JP2000077891A - Flexible metallic layer-juxtaposing silicone rubber material - Google Patents

Flexible metallic layer-juxtaposing silicone rubber material

Info

Publication number
JP2000077891A
JP2000077891A JP10246629A JP24662998A JP2000077891A JP 2000077891 A JP2000077891 A JP 2000077891A JP 10246629 A JP10246629 A JP 10246629A JP 24662998 A JP24662998 A JP 24662998A JP 2000077891 A JP2000077891 A JP 2000077891A
Authority
JP
Japan
Prior art keywords
silicone rubber
field
attenuation factor
metallic layer
emc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10246629A
Other languages
Japanese (ja)
Inventor
Satoshi Watanabe
聡志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
GE Toshiba Silicones Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Toshiba Silicones Co Ltd filed Critical GE Toshiba Silicones Co Ltd
Priority to JP10246629A priority Critical patent/JP2000077891A/en
Publication of JP2000077891A publication Critical patent/JP2000077891A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a material having excellent handling and high reliability and EMC(electromagnetic compatibility) by forming a metallic layer on the surface of a silicone rubber, in which a field-strength attenuation factor by near-field region measurement is specified, by a sputtering film formation method. SOLUTION: A metallic layer is formed on the surface of a silicone rubber by a sputtering film formation method. A field-strength attenuation factor of 20dB or more from 300 Mhz to 1 GHz by near-field region measurement is acquired in the silicone rubber at that time, and the silicone rubber is given conductive performance for the field-strength attenuation factor. Carbon black and metal powder and a doped metallic oxide, carbon fiber, etc., are compounded. Radio-wave absorptivity is deteriorated at the time of the field- strength attenuation factor of 20dB or less. Accordingly, an EMC applying part combining sealing properties, elasticity, flexibility and shape freedom and the excellent electromagnetic-wave shielding properties, conductivity, surface smoothness, etc., of a metal is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、電磁波の影響に対し、一
定の抗力となり得るシリコーンゴム複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicone rubber composite material capable of providing a certain resistance to the influence of electromagnetic waves.

【0002】[0002]

【発明の技術的背景とその問題点】衛星放送システムや
移動体通信の発達に見られる様に電磁波環境は多様化・
複雑化の度合いを深めており、それらがもたらす利点と
共に、弊害も明らかになりつつある。例えば工作用ロボ
ットが外部電磁波により誤作動し作業員の死亡事故につ
ながった例や、パソコンからの漏洩電磁波が人体に悪影
響を与えるという報告などから、社会生活への悪影響が
懸念されている。EMC(Electro Magnetic Compatibi
lity)、即ち電磁適合性(電磁両立性と称される場合も
ある)とは電磁波に起因する工学的な諸問題を解決させ
る要素(技術)である。従来、EMC材料は金属がほと
んどを占めていた。これは「電気の良導体は電磁波の遮
蔽体になる」という理に基づいたものであり、加工性や
汎用性等を考えても、金属が効率の高い材料であること
の証である。だが、近年、EMC技術を必要とする製品
・要素の多様化が急速に進み、金属だけでは求められる
種々の機能に対して対応不可能になり始めている。例え
ば、複雑な形状への追随性や、非定常空間の充填性・軽
量化、耐錆性等の課題に対しては、その適用が困難とな
ることが多かった。一方、エラストマーに金属粉やカー
ボンブラックを配合して導電性を得る試みは、古くから
行われていた。しかしながら、金属粉を充填したエラス
トマーは、金属酸化を主とする経年変化や、エラストマ
ー自体の弾性、機械的強度が失われるなどのデメリット
が多く、EMC素材として広く普及した材料とは言い難
かった。また、カーボンブラックを充填したエラストマ
ーは導電性ローラやラバーコンタクトなどに多用されて
いるが、得られる導電性に制限があるため、やはりEM
C素材として用いられることがほとんどなかった。従っ
て、金属素材のこれら欠点を補う、EMC効果の大きな
材料が切望されていた。
TECHNICAL BACKGROUND OF THE INVENTION AND PROBLEMS The electromagnetic wave environment is diversifying as seen in the development of satellite broadcasting systems and mobile communications.
The degree of complexity is increasing and the evils are becoming apparent as well as the benefits they bring. For example, there have been concerns about adverse effects on social life, including cases in which a work robot was malfunctioned by an external electromagnetic wave and resulted in a worker's death, and reports that electromagnetic waves leaked from a personal computer had a bad effect on the human body. EMC (Electro Magnetic Compatibi)
lity), that is, electromagnetic compatibility (sometimes called electromagnetic compatibility) is an element (technology) that solves various engineering problems caused by electromagnetic waves. Traditionally, EMC materials have been dominated by metals. This is based on the theory that “a good conductor of electricity becomes a shield for electromagnetic waves”, and it is a proof that metal is a highly efficient material even in view of workability and versatility. However, in recent years, the diversification of products and elements that require EMC technology has rapidly progressed, and it has become impossible to cope with various functions required only by metal. For example, it has often been difficult to apply the method to problems such as the ability to follow a complicated shape, the filling and weight reduction of an unsteady space, the rust resistance, and the like. On the other hand, attempts to obtain conductivity by blending metal powder or carbon black with an elastomer have been made for a long time. However, elastomers filled with metal powder have many disadvantages such as aging mainly due to metal oxidation, and loss of elasticity and mechanical strength of the elastomer itself, and thus have not been widely used as EMC materials. Elastomers filled with carbon black are often used for conductive rollers, rubber contacts, etc., but the resulting conductivity is limited.
It was rarely used as a C material. Therefore, a material having a large EMC effect that compensates for these disadvantages of a metal material has been desired.

【0003】[0003]

【発明の目的】本発明の目的は、材料の面からEMC対
策する場合に、ハンドリングに優れ、かつ信頼性とEM
C効果の高い材料を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device which is excellent in handling, has high reliability, and has low EM in the case of EMC countermeasures from the viewpoint of materials.
It is to provide a material having a high C effect.

【0004】[0004]

【発明の構成】本発明者は、上記目的を達成すべく鋭意
検討した結果、近傍界測定による300MHzから1GHz まで
の電界強度減衰率が20dB以上であるシリコーンゴム表面
にスパッタ成膜法により金属層を形成してなる可撓性金
属層併設シリコーンゴム材料が、上記目的達成に極めて
有効であることを見出した。即ち、本発明はシリコーン
ゴムの有する優れた密閉性や弾性、柔軟性、形状自在性
と金属の有する優れた電磁波遮蔽性、導電性、表面平滑
性などを兼ね備えた、主にEMC用途部品としての応用
展開が広く期待できる複合材料に関する。
The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found that a metal layer having a field intensity attenuation rate of 300 dB or more from 300 MHz to 1 GHz by a near-field measurement is not less than 20 dB. Has been found to be extremely effective in achieving the above object. That is, the present invention combines the excellent sealing properties and elasticity, flexibility, and shape flexibility of silicone rubber with the excellent electromagnetic wave shielding properties, conductivity, and surface smoothness of metal, and is mainly used as a component for EMC. Related to composite materials that can be widely applied.

【0005】[0005]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明に用いられるシリコーンゴムは、(a) ポリ
オルガノシロキサンベースポリマーと、(b) 硬化剤と、
必要に応じて各種添加剤等を配合し、均一に分散させた
ものである。このようなポリオルガノシロキサン組成物
に用いられる各種成分のうち、(a) シリコーンベースポ
リマーと(b) 硬化剤とは、ゴム状弾性体を得るための反
応機構に応じて適宜選択されるものである。その反応機
構としては、(1) 有機過酸化物加硫剤による架橋方法、
(2) 縮合反応による方法、(3) 付加反応による方法等が
知られており、その反応機構によって、(a) 成分と(b)
成分すなわち硬化用触媒もしくは架橋剤との好ましい組
合せが決まることは周知である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. Silicone rubber used in the present invention, (a) a polyorganosiloxane base polymer, (b) a curing agent,
As required, various additives and the like are blended and uniformly dispersed. Among the various components used in such a polyorganosiloxane composition, (a) a silicone base polymer and (b) a curing agent are appropriately selected depending on a reaction mechanism for obtaining a rubber-like elastic body. is there. The reaction mechanism includes (1) a crosslinking method using an organic peroxide vulcanizing agent,
(2) A method using a condensation reaction, (3) a method using an addition reaction, and the like are known.Depending on the reaction mechanism, component (a) and component (b) are used.
It is well known that the preferred combination with the components, ie, the curing catalyst or the crosslinking agent, is determined.

【0006】すなわち、上記(1) の架橋方法を適用する
場合において、通常、(a) 成分のベースポリマーとして
は、1分子中のケイ素原子に結合した有機基のうち、少
なくとも2個がビニル基であるポリジオルガノシロキサ
ンが用いられる。また、(b)成分の硬化剤としては、ベ
ンゾイルペルオキシド、2,4 −ジクロロベンゾイルペル
オキシド、p−クロロベンゾイルパーオキサイドなどの
アシル系パーオキサイドを用いる。なお、これらの有機
過酸化物加硫剤は、1種または2種以上の混合物として
用いられる。(b) 成分の硬化剤である有機過酸化物の配
合量は、(a) 成分のシリコーンベースポリマー 100重量
部に対し0.05〜15重量部の範囲が好ましい。有機過酸化
物の配合量が0.05重量部未満では加硫が十分に行われ
ず、15重量部を超えて配合してもそれ以上の格別の効果
がないばかりか、得られたシリコーンゴムの物性に悪影
響を与えることがあるからである。
That is, when the crosslinking method of the above (1) is applied, usually, as a base polymer of the component (a), at least two of the organic groups bonded to silicon atoms in one molecule are vinyl groups. Is used. As the curing agent of the component (b), an acyl peroxide such as benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, or p-chlorobenzoyl peroxide is used. In addition, these organic peroxide vulcanizing agents are used as one kind or as a mixture of two or more kinds. The compounding amount of the organic peroxide as the curing agent of the component (b) is preferably in the range of 0.05 to 15 parts by weight based on 100 parts by weight of the silicone base polymer of the component (a). If the compounding amount of the organic peroxide is less than 0.05 parts by weight, the vulcanization is not sufficiently performed, and if the compounding amount exceeds 15 parts by weight, not only there is no further special effect, but also the physical properties of the obtained silicone rubber are reduced. This is because it may have an adverse effect.

【0007】また、上記(2) の縮合反応を適用する場合
においては、(a) 成分のベースポリマーとしては両末端
に水酸基を有するポリジオルガノシロキサンが用いられ
る。(b) 成分の硬化剤としては、まず架橋剤として、エ
チルシリケート、プロピルシリケート、メチルトリメト
キシシラン、ビニルトリメトキシシラン、メチルトリエ
トキシシラン、ビニルトリエトキシシラン、メチルトリ
ス(メトキシエトキシ)シラン、ビニルトリス(メトキ
シエトキシ)シラン、メチルトリプロペノキシシラン等
のアルコキシ型;メチルトリアセトキシシラン、ビニル
トリアセトキシシラン等のアセトキシ型;メチルトリ
(アセトンオキシム)シラン、ビニルトリ(アセトンオ
キシム)シラン、メチルトリ(メチルエチルケトキシ
ム)シラン、ビニルトリ(メチルエチルケトキシム)シ
ラン等、およびその部分加水分解物が例示される。ま
た、ヘキサメチル−ビス(ジエチルアミノキシ)シクロ
テトラシロキサン、テトラメチルジブチル−ビス(ジエ
チルアミノキシ)シクロテトラシロキサン、ヘプタメチ
ル(ジエチルアミノキシ)シクロテトラシロキサン、ペ
ンタメチル−トリス(ジエチルアミノキシ)シクロテト
ラシロキサン、ヘキサメチル−ビス(メチルエチルアミ
ノキシ)シクロテトラシロキサン、テトラメチル−ビス
(ジエチルアミノキシ)−モノ(メチルエチルアミノキ
シ)シクロテトラシロキサンのような環状シロキサン等
も例示される。このように、架橋剤はシランやシロキサ
ン構造のいずれでもよく、またそのシロキサン構造は直
鎖状、分岐状および環状のいすれでもよい。さらに、こ
れらを使用する際には、1種類に限定される必要はな
く、2種以上の併用も可能である。また、(b) 成分の硬
化剤のうち、硬化用触媒としては、鉄オクトエート、コ
バルトオクトエート、マンガンオクトエート、スズナフ
テネート、スズカプリレート、スズオレエートのような
カルボン酸金属塩:ジメチルスズオレエート、ジメチル
スズラウレート、ジブチルスズジアセテート、ジブチル
スズオクトエート、ジブチルスズジラウレート、ジブチ
ルスズオレエート、ジフェニルスズジアセテート、酸化
ジブチルスズ、ジブチルスズメトキシド、ジブチルビス
(トリエトキシシロキシ)スズ、ジオクチルスズジラウ
レートのような有機スズ化合物が用いられる。(b) 成分
の硬化剤のうち、上記架橋剤の配合量は(a) 成分のベー
スポリマー 100重量部に対し 0.1〜20重量部が好まし
い。架橋剤の使用量が 0.1重量部未満では、硬化後のゴ
ムに充分な強度が得られず、また20重量部を超えると得
られるゴムが脆くなり、いずれも実用に耐え難い。ま
た、硬化用触媒の配合量は(a) 成分のベースポリマー 1
00重量部に対し0.01〜5重量部が好ましい。これより少
ない量では硬化用触媒として不十分であって、硬化に長
時間を要し、また空気との接触面から遠い内部での硬化
が不良となる。他方、これよりも多い場合には、保存安
定性が低下してしまう。より好ましい配合量の範囲とし
ては、 0.1〜3重量部の範囲である。
When the condensation reaction of the above (2) is applied, a polydiorganosiloxane having hydroxyl groups at both ends is used as the base polymer of the component (a). As the curing agent (b), first, as a crosslinking agent, ethyl silicate, propyl silicate, methyltrimethoxysilane, vinyltrimethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, methyltris (methoxyethoxy) silane, vinyltris ( Methoxyethoxy) silane, alkoxy type such as methyltripropenoxysilane; acetoxy type such as methyltriacetoxysilane and vinyltriacetoxysilane; methyltri (acetone oxime) silane, vinyltri (acetone oxime) silane, methyltri (methylethylketoxime) silane, Examples thereof include vinyltri (methylethylketoxime) silane and the like and a partial hydrolyzate thereof. In addition, hexamethyl-bis (diethylaminoxy) cyclotetrasiloxane, tetramethyldibutyl-bis (diethylaminoxy) cyclotetrasiloxane, heptamethyl (diethylaminoxy) cyclotetrasiloxane, pentamethyl-tris (diethylaminoxy) cyclotetrasiloxane, hexamethyl-bis ( Cyclic siloxanes such as methylethylaminoxy) cyclotetrasiloxane and tetramethyl-bis (diethylaminoxy) -mono (methylethylaminoxy) cyclotetrasiloxane are also exemplified. As described above, the cross-linking agent may be any of a silane or siloxane structure, and the siloxane structure may be any of linear, branched and cyclic structures. Furthermore, when using these, it is not necessary to be limited to one type, and two or more types can be used in combination. Among the curing agents of component (b), curing catalysts include carboxylic acid metal salts such as iron octoate, cobalt octoate, manganese octoate, tin naphthenate, tin caprylate, and tin oleate: dimethyltin oleate, dimethyl Organic tin compounds such as tin laurate, dibutyltin diacetate, dibutyltin octoate, dibutyltin dilaurate, dibutyltin oleate, diphenyltin diacetate, dibutyltin oxide, dibutyltin methoxide, dibutylbis (triethoxysiloxy) tin, and dioctyltin dilaurate are used. . Of the curing agent (b), the amount of the crosslinking agent is preferably 0.1 to 20 parts by weight based on 100 parts by weight of the base polymer (a). If the amount of the cross-linking agent is less than 0.1 part by weight, sufficient strength cannot be obtained in the cured rubber, and if it exceeds 20 parts by weight, the obtained rubber becomes brittle, and all are hardly practical. In addition, the compounding amount of the curing catalyst is as follows.
It is preferably 0.01 to 5 parts by weight based on 00 parts by weight. If the amount is smaller than the above range, the curing catalyst is insufficient, and it takes a long time to cure, and the curing in the interior far from the air contact surface becomes poor. On the other hand, if it is more than this, the storage stability will decrease. A more preferred range for the amount is 0.1 to 3 parts by weight.

【0008】上記(3) の付加反応を適用する場合の(a)
成分のベースポリマーとしては、上記(1) におけるベー
スポリマーと同様なものが用いられる。また、(b) 成分
の硬化剤としては、硬化用触媒として、塩化白金酸、白
金オレフィン錯体、白金ビニルシロキサン錯体、白金
黒、白金トリフェニルホスフィン錯体等の白金系触媒が
用いられ、架橋剤として、ケイ素原子に結合した水素原
子が1分子中に少なくとも平均2個を超える数を有する
ポリジオルガノシロキサンが用いられる。(b) 成分の硬
化剤のうち、硬化用触媒の配合量は、(a) 成分のベース
ポリマーに対し白金元素量で1〜1000ppm の範囲となる
量が好ましい。硬化用触媒の配合量が白金元素量として
1ppm 未満では、充分に硬化が進行せず、また1000ppm
を超えても特に硬化速度の向上等が期待できない。ま
た、架橋剤の配合量は、(a) 成分中のアルケニル基1個
に対し、架橋剤中のケイ素原子に結合した水素原子が、
0.5〜4.0 個となるような量が好ましく、さらに好まし
くは 1.0〜3.0 個となるような量である。水素原子の量
が 0.5個未満である場合は、組成物の硬化が充分に進行
せずに、硬化後の組成物の硬さが低くなり、また水素原
子の量が 4.0個を超えると硬化後の組成物の物理的性質
と耐熱性が低下する。以上のような各種の反応機構に於
いて用いられる(a) 成分のベースポリマーとしてのポリ
オルガノシロキサンにおける有機基は、1価の置換また
は非置換の炭化水素基であり、メチル基、エチル基、プ
ロピル基、ブチル基、ヘキシル基、ドデシル基のような
アルキル基、フェニル基のようなアリール基、β−フェ
ニルエチル基、β−フェニルプロピル基のようなアラル
キル基等の非置換の炭化水素基や、クロロメチル基、3,
3,3−トリフルオロプロピル基等の置換炭化水素基が例
示される。なお、一般的にはメチル基が合成のしやすさ
等から多用される。
(A) when the addition reaction of the above (3) is applied
As the base polymer of the component, those similar to the base polymer in the above (1) are used. As the curing agent of the component (b), a platinum catalyst such as chloroplatinic acid, a platinum olefin complex, a platinum vinyl siloxane complex, platinum black, and a platinum triphenylphosphine complex is used as a curing catalyst. A polydiorganosiloxane having an average of at least two hydrogen atoms bonded to silicon atoms per molecule is used. Among the curing agents of the component (b), the amount of the curing catalyst is preferably in the range of 1 to 1000 ppm in terms of platinum element based on the base polymer of the component (a). If the amount of the curing catalyst is less than 1 ppm in terms of platinum element, curing will not proceed sufficiently, and 1000 ppm
Even if the ratio exceeds the above, improvement of the curing speed and the like cannot be expected. The amount of the crosslinking agent is such that the hydrogen atom bonded to the silicon atom in the crosslinking agent per one alkenyl group in the component (a) is
The amount is preferably 0.5 to 4.0, more preferably 1.0 to 3.0. When the amount of hydrogen atoms is less than 0.5, curing of the composition does not proceed sufficiently, and the hardness of the composition after curing becomes low. The physical properties and heat resistance of the composition are reduced. The organic group in the polyorganosiloxane as the base polymer of the component (a) used in the various reaction mechanisms as described above is a monovalent substituted or unsubstituted hydrocarbon group, such as a methyl group, an ethyl group, Propyl group, butyl group, hexyl group, alkyl group such as dodecyl group, aryl group such as phenyl group, β-phenylethyl group, unsubstituted hydrocarbon group such as aralkyl group such as β-phenylpropyl group, , Chloromethyl group, 3,
A substituted hydrocarbon group such as a 3,3-trifluoropropyl group is exemplified. In general, a methyl group is frequently used because of ease of synthesis and the like.

【0009】以上の如き、シリコーンゴムには、近傍界
測定による300MHzから1GHz までの電界強度減衰率が20
dB以上であることが求められる。近傍界とは、電波工学
において波長をλとした場合、λ/6波長以内の距離に
おける電界を意味する。電界強度減衰率とは、電磁波遮
蔽能力の指標であり、いずれも測定原理を等しくする自
動化測定装置が数種類市販され、材料の電磁波遮蔽能が
計測される。後述する実施例ではKEC法(関西電子振
興センター考案の装置)の自動化測定装置を用い電界で
の強度減衰率を周波数300MHzから1GHz に亘り測定し
た。
As described above, silicone rubber has an electric field intensity attenuation rate of 20 MHz from 300 MHz to 1 GHz by near-field measurement.
It is required to be at least dB. The near field means an electric field at a distance of λ / 6 wavelength or less when the wavelength is λ in radio engineering. The electric field intensity decay rate is an index of the electromagnetic wave shielding ability, and several kinds of automated measuring devices that make the measurement principle the same are commercially available, and the electromagnetic wave shielding ability of a material is measured. In the examples described later, the intensity decay rate in the electric field was measured from a frequency of 300 MHz to 1 GHz using an automatic measuring device of the KEC method (device devised by Kansai Electronics Promotion Center).

【0010】上記条件での電界強度減衰率が20dB以上で
あるためには、シリコーンゴムに導電性能が付与される
ことが求められる。導電性を付与する配合設計は、種々
の方法が知られているが、その手段、方法に特段の制限
はない。たとえばカーボンブラックや金属粉、ドーピン
グされた金属酸化物、炭素繊維などの配合が周知の方法
である。20dBを下廻ると、いかに金属層を工夫しても効
果的なEMC材料とは認知され難く、特に電波吸収能が
大巾に低下するので避けなければならない。
In order for the electric field intensity decay rate to be 20 dB or more under the above conditions, it is required that the silicone rubber be provided with a conductive property. Various methods are known for the design of the composition for imparting conductivity, but there is no particular limitation on the means and method. For example, blending of carbon black, metal powder, doped metal oxide, carbon fiber and the like is a well-known method. If it is lower than 20 dB, no matter how the metal layer is devised, it is difficult to recognize it as an effective EMC material, and particularly, the radio wave absorption capacity is greatly reduced.

【0011】本発明のシリコーンゴムには、充填剤、顔
料、耐熱性向上剤、難燃剤等を随時付加的に配合しても
よく、本発明の効果を損なわない範囲で他のポリオルガ
ノシロキサンを併用してもよい。このようなものとして
は、通常、煙霧質シリカ、沈殿法シリカ、けいそう土等
の補強性充填剤、酸化チタン、酸化アルミニウム、酸化
亜鉛、酸化鉄、酸化セリウム、マイカ、クレイ、炭酸亜
鉛、炭酸マンガン、水酸化セリウム、ガラスビーズ、ポ
リジメチルシロキサン、アルケニル基含有ポリシロキサ
ン等が例示される。
The silicone rubber of the present invention may optionally further contain a filler, a pigment, a heat resistance improver, a flame retardant, and the like. Other polyorganosiloxanes may be used as long as the effects of the present invention are not impaired. You may use together. Examples of such substances include fumed silica, precipitated silica, reinforcing fillers such as diatomaceous earth, titanium oxide, aluminum oxide, zinc oxide, iron oxide, cerium oxide, mica, clay, zinc carbonate, and carbonic acid. Manganese, cerium hydroxide, glass beads, polydimethylsiloxane, alkenyl group-containing polysiloxane and the like are exemplified.

【0012】次に、本発明では、上記シリコーンゴム表
面にスパッタ成膜法により金属層を形成する。またスパ
ッタリングにより形成される金属種には金、銀、白金、
銅、ニッケル、コバルト、鉄、アルミニウム、チタン、
亜鉛、マグネシウムのような単一元素種の他ステンレ
ス、WC、TaC 、TiC などの合金、あるいはこれらの酸化
物が含まれ、単層構造でも多層構造でも差し支えなく、
用途、経済性、精度などの要因で適宜構成が決定され
る。またスパッタ成膜法の手法は常法と同様でよい。
Next, in the present invention, a metal layer is formed on the surface of the silicone rubber by a sputtering film forming method. The metal species formed by sputtering include gold, silver, platinum,
Copper, nickel, cobalt, iron, aluminum, titanium,
It contains alloys such as stainless steel, WC, TaC, and TiC, as well as single-element species such as zinc and magnesium, and oxides of these, and it may have a single-layer structure or multilayer structure.
The configuration is appropriately determined depending on factors such as the use, economy, and accuracy. The method of the sputter film formation method may be the same as the usual method.

【0013】金属層全体の厚さは10〔nm〕〜100 〔μm
〕が適当である。10〔nm〕未満では金属面に微細な隙
間が発生しやすく導電性やEMC性能の低下が生じ、10
0 〔μm 〕を超えると、ゴム層を如何に薄くしても可撓
性に欠け、ゴム層との剥離や金属面の割れなどが生じ易
くなり、やはり好ましくない。
The thickness of the entire metal layer is 10 [nm] to 100 [μm
Is appropriate. If it is less than 10 [nm], minute gaps are likely to be generated on the metal surface, and the conductivity and the EMC performance are reduced.
If it exceeds 0 [μm], no matter how thin the rubber layer is, the flexibility is lacking, and peeling from the rubber layer and cracking of the metal surface are liable to occur.

【0014】[0014]

【実施例】以下、本発明の実施例について説明する。な
お、以下の文中における「部」は、全て「重量部」を示
すものとする。電波吸収能の測定は、同軸管法によって
行い予め電波吸収層となるゴム層の厚さを10GHz の周波
数に対応する様に計量で求め、7.5 〔mm〕なる値を算出
し、それに沿って試料を作成した。 実施例1 両末端がジメチルビニルシリル基である、メチルビニル
シロキサン単位を0.06モル%含有する平均重合度約 6,0
00のビニル基含有ポリジメチルシロキサン 100部に導電
性カーボンブラックとしてファーネスブラック「#3030
B 」(三菱化学(株)製)40部とけいそう土10部をニー
ダーに仕込み、混練を行った後、更に架橋剤として2,5
−ジメチル−2,5 −ジ−t−ブチルパーオキシヘキサン
1.5部を加え、均一なシリコーンゴムコンパウンドを得
た。金型を用いて、このコンパウンドを 170℃×10分間
の条件でプレス成型して厚さ1〔mm〕、1辺が 100〔m
m〕四方のゴム板を作成後、 200℃、4時間の後加硫を
行った。又、これとは別にシールド効果測定用試料とし
て、厚さ1〔mm〕、1辺が 150〔mm〕四方のゴム板と、
電波吸収能測定用試料として厚さ 7.5〔mm〕で1辺が50
〔mm〕四方のゴム板を同様の方法、手順で作成した。次
にアルゴンガスを用いたスパッタ装置で、銀をターゲッ
トとして膜厚 500±50〔nm〕の成膜を行った。この金属
層併設シリコーンゴムを用い、周波数500MHzと1GHz に
おける電界シールド効果、電波吸収能、可撓性を測定し
た。可撓性はこのゴム板を巾10〔mm〕の短冊状に切り、
ゴム板の台上の端部をおさえながら実験台の端部から徐
々にゴム板を出していき垂れ下がった部分が丁度90°と
なった時点での実験台上のゴム板の長さを計測すること
により指標とした。
Embodiments of the present invention will be described below. In the following text, all “parts” indicate “parts by weight”. The radio wave absorption capacity is measured by the coaxial tube method.The thickness of the rubber layer to be the radio wave absorption layer is measured in advance so as to correspond to the frequency of 10 GHz, and a value of 7.5 mm is calculated. It was created. Example 1 Both ends are dimethylvinylsilyl groups, and the average degree of polymerization containing 0.06 mol% of methylvinylsiloxane units is about 6,0.
Furnace black "# 3030" as conductive carbon black in 100 parts of vinyl group-containing polydimethylsiloxane of No. 00
B ”(Mitsubishi Chemical Co., Ltd.) 40 parts and diatomaceous earth 10 parts were charged into a kneader, kneaded, and then used as a cross-linking agent.
-Dimethyl-2,5-di-t-butylperoxyhexane
1.5 parts were added to obtain a uniform silicone rubber compound. Using a mold, this compound is press-molded under the condition of 170 ° C. × 10 minutes, and the thickness is 1 [mm] and the side is 100 [m
m] After forming a rubber plate on each side, post-curing was performed at 200 ° C. for 4 hours. Separately, as a shield effect measurement sample, a rubber plate having a thickness of 1 mm and a side of 150 mm was used.
As a sample for radio wave absorption measurement, thickness 7.5 [mm] and 50 on each side
[Mm] A four-sided rubber plate was prepared by the same method and procedure. Next, a film was formed with a thickness of 500 ± 50 [nm] using silver as a target by a sputtering apparatus using argon gas. Using the silicone rubber provided with the metal layer, the electric field shielding effect, radio wave absorbing ability and flexibility at the frequencies of 500 MHz and 1 GHz were measured. For flexibility, cut this rubber plate into strips with a width of 10 mm,
While holding down the end of the rubber plate on the table, gradually pull out the rubber plate from the end of the test table and measure the length of the rubber plate on the test table when the hanging part is exactly 90 ° This was used as an index.

【0015】比較例1〜3 比較例1として、近傍界での電界強度減衰率が殆ど見込
めない配合としてカーボンブラック40部の代わりに煙霧
質シリカ40部を配合した他は実施例1と同様に作成した
ものを、比較例2としては実施例1と同様のゴム配合で
あるが、スパッタを施さなかったものを、比較例3とし
ては実施例1と同様のゴム配合であるが、金属層をスパ
ッタでなくイオンプレーティング法で併設したものを作
成し、同様に評価した。これらの結果を表1にまとめ
た。
Comparative Examples 1 to 3 As Comparative Example 1, the same procedure as in Example 1 was carried out except that 40 parts of fumed silica was used instead of 40 parts of carbon black as a composition in which the electric field intensity decay rate in the near field was hardly expected. As a comparative example 2, a rubber composition similar to that of the example 1 was used as a comparative example 2, but a spatter was not applied. As a comparative example 3, a rubber composition similar to that of the example 1 was used. Those provided side by side by ion plating instead of sputtering were prepared and evaluated in the same manner. These results are summarized in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 両末端がジメチルビニルシリル基であり、25℃の粘度が
3,000cpのポリメチルビニルシロキサン 100部と導電性
複素金属酸化物粉「T−1](三菱マテリアル(株)
製)70部を容積3リッターの万能攪拌機で混練し均一な
組成物を得た。
Example 2 Both ends are dimethylvinylsilyl groups and the viscosity at 25 ° C.
100 parts of 3,000 cp polymethylvinylsiloxane and conductive complex metal oxide powder "T-1" (Mitsubishi Materials Corporation)
Was mixed with a 3-liter universal stirrer to obtain a uniform composition.

【0018】次に両末端がトリメチルシリル基で25℃に
おける粘度が20cpのメチルハイドロジェンポリシロキサ
ン2部と塩化白金酸のイソプロピルアルコール溶液を白
金原子の量として5ppm となる様に混合し、均一な組成
物とした。これを逆L式カレンダーで面速2m/min に
て 0.7〔mm〕のシートに分出しして、70デニールガラス
クロス製ライナーで巻き取った。これを 350℃にセット
したチャンバーに3分間滞留する様に通し架橋を完成さ
せた。これとは別に、電波吸収能測定用試料として厚さ
7.5〔mm〕で1辺が50〔mm〕四方のゴム板を、金型を用
い 170℃×10分のプレス架橋で作成した。次に実施例1
と同じスパッタ装置でシートの両面に対して銅 200±20
〔nm〕成膜面上に酸化インジウムIn2O3 層を15±1.5
〔nm〕を成膜した。尚、酸化インジウムスパッタ時にお
いてはアルゴンガスと酸素を混合して用いた。このゴム
の両面に2層からなる金属層を形成したゴムを用い、実
施例1と同様に電界シールド効果、電波吸収能、可撓性
を測定した。可撓性評価には100 〔mm〕×50〔mm〕に切
った試料を180 °曲げて表面を観察することも加えた。
Next, 2 parts of methylhydrogenpolysiloxane having trimethylsilyl groups at both ends and having a viscosity of 20 cp at 25 ° C. and an isopropyl alcohol solution of chloroplatinic acid were mixed so that the amount of platinum atoms was 5 ppm, and a uniform composition was obtained. Things. This was separated into 0.7 [mm] sheets at a surface velocity of 2 m / min using an inverted L-type calendar and wound up with a 70 denier glass cloth liner. This was passed through a chamber set at 350 ° C. for 3 minutes to complete crosslinking. Separately, as a sample for radio wave absorption measurement
A rubber plate of 7.5 [mm] with sides of 50 [mm] square was prepared by press-crosslinking at 170 ° C. × 10 minutes using a mold. Next, Example 1
200 ± 20 copper on both sides of sheet with same sputtering equipment
[Nm] 15 ± 1.5 indium oxide In 2 O 3 layer on the deposition surface
[Nm] was formed. Note that argon gas and oxygen were used in a mixture during sputtering of indium oxide. Using a rubber in which two metal layers were formed on both surfaces of the rubber, the electric field shielding effect, the radio wave absorbing ability, and the flexibility were measured in the same manner as in Example 1. For the evaluation of flexibility, a sample cut to 100 [mm] × 50 [mm] was bent at 180 ° to observe the surface.

【0019】比較例4〜6 比較例4として、近傍界での電界強度減衰率が殆ど見込
めない配合として導電性複素金属酸化物粉「T−1]の
代わりに粉砕石英粉「クリスタライトS」(龍森(株)
製)70部を配合した他は実施例2と同様に作成したもの
を、比較例5として、実施例2と同様のゴム配合である
がスパッタを施さなかったものを、比較例6として実施
例2と同様のゴム配合で、銅の金属層を真空蒸着法で形
成した後、In2O3 層をスパッタリングで成膜したものを
作成し、同様に評価した。これらの結果を表2にまとめ
た。
Comparative Examples 4 to 6 As Comparative Example 4, a crushed quartz powder "Crystalite S" was used in place of the conductive complex metal oxide powder "T-1" as a compound in which the electric field intensity decay rate in the near field was hardly expected. (Tatsumori Corporation
The same rubber compound as that of Example 2 except that 70 parts was compounded, except that 70 parts was compounded. After a copper metal layer was formed by a vacuum evaporation method using the same rubber compounding as in Example 2 , an In 2 O 3 layer was formed by sputtering, and evaluated similarly. These results are summarized in Table 2.

【0020】[0020]

【表2】 [Table 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 近傍界測定による300MHzから1GHz まで
の電界強度減衰率が20dB以上であるシリコーンゴム表面
にスパッタ成膜法により金属層を形成してなる可撓性金
属層併設シリコーンゴム材料。
1. A silicone rubber material having a flexible metal layer formed by forming a metal layer on a surface of a silicone rubber having an electric field attenuation rate of 20 dB or more from 300 MHz to 1 GHz by near-field measurement by sputtering.
JP10246629A 1998-09-01 1998-09-01 Flexible metallic layer-juxtaposing silicone rubber material Pending JP2000077891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10246629A JP2000077891A (en) 1998-09-01 1998-09-01 Flexible metallic layer-juxtaposing silicone rubber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10246629A JP2000077891A (en) 1998-09-01 1998-09-01 Flexible metallic layer-juxtaposing silicone rubber material

Publications (1)

Publication Number Publication Date
JP2000077891A true JP2000077891A (en) 2000-03-14

Family

ID=17151253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10246629A Pending JP2000077891A (en) 1998-09-01 1998-09-01 Flexible metallic layer-juxtaposing silicone rubber material

Country Status (1)

Country Link
JP (1) JP2000077891A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093416A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppression sheet, and its manufacturing method and usage
JP2006093413A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Member and method for emc countermeasure
JP2006093414A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Conduction noise suppressor and conduction noise countermeasure method
JP2006093412A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppressor, and its manufacturing method and usage
JP2012183784A (en) * 2011-03-08 2012-09-27 Inoac Corp Elastomer with discontinuous metal coating and method for manufacturing the same
US8975004B2 (en) 2005-05-13 2015-03-10 3M Innovative Properties Company Electrically conductive polymer resin and method for making same
CN109164325A (en) * 2018-09-26 2019-01-08 上海微小卫星工程中心 A kind of volume production satellite electromagnetic compatibility rapid detection method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093416A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppression sheet, and its manufacturing method and usage
JP2006093413A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Member and method for emc countermeasure
JP2006093414A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Conduction noise suppressor and conduction noise countermeasure method
JP2006093412A (en) * 2004-09-24 2006-04-06 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppressor, and its manufacturing method and usage
JP4611697B2 (en) * 2004-09-24 2011-01-12 信越ポリマー株式会社 Electromagnetic noise suppressor and method of using the same
JP4611698B2 (en) * 2004-09-24 2011-01-12 信越ポリマー株式会社 EMC countermeasure member and EMC countermeasure method
JP4611699B2 (en) * 2004-09-24 2011-01-12 信越ポリマー株式会社 Conductive noise suppressor and conductive noise countermeasure method
JP4611700B2 (en) * 2004-09-24 2011-01-12 信越ポリマー株式会社 Electromagnetic wave noise suppression sheet and method of using the same
US8975004B2 (en) 2005-05-13 2015-03-10 3M Innovative Properties Company Electrically conductive polymer resin and method for making same
US9336923B2 (en) 2005-05-13 2016-05-10 3M Innovative Properties Company Electrically conductive polymer resin and method for making same
JP2012183784A (en) * 2011-03-08 2012-09-27 Inoac Corp Elastomer with discontinuous metal coating and method for manufacturing the same
CN109164325A (en) * 2018-09-26 2019-01-08 上海微小卫星工程中心 A kind of volume production satellite electromagnetic compatibility rapid detection method

Similar Documents

Publication Publication Date Title
US5384075A (en) Organopolysiloxane composition and process for producing cured product of the same
JP4917164B2 (en) Power cable member
US5135980A (en) Electroconductive silicone rubber composition
US5164443A (en) Electroconductive silicone composition
US6010646A (en) Electroconductive composition and methods for producing such composition
EP2999740B1 (en) Heat resistant silicone rubber composition
JPH07207160A (en) Silicone composition and its production
JP3104568B2 (en) Silicone rubber composition for high voltage electrical insulator
EP2752462A1 (en) Resin composition with high dielectric insulation properties
JP2000077891A (en) Flexible metallic layer-juxtaposing silicone rubber material
JP2006265485A (en) Room-temperature-curable organopolysiloxane composition
JP2006182935A (en) Room temperature-curing polyorganosiloxane composition
JP4357991B2 (en) Curable polymer composition and method for preparing curable polymer composition
JP2007169356A (en) Polyorganosiloxane composition curable at room temperature
JP6915551B2 (en) A method for improving heat-resistant adhesiveness in flame-retardant room-temperature-curable organopolysiloxane compositions, electrical or electronic components, and electrical or electronic components.
JPH086036B2 (en) Conductive room temperature curable organopolysiloxane composition and cured product thereof
JP2018172634A (en) Elastomer, and molded body
JP2002368483A (en) Flexible electromagnetic wave shielding material
JP3112627B2 (en) Conductive silicone rubber composition
JP2005194372A (en) Silicone adhesive
JP2008156579A (en) Electroconductive silicone rubber composition
JP3033098B2 (en) Silicone rubber composition
JPH0841347A (en) Silicone rubber composition for high-voltage electrical insulator
JP2002363406A (en) Silicone rubber composition
JP2005162827A (en) Conductive polyorganosiloxane composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316