
生し難く、本発明の曲げ加工方法を適用する必然性が低
い。なお、曲げ角度が0°(反転曲げ)の場合でも、曲
げRを大きく採れば可、曲げ加工した場合、伝熱フィン
が偏肉空間ないし閉塞が発生することはない。なお、図
例では、曲げ部Cは1箇所であるが2箇所以上でもよく
(特に長尺の二重管式熱交換器の場合)、その場合、曲
げ方向も同一平面状にある必要はない。
(2) Next, the double tube heat exchanger H of the above embodiment
Will be described. That is, the bending process is performed from the straight tubular state shown in FIG. 7 to the bent state shown in FIG. At this time, the inner bending angle α is set to 150 ° to 0 °, preferably, 120 ° to 0 °. In the case where the angle exceeds 150 °, phenomena such as clogging hardly occur even without a filler, and the necessity of applying the bending method of the present invention is low. Even when the bending angle is 0 ° (reversed bending), it is possible to adopt a large bending R. When the bending is performed, the heat transfer fins do not have uneven thickness spaces or blockages. In the illustrated example, the number of the bent portions C is one, but may be two or more (especially in the case of a long double-pipe heat exchanger). In that case, the bending directions need not be in the same plane. .

【0030】まず、二重管式熱交換器Hの内管12及び
外管14の双方に水を充満させて流出不可に閉じる。具
体的には、出口ノズル18を閉じて、入口ノズル16か
ら、高温ガス流出口側を閉じて、高温ガス入口側のフラ
ンジ20から、それぞれ水を充満させて、入口ノズル1
6及びフランジ20を閉じる(図1参照)。
First, both the inner pipe 12 and the outer pipe 14 of the double-pipe heat exchanger H are filled with water and closed so as not to flow out. Specifically, the outlet nozzle 18 is closed, the hot gas outlet side is closed from the inlet nozzle 16, and water is filled from the hot gas inlet side flange 20, respectively.
6 and the flange 20 are closed (see FIG. 1).

【0031】このとき、二重管式熱交換器Hを横置きし
て、冷却する場合は、水の充満度は、内管12側及び外
管14側ともに、通常、95〜99.5%、望ましくは
98〜99%とする。多すぎると、破裂のおそれがあ
り。少なすぎると、曲げ加工する際に、閉塞ないし空間
偏肉が発生するおそれがある。
At this time, when the double-pipe heat exchanger H is placed horizontally for cooling, the water filling degree is usually 95 to 99.5% for both the inner pipe 12 and the outer pipe 14. , Preferably 98 to 99%. If it is too large, it may burst. If the amount is too small, blockage or uneven wall thickness may occur during bending.

【0032】なお、二重管式熱交換器Hを立て置きし
て、冷却する場合は、水の充満度は、立てた場合に、曲
げ加工部位を十分に越える量、通常、60%以上、望ま
しくは80%以上を充満させればよい。
When the double-pipe heat exchanger H is set up and cooled, the degree of water filling is such that when it is set up, it is sufficient to exceed the bent portion, usually 60% or more. Desirably, 80% or more is filled.

【0033】上記のように水を充満させた二重管式熱交
換器Hを、冷凍雰囲気におく。通常の、−20℃程度に
冷やせる冷凍庫(冷凍室)でもよいが、加圧液体窒素
(1気圧での沸点:−195.8℃)等を用いて、氷の
目標設定温度が−40℃前後となるように、−40℃よ
り数十℃低い液体(冷媒)中に浸漬して、又は、それら
の冷媒を直接噴射して行うことが、急速冷凍できて望ま
しい。このとき、冷凍時間は、冷凍雰囲気温度により異
なるが、30〜90分、望ましくは、60分前後とす
る。
The double-tube heat exchanger H filled with water as described above is placed in a freezing atmosphere. A normal freezer (freezer) that can cool to about −20 ° C. may be used, but the target set temperature of ice is −40 ° C. using pressurized liquid nitrogen (boiling point at 1 atm: −195.8 ° C.) or the like. It is desirable to immerse in a liquid (refrigerant) lower than −40 ° C. by several tens of degrees C. or to directly inject such refrigerants so that the temperature can be changed back and forth so that rapid freezing can be performed. At this time, the freezing time varies depending on the freezing atmosphere temperature, but is set to 30 to 90 minutes, preferably around 60 minutes.

【0034】そして、冷凍雰囲気から取り出した二重管
式熱交換器は、室温で、曲げ加工を行う。
The double-pipe heat exchanger taken out of the frozen atmosphere is bent at room temperature.

【0035】該曲げ加工の方式としては、図9に示すよ
うなドロー曲げ又は図10に示すようなプレス曲げによ
り行う。
The bending is performed by draw bending as shown in FIG. 9 or press bending as shown in FIG.

【0036】ドロー曲げは、直管状の熱交換器Hの上面
を、固定型26にガイドされて往復移動する移動押え型
28で押えながら、回転押え型30と、回転テーブル3
2で回動可能とされた締め付け型34との間を、直管状
の熱交換器Hを引き抜いて行う。
In the draw bending, the rotary presser 30 and the rotary table 3 are pressed while the upper surface of the heat exchanger H having a straight tube shape is pressed by the movable presser 28 that is reciprocated while being guided by the fixed mold 26.
The straight tube heat exchanger H is pulled out between the clamping die 34 that can be rotated in Step 2 and the operation.

【0037】また、プレス曲げは、曲げ凹溝を備え得た
下型36に直管状の熱交換器Hをセットした後、上型3
8をプレス(例えば5ton プレス)により下降させて行
う。
In the press bending, a straight tubular heat exchanger H is set on the lower die 36 having a bent groove, and then the upper die 3 is set.
8 is lowered by a press (for example, a 5 ton press).

【0038】この曲げ加工時には、少なくとも二重管式
熱交換器の曲げ予定部は、内管の伝熱フィン部も含めて
水が凍結状態、即ち、氷で充満されているため、二重管
式熱交換器が空間偏肉に閉塞状態で曲げ加工されること
はない。
At the time of this bending, at least the portion to be bent of the double tube heat exchanger is in a frozen state, that is, filled with ice, including the heat transfer fins of the inner tube. The heat exchanger is not bent in a closed state due to uneven wall thickness.

【0039】そして、上記加工後、所定時間が経過する
と、氷が解けて水となるため、冷却水入口や上記入口フ
ランジ部から容易に排出できる。この際、若干加熱し
て、氷解を促進させてもよい。
After a predetermined time elapses after the above-mentioned processing, the ice melts and turns into water, so that it can be easily discharged from the cooling water inlet or the inlet flange. At this time, the ice may be slightly heated to accelerate the thawing.

【0040】[0040]

【実施例】下記仕様の二重管式熱交換器の内管及び外管
にそれぞれ、水を略一杯入れて、閉じた状態で、液体窒
素(−190℃ )中に60分浸漬した。
EXAMPLE An inner tube and an outer tube of a double-tube heat exchanger having the following specifications were each filled with almost full of water, and immersed in liquid nitrogen (-190 ° C.) for 60 minutes in a closed state.

【0041】 仕様:外管…SUS304、肉厚0.8mmt、外径31.8mmφ 内管…SUS304、肉厚1.0mmt、外径21.7mmφ 伝熱フィン…SUS316L 、肉厚0.5mmt 山数7、山高さ5.4mm 当該冷凍後の熱交換器をプレス成形(5ton プレス)に
より、内側曲げ角度α=120°となるような、曲げ加
工を行った。
Specifications: Outer tube: SUS304, wall thickness 0.8 mmt, outer diameter 31.8 mmφ Inner tube: SUS304, wall thickness 1.0 mmt, outer diameter 21.7 mmφ Heat transfer fins: SUS316L, wall thickness 0.5 mmt 7. Peak height 5.4 mm The frozen heat exchanger was bent by press forming (5 ton press) so that the inner bending angle α = 120 °.

【0042】そして、水を排出した後、曲げ部を切断し
て観察したが、内管と外管の間には勿論、伝熱フィンに
も偏肉空間や閉塞は発生していなかった。
After the water was discharged, the bent portion was cut and observed. As a result, no uneven thickness space or blockage occurred in the heat transfer fin as well as between the inner tube and the outer tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の二重管式熱交換器を示す正面図FIG. 1 is a front view showing a conventional double tube heat exchanger.

【図2】図1の2−2線拡大断面図FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 1;

【図3】従来の多管式熱交換器の一例を示す正面図FIG. 3 is a front view showing an example of a conventional multi-tube heat exchanger.

【図4】図3の4−4線断面図FIG. 4 is a sectional view taken along line 4-4 in FIG. 3;

【図5】図1において内管に波形チューブの伝熱フィン
を設けた図2に対応する拡大端面図
FIG. 5 is an enlarged end view corresponding to FIG. 2 in which a heat transfer fin of a corrugated tube is provided on the inner tube in FIG. 1;

【図6】本発明の熱交換器に使用する金属波板の斜視図FIG. 6 is a perspective view of a metal corrugated sheet used in the heat exchanger of the present invention.

【図7】本発明を適用する直管状二重管式熱交換器の一
態様を示す斜視図
FIG. 7 is a perspective view showing one embodiment of a straight tubular double tube heat exchanger to which the present invention is applied.

【図8】図7の二重管式熱交換器を曲げ加工した後の斜
視図
8 is a perspective view of the double-pipe heat exchanger of FIG. 7 after being bent.

【図9】本発明の曲げ加工方法の一態様であるドロー曲
げを示す概略図
FIG. 9 is a schematic view illustrating draw bending which is one embodiment of the bending method of the present invention.

【図10】同じく他の態様であるプレス曲げを示す概略
FIG. 10 is a schematic view showing press bending which is another embodiment.

【符号の説明】[Explanation of symbols]

12 内管 14 外管 22 伝熱フィン 24 波板 H 二重管式熱交換器 C 二重管式熱交換器の曲げ部 12 Inner tube 14 Outer tube 22 Heat transfer fin 24 Corrugated sheet H Double tube heat exchanger C Bending portion of double tube heat exchanger

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榊原 康文 愛知県名古屋市昭和区白金二丁目7番11号 マルヤス工業株式会社内 Fターム(参考) 3L103 AA01 BB17 CC02 CC27 DD04 DD33 DD38 4E063 AA07 BC06 JA04 KA20 MA17 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasufumi Sakakibara 2-11-11 Shirokane, Showa-ku, Nagoya-shi, Aichi F-term in Maruyasu Kogyo Co., Ltd. 3L103 AA01 BB17 CC02 CC27 DD04 DD33 DD38 4E063 AA07 BC06 JA04 KA20 MA17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内管と外管とを備え、前記内管側および
外管側に、それぞれ、高温側流体通路および低温側流体
通路のどちらか一方づつを備え、内管側に波形の伝熱フ
ィンが管壁に接して配されているものである二重管式熱
交換器を曲げ加工するに際して、 前記内管及び外管の双方に水を充満させて流出不可に閉
じて、該水を凍らさせて氷とした状態で、曲げ加工を行
った後、前記氷を解かして除去することを特徴とする二
重管式熱交換器の曲げ加工方法。
An inner pipe and an outer pipe are provided on the inner pipe side and the outer pipe side, respectively. One of a high-temperature fluid passage and a low-temperature fluid passage is provided, and a waveform transmission is performed on the inner pipe side. When bending a double-pipe heat exchanger in which heat fins are arranged in contact with the pipe wall, both the inner pipe and the outer pipe are filled with water and closed so that they cannot flow out. A method of bending a double-pipe heat exchanger, comprising: performing bending in a state where ice is frozen to form ice and then melting and removing the ice.
【請求項2】 前記二重管式熱交換器の内側曲げ角度が
150°〜0°であることを特徴とする請求項1記載の
二重管式熱交換器の曲げ加工方法。
2. The bending method for a double-pipe heat exchanger according to claim 1, wherein the inside bending angle of the double-pipe heat exchanger is 150 ° to 0 °.
【請求項3】 前記曲げ加工をドロー曲げ又はプレス曲
げにより行うことを特徴とする請求項1又は2記載の二
重管式熱交換器の曲げ加工方法。
3. The bending method for a double-pipe heat exchanger according to claim 1, wherein the bending is performed by draw bending or press bending.
JP25168998A 1998-09-07 1998-09-07 Bending method of double tube heat exchanger Expired - Fee Related JP3919354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25168998A JP3919354B2 (en) 1998-09-07 1998-09-07 Bending method of double tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25168998A JP3919354B2 (en) 1998-09-07 1998-09-07 Bending method of double tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2000079417A true JP2000079417A (en) 2000-03-21
JP3919354B2 JP3919354B2 (en) 2007-05-23

Family

ID=17226554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25168998A Expired - Fee Related JP3919354B2 (en) 1998-09-07 1998-09-07 Bending method of double tube heat exchanger

Country Status (1)

Country Link
JP (1) JP3919354B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170806A (en) * 2019-06-18 2019-08-27 江苏福莱斯伯汽车零件制造有限公司 EGR cooling cycle pipe and its processing technology
CN112964096A (en) * 2021-02-15 2021-06-15 姜黎平 Anti-freezing type sleeve heat exchanger
CN114657360A (en) * 2021-11-03 2022-06-24 航天晨光股份有限公司 Rapid controllable cooling method for S-shaped stainless steel corrugated pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170806A (en) * 2019-06-18 2019-08-27 江苏福莱斯伯汽车零件制造有限公司 EGR cooling cycle pipe and its processing technology
CN112964096A (en) * 2021-02-15 2021-06-15 姜黎平 Anti-freezing type sleeve heat exchanger
CN114657360A (en) * 2021-11-03 2022-06-24 航天晨光股份有限公司 Rapid controllable cooling method for S-shaped stainless steel corrugated pipe
CN114657360B (en) * 2021-11-03 2023-08-15 航天晨光股份有限公司 Rapid controllable cooling method for S-shaped stainless steel corrugated pipe

Also Published As

Publication number Publication date
JP3919354B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP4449856B2 (en) Twisted tube heat exchanger
JP6180281B2 (en) Heat exchanger with heat storage function and manufacturing method thereof
WO2006123536A1 (en) Heat exchanger
JP2015087086A5 (en)
JP2001241872A (en) Multitubular heat exchanger
JP2000079417A (en) Method for bending double-tube type heat exchanger
CN102203538A (en) Gas cooler
CN206709671U (en) A kind of heat exchanger tube and heat exchanger with inner fin
CN103567732B (en) Tube Sheet of Heat Exchanger, Tube Sheet of Heat Exchanger component and the method for manufacturing them
CN110701833A (en) Water-cooling shell and tube condenser
JP3927700B2 (en) Manufacturing method of heat exchanger
JP2010091266A (en) Twisted tube type heat exchanger
JP3936831B2 (en) Manufacturing method of heat transfer plate
CN206222993U (en) Deformation directional induction formula female screw heat-transfer pipe
JP3906814B2 (en) tube
JPH09101093A (en) Heat transfer pipe with inner surface groove
CN210861832U (en) Water-cooling shell and tube condenser
JP4300013B2 (en) Finned tube for heat exchanger, heat exchanger, method for producing finned tube for heat exchanger, and method for producing heat exchanger
JP2005024109A (en) Heat exchanger
CN211373322U (en) Heat exchanger
JPH03251686A (en) Heat exchanger
JP2009299932A (en) Heat exchanger and brazing method of flat tube
KR100575278B1 (en) A tube for heat exchange with a capillary-type heat pipe
JPH11337285A (en) Both-side grooved pipe and heat exchanger
CN108801033A (en) A kind of efficient heat-exchanging pipe of condensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160223

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees