JP2000063545A - Material for forming multilayer board, and multilayer board - Google Patents

Material for forming multilayer board, and multilayer board

Info

Publication number
JP2000063545A
JP2000063545A JP10240587A JP24058798A JP2000063545A JP 2000063545 A JP2000063545 A JP 2000063545A JP 10240587 A JP10240587 A JP 10240587A JP 24058798 A JP24058798 A JP 24058798A JP 2000063545 A JP2000063545 A JP 2000063545A
Authority
JP
Japan
Prior art keywords
multilayer board
resin
prepreg
forming material
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10240587A
Other languages
Japanese (ja)
Inventor
Toshiharu Takada
俊治 高田
Takashi Sagara
隆 相楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10240587A priority Critical patent/JP2000063545A/en
Publication of JP2000063545A publication Critical patent/JP2000063545A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a material for forming multilayer boards high in processability and strength. SOLUTION: This material for forming multilayer boards is formed by impregnating an alkalifree glass cloth with a thermosetting resin to form a prepreg and by curing the prepreg and has a >=2,400 kgf/mm2 flexural elasticity at 20 deg.C and a 10-13 ppm/ deg.C coefficient of linear expansion in the planar direction. The above material does not cause a large flexure in processing such as through hole formation, circuit formation, electronic parts mounting, or the like, is easy to be processed and never causes breakage such as crazing or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多層プリント配線
板等の多層板を形成する際に用いられる多層板形成材
料、及びこれを用いて形成された多層板に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer board forming material used when forming a multilayer board such as a multilayer printed wiring board, and a multilayer board formed using the same.

【0002】[0002]

【従来の技術】最近の多層板は全体の厚みが非常に薄く
形成されているが、このような薄い多層板を形成するに
あたっては、シーケンシャルな積み上げ工法、いわゆる
ビルドアップ工法が採用されている。ビルドアップ工法
は次のようにして行なわれる。まず極薄の内層用基板の
表面に樹脂硬化物のみからなる絶縁層を形成すると共に
絶縁層の表面に金属箔を積層する。次にこの積層物にス
ルーホールを形成したり金属箔にエッチング等を施して
回路を形成したりする。次に積層物の表面に樹脂硬化物
のみからなる絶縁層を形成すると共に絶縁層の表面に金
属箔を積層する。このようにして絶縁層及び金属箔の積
層と、スルーホール形成や回路形成などの加工とを交互
に行なって多層板を形成するのがビルドアップ工法であ
る。
2. Description of the Related Art Recent multilayer boards have a very thin overall thickness, and a sequential stacking method, a so-called build-up method, is used to form such a thin multilayer board. The buildup method is performed as follows. First, an insulating layer made of a cured resin is formed on the surface of an extremely thin inner layer substrate, and a metal foil is laminated on the surface of the insulating layer. Next, a through hole is formed in this laminate, or a metal foil is subjected to etching or the like to form a circuit. Next, an insulating layer made of a cured resin is formed on the surface of the laminate, and a metal foil is laminated on the surface of the insulating layer. In this way, the build-up method is to form a multilayer board by alternately laminating the insulating layer and the metal foil and processing such as through hole formation and circuit formation.

【0003】[0003]

【発明が解決しようとする課題】しかし上記のようにし
て形成される多層板は、絶縁層が樹脂硬化物のみで形成
されているために強度が低く、スルーホール形成時や回
路形成時や電子部品の実装時などの加工時に大きな撓み
が発生して加工が行ないにくく、また割れて破損するこ
とがあった。
However, the multi-layer board formed as described above has low strength because the insulating layer is formed only by the cured resin, and the strength is low during through-hole formation, circuit formation, or electronic formation. Large bending occurred during processing such as mounting of parts, making it difficult to perform processing, and sometimes breaking and breaking.

【0004】本発明は上記の点に鑑みてなされたもので
あり、加工性及び強度が高い多層板形成材料を提供する
ことを目的とするものである。また本発明は、加工性及
び強度が高い多層板を提供することを目的とするもので
ある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a material for forming a multi-layer board having high workability and high strength. Another object of the present invention is to provide a multi-layer board having high workability and high strength.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
多層板形成材料は、無アルカリガラス布に熱硬化性樹脂
を含浸させてプリプレグを形成し、このプリプレグを硬
化させて形成される多層板形成材料であって、20℃に
おける曲げ弾性率が2400kgf/mm2以上、平面
方向における熱膨張率が10〜13ppm/℃であるこ
とを特徴とするものである。
A multilayer board forming material according to a first aspect of the present invention is formed by impregnating a non-alkali glass cloth with a thermosetting resin to form a prepreg and then curing the prepreg. A material for forming a multilayer board, which is characterized by having a bending elastic modulus at 20 ° C. of 2400 kgf / mm 2 or more and a thermal expansion coefficient in the plane direction of 10 to 13 ppm / ° C.

【0006】また本発明の請求項2に係る多層板形成材
料は、請求項1の構成に加えて、150℃における曲げ
弾性率が1200kgf/mm2以上であることを特徴
とするものである。
In addition to the constitution of claim 1, the multilayer plate forming material according to claim 2 of the present invention is characterized in that the bending elastic modulus at 150 ° C. is 1200 kgf / mm 2 or more.

【0007】また本発明の請求項3に係る多層板形成材
料は、請求項1又は2の構成に加えて、熱硬化性樹脂が
エポキシ樹脂、イミド系樹脂、変性ポリフェニレンオキ
サイドから選ばれる一つであることを特徴とするもので
ある。
In addition to the constitution of claim 1 or 2, the multilayer plate forming material according to claim 3 of the present invention is one in which the thermosetting resin is selected from an epoxy resin, an imide resin and a modified polyphenylene oxide. It is characterized by being.

【0008】本発明の請求項4に係る多層板は、請求項
1乃至3のいずれかに記載の多層板形成材料を積層して
成ることを特徴とするものである。
A multilayer board according to a fourth aspect of the present invention is characterized by laminating the multilayer board forming material according to any one of the first to third aspects.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0010】本発明の多層板形成材料は、無アルカリガ
ラス布に熱硬化性樹脂を含浸させてプリプレグを形成
し、このプリプレグを硬化させて形成されるものであ
る。無アルカリガラス布は、無アルカリガラス(Eガラ
ス)製のガラス繊維を織って形成されるものであり、斜
子織りのものを用いるのが好ましい。斜子織りのガラス
布は、平組織の縦糸あるいは横糸を数本ずつ引き揃えて
織って形成されるものである。また電気絶縁性の高い電
気絶縁用の無アルカリガラス布を用いるのが好ましい。
また50〜200μmの厚さの無アルカリガラス布を用
いるのが好ましい。また撓みを少なくするためにはガラ
ス充填率(単位体積あたりに占めるガラス繊維の体積の
割合)が45〜51%の無アルカリガラス布を用いるの
が好ましい。
The multilayer board forming material of the present invention is formed by impregnating a non-alkali glass cloth with a thermosetting resin to form a prepreg and curing the prepreg. The non-alkali glass cloth is formed by weaving glass fibers made of non-alkali glass (E glass), and it is preferable to use a twill weave. The glass cloth of the oblique weave is formed by weaving several warp or weft yarns having a flat design and aligning them. In addition, it is preferable to use a non-alkali glass cloth having high electric insulation for electric insulation.
Further, it is preferable to use a non-alkali glass cloth having a thickness of 50 to 200 μm. Further, in order to reduce the bending, it is preferable to use a non-alkali glass cloth having a glass filling rate (ratio of the volume of glass fiber per unit volume) of 45 to 51%.

【0011】熱硬化性樹脂としては、FR−4グレード
などの高いTgを有するものを用いることができ、ビス
フェノールAタイプのエポキシ樹脂、多官能エポキシ樹
脂、三官能エポキシ樹脂、四官能エポキシ樹脂及びこれ
らを任意に混合したものを用いることができる。またビ
スマレイミドとジアミンなどを含む熱硬化性ポリイミド
樹脂や、ポリイミド樹脂とエポキシ樹脂の変性樹脂(エ
ポキシ変性ポリイミド樹脂)や、ポリフェニレンオキサ
イド(PPO)樹脂を含む熱硬化性の変性ポリフェニレ
ンオキサイド樹脂を用いることができる。上記のエポキ
シ樹脂の硬化剤としてはジシアンジアミドを、硬化促進
剤としてはイミダゾール類を使用することができ、ある
いはフェノールノボラック樹脂硬化系であってもよい。
As the thermosetting resin, those having a high Tg such as FR-4 grade can be used, and bisphenol A type epoxy resin, polyfunctional epoxy resin, trifunctional epoxy resin, tetrafunctional epoxy resin and these It is possible to use a mixture of the above. Further, a thermosetting polyimide resin containing bismaleimide and diamine, a modified resin of a polyimide resin and an epoxy resin (epoxy modified polyimide resin), or a thermosetting modified polyphenylene oxide resin containing a polyphenylene oxide (PPO) resin should be used. You can Dicyandiamide can be used as a curing agent for the epoxy resin, and imidazoles can be used as a curing accelerator, or a phenol novolac resin curing system can be used.

【0012】そして本発明の多層板形成材料を形成する
にあたっては、次のようにして行なう。まず熱硬化性樹
脂、硬化剤、硬化促進剤等を含む樹脂組成物を希釈用の
溶媒に溶解させて樹脂ワニスを調製する。溶媒としては
ジメチルホルムアミド(DMF)、N−メチルピロリド
ン(NMP)、メチルエチルケトン(MEK)、ジメチ
ルアセトアミド(DMAc)、メチルセロソルブ(M
C)、ジオキサン、プロピレングリコールモノメチルエ
ーテル(PGM)などの中から適宜選んで単独あるいは
混合して用いることができる。
The multilayer board forming material of the present invention is formed as follows. First, a resin varnish is prepared by dissolving a resin composition containing a thermosetting resin, a curing agent, a curing accelerator, etc. in a solvent for dilution. As the solvent, dimethylformamide (DMF), N-methylpyrrolidone (NMP), methylethylketone (MEK), dimethylacetamide (DMAc), methylcellosolve (M
C), dioxane, propylene glycol monomethyl ether (PGM) and the like can be appropriately selected and used alone or in combination.

【0013】次に、樹脂ワニスを無アルカリガラス布に
含浸させ、これを加熱して溶媒を蒸発乾燥させつつ、熱
硬化性樹脂を半硬化状態にすることによってプリプレグ
を形成する。この時の加熱温度は110〜170℃、加
熱時間は1〜30分で行なうことが好ましいが、加熱温
度及び加熱時間は樹脂組成物の組成や熱硬化性樹脂の硬
化反応の進む速度などによって適宜設定することができ
る。またプリプレグの樹脂含有量が30〜40重量%と
なるように樹脂ワニスの含浸量を調節するのが好まし
い。プリプレグの樹脂含有量がこの範囲を外れると、プ
リプレグが硬化して形成される多層板形成材料の絶縁層
とその表面の金属箔との接着性が低下したり、半田時な
どにおける耐熱性が低下したり、多層板形成材料及びこ
れを用いた多層板の強度が低下したりする恐れがある。
Next, a resin varnish is impregnated into a non-alkali glass cloth, and the prepreg is formed by heating the resin varnish to evaporate and dry the solvent, and semi-curing the thermosetting resin. The heating temperature at this time is preferably 110 to 170 ° C., and the heating time is preferably 1 to 30 minutes, but the heating temperature and the heating time are appropriately determined depending on the composition of the resin composition and the speed of the curing reaction of the thermosetting resin. Can be set. Further, it is preferable to adjust the impregnated amount of the resin varnish so that the resin content of the prepreg is 30 to 40% by weight. If the resin content of the prepreg deviates from this range, the adhesion between the insulating layer of the multi-layer board forming material formed by curing the prepreg and the metal foil on its surface will decrease, and the heat resistance during soldering will decrease. Or the strength of the multilayer board forming material and the multilayer board using the same may decrease.

【0014】そして上記のプリプレグの片面あるいは両
面に金属箔を重ね、これを加熱加圧してプリプレグ(の
熱硬化性樹脂)を硬化させて絶縁層を形成すると共にプ
リプレグの熱硬化性樹脂の硬化によって絶縁層と金属箔
を接着して一体化する、いわゆる積層成形を行なうこと
によって、銅張り積層板である多層板形成材料を作製す
ることができる。複数枚のプリプレグを重ねた後、その
外側に金属箔を重ねるようにして複数枚のプリプレグか
らなる絶縁層を形成するようにしてもよい。また金属箔
としては、通常、銅箔が用いられるが、ニッケル箔やア
ルミニウム箔などを用いることもできる。また積層成形
は常法で行なうことができるが、例えば、温度は150
〜180℃、圧力は20〜50kgf/cm2、時間は
40〜120分に設定することができる。
Then, a metal foil is laid on one or both sides of the prepreg, and this is heated and pressed to cure (the thermosetting resin of) the prepreg to form an insulating layer, and the thermosetting resin of the prepreg is cured. A multilayer board forming material which is a copper-clad laminated board can be produced by performing so-called laminated molding in which the insulating layer and the metal foil are bonded and integrated. After stacking a plurality of prepregs, a metal foil may be stacked on the outer side of the prepregs to form an insulating layer composed of a plurality of prepregs. Copper foil is usually used as the metal foil, but nickel foil, aluminum foil, or the like can also be used. The lamination molding can be carried out by a conventional method, but the temperature is 150, for example.
The temperature can be set to ˜180 ° C., the pressure to 20 to 50 kgf / cm 2 , and the time to 40 to 120 minutes.

【0015】上記のように形成される多層板形成材料、
すなわち斜子織りのEガラス布に熱硬化性樹脂を30〜
40重量%含有させたプリプレグを硬化させて形成され
る多層板形成材料は、20℃(室温)雰囲気下での曲げ
弾性率が2400kgf/mm2以上(23.5GPa
以上)を有し、且つ平面方向(厚み方向以外の二方向、
すなわち平面視におけるX方向(横方向)とY方向(縦
方向))での熱膨張率が10〜13ppm/℃であるの
で、スルーホール形成時や回路形成時や電子部品の実装
時などの加工時に大きな撓みが発生せず、加工が行ない
やすく、また割れなどの破損も発生することがないもの
である。従って、樹脂硬化物のみの絶縁層を有する多層
板形成材料や、繊維状の無機充填剤を含有する樹脂硬化
物の絶縁層を有する多層板形成材料と比較して、加工性
や強度を高くすることができるものである。
A multilayer board forming material formed as described above,
That is, a thermosetting resin is added to an E-glass cloth of oblique weave in an amount of 30
The material for forming a multilayer board, which is formed by curing a prepreg containing 40% by weight, has a bending elastic modulus of 2400 kgf / mm 2 or more (23.5 GPa at 20 ° C. (room temperature) atmosphere).
And above) and in the plane direction (two directions other than the thickness direction,
That is, since the coefficient of thermal expansion in the X direction (horizontal direction) and Y direction (vertical direction) in a plan view is 10 to 13 ppm / ° C., processing such as through hole formation, circuit formation, and electronic component mounting In some cases, large bending does not occur, processing is easy, and breakage such as cracking does not occur. Therefore, the workability and strength are increased as compared with a multilayer board forming material having an insulating layer of only a resin cured material and a multilayer board forming material having an insulating layer of a resin cured material containing a fibrous inorganic filler. Is something that can be done.

【0016】しかも150℃雰囲気下での曲げ弾性率が
1200kgf/mm2以上、すなわち150℃雰囲気
下であっても20℃での曲げ弾性率に対して半分以上の
曲げ弾性率を保持するので、電子部品等の半田付け時な
どの高温化であっても大きな撓みが発生せず、半田付け
が行ないやすく、また高温化による割れなどの破損も発
生することがないものである。尚、多層形成材料の曲げ
弾性率は高いほど好ましいので、上限は設定されない
が、現段階では20℃雰囲気下での曲げ弾性率が300
0kgf/mm2以下、150℃雰囲気下での曲げ弾性
率が2500kgf/mm2以下のものが形成可能であ
る。
In addition, since the bending elastic modulus in a 150 ° C. atmosphere is 1200 kgf / mm 2 or more, that is, even in a 150 ° C. atmosphere, the bending elastic modulus is more than half of the bending elastic modulus at 20 ° C. Even when the temperature of an electronic component or the like is increased during soldering, large bending does not occur, soldering is easy, and damage such as cracking due to high temperature does not occur. The higher the flexural modulus of the multi-layer forming material is, the more preferable it is. Therefore, the upper limit is not set.
0 kgf / mm 2 or less, flexural modulus at the 0.99 ° C. atmosphere can form those 2,500 kgf / mm 2 or less.

【0017】本発明の多層板は、上記の多層板形成材料
にプリプレグを介して金属箔を重ねたり、多層形成材料
に樹脂付き金属箔を重ねたり、多層板形成材料にプリプ
レグを介して他の多層板形成材料を重ねたりし、これを
加熱加圧して積層成形することによって形成することが
できる。積層成形は常法で行なうことができるが、例え
ば、温度は150〜180℃、圧力は20〜50kgf
/cm2、時間は40〜120分に設定することができ
る。またプリプレグや樹脂付き金属箔を重ねる前に、多
層板形成材料の表面の銅箔にエッチング等を施して回路
を形成したりスルーホールを形成したりしてもよい。ま
たプリプレグ及び金属箔、プリプレグ及び多層板形成材
料、樹脂付き金属箔は複数枚重ねることができる。そし
て本発明の多層板は、上記の多層板形成材料を用いて形
成されるので、常温及び高温下での加工性や強度を高く
することができるものである。
In the multilayer board of the present invention, a metal foil is laminated on the above-mentioned material for forming a multilayer board via a prepreg, a metal foil with resin is laminated on a material for forming a multilayer board, or another material is formed on the material for forming a multilayer board via a prepreg. It can be formed by stacking multi-layer plate forming materials, and heating and pressurizing them to form a laminate. Lamination molding can be performed by a conventional method, for example, the temperature is 150 to 180 ° C., and the pressure is 20 to 50 kgf.
/ Cm 2 , and the time can be set to 40 to 120 minutes. Before laminating the prepreg and the metal foil with resin, the copper foil on the surface of the material for forming a multilayer board may be subjected to etching or the like to form a circuit or a through hole. Further, a plurality of prepregs and metal foils, prepregs and multilayer board forming materials, and resin-coated metal foils can be stacked. Since the multilayer board of the present invention is formed by using the above-mentioned material for forming a multilayer board, it is possible to enhance workability and strength at room temperature and high temperature.

【0018】[0018]

【実施例】以下本発明を実施例によって具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0019】(実施例1)臭素化エポキシ樹脂として三
井化学社製VF−2803のMEK溶解品(固形分80
%)120gと、シェル社製EPON 1031のアセ
トン溶解品(固形分70%)7gを用い、この臭素化エポ
キシ樹脂の溶解品と、3gのジシアンジアミド(日本カ
ーバイド社製の硬化剤)及び0.1gの2−エチル−4
−メチルイミダゾール(硬化促進剤)をあらかじめDM
FとPGMの混合溶剤30gに溶解したものとを混合し
てワニスとした。このワニスを斜子織りのEガラス布
0.2mmタイプ(旭シュエーベル社製6797MV)
に含浸し、160℃で5分乾燥してプリプレグを得た。
このプリプレグの樹脂量は37重量%であった。上記プ
リプレグ1枚の両側に18μmの銅箔を配し、成形温度
170℃、圧力30kg/cm2で90分の積層成形
し、0.2mmの多層板形成材料(両面銅張り積層板)
を得た。
Example 1 As a brominated epoxy resin, a MEK dissolved product of VF-2803 manufactured by Mitsui Chemicals, Inc. (solid content 80
%), And 7 g of EPON 1031 acetone-dissolved product (solid content 70%) manufactured by Shell Co., Ltd., a dissolved product of this brominated epoxy resin, 3 g of dicyandiamide (a curing agent manufactured by Nippon Carbide Co.) and 0.1 g 2-ethyl-4
DM in advance with methyl imidazole (curing accelerator)
A varnish was prepared by mixing a mixture of F and PGM dissolved in 30 g of a mixed solvent. This varnish is an E-glass cloth 0.2mm type with a weave (6797MV manufactured by Asahi Schwebel)
Was impregnated with the solution and dried at 160 ° C. for 5 minutes to obtain a prepreg.
The resin amount of this prepreg was 37% by weight. A copper foil of 18 μm is placed on both sides of the above prepreg sheet, and laminated and molded for 90 minutes at a molding temperature of 170 ° C. and a pressure of 30 kg / cm 2 to form a 0.2 mm multilayer board forming material (double-sided copper-clad laminated board).
Got

【0020】(実施例2)臭素化エポキシ樹脂として東
都化成(株)社製YDB500のMEK溶解品(固形分8
0%)25gと、旭Ciba社製のAER4100のM
EK溶解品(固形分80%)100gを用い、この臭素化
エポキシ樹脂の溶解品と、ジシアンジアミド3g及び2
−エチル−4−メチルイミダゾール0.1gを実施例1
と同様に溶解したものとを混合してワニスとした。この
ワニスを斜子織りのEガラス布0.1mmタイプ(旭シ
ュエーベル社製6777MV)に含浸し、実施例1と同
様に乾燥しプリプレグを得た。樹脂量は36重量%であ
った。このプリプレグを2枚重ねにした後に、両側に1
8μmの銅箔を配し、実施例1同様に積層成形を行い、
0.2mmの多層板形成材料を得た。
(Example 2) As a brominated epoxy resin, a MEK-dissolved product (solid content: 8) of YDB500 manufactured by Tohto Kasei Co., Ltd.
0%) 25 g and M of AER4100 manufactured by Asahi Ciba
Using 100 g of EK dissolved product (solid content 80%), this dissolved product of brominated epoxy resin and dicyandiamide 3 g and 2
Example 1 0.1 g of -ethyl-4-methylimidazole
A varnish was prepared by mixing the same solution as in (1) above. This varnish was impregnated into a 0.1 mm type of E-glass cloth (6777MV manufactured by Asahi Schwebel) of woven weave and dried in the same manner as in Example 1 to obtain a prepreg. The amount of resin was 36% by weight. After stacking 2 sheets of this prepreg, 1 on each side
A copper foil of 8 μm is arranged, and lamination molding is performed in the same manner as in Example 1,
A 0.2 mm multilayer board forming material was obtained.

【0021】(実施例3)ケルイミド601A(Ciba社
製)をDMAcに溶解してワニスとし、200℃で積層
成形を行った以外は実施例1と同様にして銅箔の積層、
乾燥、成形を行い(プリプレグは1枚)、0.2mmの
多層板形成材料を得た。
Example 3 A copper foil was laminated in the same manner as in Example 1 except that Kelimide 601A (manufactured by Ciba) was dissolved in DMAc to form a varnish, which was laminated at 200 ° C.
Drying and molding were performed (one prepreg was used) to obtain a 0.2 mm multi-layer board forming material.

【0022】(実施例4)ケルイミド601Aを50部
と、実施例1の臭素化エポキシ樹脂50部(固形分とし
て)に2−エチル−4−メチルイミダゾール0.02g
を加え、これをDMAcとDMFの混合溶媒30gに溶
解してワニスとし、200℃で積層成形を行った以外は
実施例2と同様にして銅箔の積層、乾燥、成形を行ない
(プリプレグは2枚)、0.2mmの多層板形成材料を
得た。
Example 4 50 parts of Kelimide 601A and 50 parts of the brominated epoxy resin of Example 1 (as a solid content) were mixed with 0.02 g of 2-ethyl-4-methylimidazole.
Was added, and this was dissolved in 30 g of a mixed solvent of DMAc and DMF to form a varnish, and copper foil was laminated, dried, and molded in the same manner as in Example 2 except that lamination molding was performed at 200 ° C. (the prepreg was 2 To obtain a multilayer board forming material of 0.2 mm.

【0023】(比較例1)束都化成(株)社製の臭素化
エポキシ樹脂(YDB500、固形分80%)のMEK溶
解品105gと、大日本インキ(株)社製のノボラックエ
ポキシ樹脂(N690、固形分75%)のMEK溶解品2
0gを用い、この臭素化エポキシ樹脂の溶解品と、2.
5gのジシアンジアミド及び0.1gの2−エチル−4
−メチルイミダゾールをDMFとPGMの混合溶媒30
に溶解させたものとを混合してワニスとした。このワニ
スを7628タイプのガラス布(平織り)に含浸、乾燥し
て、樹脂量36重量%のプリプレグを作製し、実施例1
と同様にして銅箔の積層や積層成形を行ない(プリプレ
グは1枚)、0.2mmの多層板形成材料を得た。
Comparative Example 1 105 g of MEK dissolved product of brominated epoxy resin (YDB500, solid content 80%) manufactured by Tabtsu Chemical Co., Ltd. and novolac epoxy resin (N690 manufactured by Dainippon Ink and Chemicals, Inc.) , Solid content 75%) MEK dissolved product 2
0 g of a solution of this brominated epoxy resin and 2.
5 g dicyandiamide and 0.1 g 2-ethyl-4
-Methylimidazole is a mixed solvent of DMF and PGM 30
The varnish was mixed with that dissolved in. A 7628 type glass cloth (plain weave) was impregnated with this varnish and dried to prepare a prepreg with a resin amount of 36% by weight.
The copper foil was laminated and laminated in the same manner as in (1 prepreg) to obtain a 0.2 mm multilayer board forming material.

【0024】(比較例2)7628タイプのガラス布
(平織り)に実施例1のワニスを含浸し、樹脂量41重量
%のプリプレグを作製し、実施例1と同様に銅箔の積層
や積層成形を行ない(プリプレグは1枚)、0.2mm
の多層板形成材料を得た。
(Comparative Example 2) 7628 type glass cloth
(Plain weave) was impregnated with the varnish of Example 1 to prepare a prepreg with a resin amount of 41% by weight, and copper foil was laminated and laminated in the same manner as in Example 1 (one prepreg), 0.2 mm
A multilayer board forming material of

【0025】(比較例3)2116タイプのガラス布
(平織り)に実施例2の樹脂を含浸し、樹脂量45重量%
のプリプレグを作製し、実施例2と同様に銅箔の積層や
積層成形を行ない(プリプレグは1枚)、0.2mmの
多層板形成材料を得た。
(Comparative Example 3) 2116 type glass cloth
(Plain weave) was impregnated with the resin of Example 2, and the resin amount was 45% by weight.
Was prepared, and copper foils were laminated and laminated in the same manner as in Example 2 (one prepreg was used) to obtain a 0.2 mm multilayer board forming material.

【0026】以上の多層板形成材料を使って、表1、2
の各性能を試験した。その試験方法JIS C 648
1に準じて行った。また、撓み量の測定は次のようにし
て行なった。幅100mm、長さ150mmの銅箔を除
去した実施例1乃至4及び比較例1乃至3を、100m
mの支点間距離に設定した曲げ試験用治具に置き、その
中央部分に50gの分銅を置いた時に撓んだ量を測定し
た。この測定は20℃と150℃の雰囲気中で行なっ
た。結果を表1、2に示す。
Using the above-mentioned materials for forming a multilayer board, Tables 1 and 2
Each performance of was tested. The test method JIS C 648
It carried out according to 1. The amount of bending was measured as follows. 100 m of Examples 1 to 4 and Comparative Examples 1 to 3 in which the copper foil having a width of 100 mm and a length of 150 mm was removed
It was placed in a bending test jig set to a distance between fulcrums of m, and a bending amount was measured when a weight of 50 g was placed in the central portion thereof. This measurement was performed in an atmosphere of 20 ° C and 150 ° C. The results are shown in Tables 1 and 2.

【0027】尚、ガラス布のX方向とY方向の熱膨張率
の測定は、TMA(Thermal Mechanical Analysis)測定
により、ガラス布のX方向とY方向について30℃から
125℃までのα1領域の熱膨張率を測定した。また曲
げ弾性率の測定は、各実施例及び比較例と同様にして
1.6mmの積層板(試料)を別途作製し、上記と同様
に曲げ試験を行なって撓み量を測定し、その荷重−撓み
曲線の傾き(F/Y:単位はkgf/mm)を求め、こ
の時の支点間距離(L)、荷重(W)、試料の厚み
(h)から、次式(A)により曲げ弾性率Eを求めた。
The coefficient of thermal expansion of the glass cloth in the X and Y directions is measured by TMA (Thermal Mechanical Analysis) by measuring the heat in the α1 region from 30 ° C. to 125 ° C. in the X and Y directions of the glass cloth. The expansion coefficient was measured. In addition, the flexural modulus was measured by separately manufacturing a 1.6 mm laminated plate (sample) in the same manner as in each of the examples and comparative examples, and performing a bending test in the same manner as above to measure the amount of deflection, and the load- The bending curve inclination (F / Y: unit is kgf / mm) is calculated, and the bending elastic modulus is calculated from the distance (L) between the fulcrums, the load (W), and the sample thickness (h) according to the following equation (A). I asked for E.

【0028】 E=L3/(4Wh3)×(F/Y) …(A)E = L 3 / (4Wh 3 ) × (F / Y) (A)

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 表1、2から、常温(20℃)での曲げ弾性率が240
0kgf/mm2以上、150℃での曲げ弾性率120
0kgf/mm2以上、且つX及びY方向の熱膨張率が
10〜13ppm/℃の範囲のものが接着性、半田耐熱
性、撓み量に優れていることが確認できた。
[Table 2] From Tables 1 and 2, the flexural modulus at room temperature (20 ° C) is 240.
Flexural modulus of 120 at 0 ° Cf / mm 2 and 150 ° C
It was confirmed that those having a thermal expansion coefficient of 0 kgf / mm 2 or more and a thermal expansion coefficient in the X and Y directions of 10 to 13 ppm / ° C were excellent in adhesiveness, solder heat resistance, and bending amount.

【0031】(実施例5)プリプレグを2枚重ねにして
用いた以外は、実施例1と同様にして厚み0.4mmの
多層板形成材料を形成した。この多層板形成材料の銅箔
にエッチングなどの回路形成加工を施して、両面に回路
を作製した。これに60μmの樹脂層を有する樹脂付き
銅箔(銅箔の厚み18μm)を両面に配し、積層成形し
た。この積層物の銅箔にエッチングなどの回路形成加工
を施して、両面に回路を作製した。さらに上記と同様の
樹脂付き銅箔を両面に配して積層成形した。そしてこの
積層物の銅箔にエッチングなどの回路形成加工を施し
て、両面(最外層)に回路を作製した。このようにして
厚み0.75mmの多層プリント配線板(6層板)を形
成した。
Example 5 A multilayer board forming material having a thickness of 0.4 mm was formed in the same manner as in Example 1 except that two prepregs were used in a stacked manner. The copper foil of the material for forming a multilayer board was subjected to circuit forming processing such as etching to prepare circuits on both sides. A resin-coated copper foil having a resin layer of 60 μm (copper foil thickness 18 μm) was placed on both sides of this, and laminated and molded. Circuit formation processing such as etching was performed on the copper foil of this laminate to form circuits on both sides. Furthermore, the same resin-coated copper foil as that described above was placed on both sides and laminated. Then, the copper foil of this laminate was subjected to a circuit forming process such as etching to form a circuit on both surfaces (outermost layer). Thus, a multilayer printed wiring board (six-layer board) having a thickness of 0.75 mm was formed.

【0032】(実施例6)プリプレグを4枚重ねにして
用いた以外は、実施例2と同様にして厚み0.4mmの
多層板形成材料を形成した。この多層板形成材料を用い
て実施例5と同様にして厚み0.74mmの多層プリン
ト配線板(6層板)を形成した。
(Example 6) A multilayer board forming material having a thickness of 0.4 mm was formed in the same manner as in Example 2 except that four prepregs were stacked and used. Using this multilayer board-forming material, a multilayer printed wiring board (six-layer board) having a thickness of 0.74 mm was formed in the same manner as in Example 5.

【0033】(実施例7)プリプレグを2枚重ねにして
用いた以外は、実施例3と同様にして厚み0.4mmの
多層板形成材料を形成した。この多層板形成材料を用い
て実施例5と同様にして厚み0.74mmの多層プリン
ト配線板(6層板)を形成した。
Example 7 A multilayer board forming material having a thickness of 0.4 mm was formed in the same manner as in Example 3 except that two prepregs were used in a stacked manner. Using this multilayer board-forming material, a multilayer printed wiring board (six-layer board) having a thickness of 0.74 mm was formed in the same manner as in Example 5.

【0034】(実施例8)プリプレグを4枚重ねにして
用いた以外は、実施例4と同様にして厚み0.4mmの
多層板形成材料を形成した。この多層板形成材料を用い
て実施例5と同様にして厚み0.73mmの多層プリン
ト配線板(6層板)を形成した。
Example 8 A multilayer board forming material having a thickness of 0.4 mm was formed in the same manner as in Example 4 except that four prepregs were used in a stacked manner. Using this multilayer board forming material, a multilayer printed wiring board (six layer board) having a thickness of 0.73 mm was formed in the same manner as in Example 5.

【0035】(比較例4)プリプレグを2枚重ねにして
用いた以外は、比較例1と同様にして厚み0.4mmの
多層板形成材料を形成した。この多層板形成材料を用い
て実施例5と同様にして厚み0.76mmの多層プリン
ト配線板(6層板)を形成した。
(Comparative Example 4) A multilayer board forming material having a thickness of 0.4 mm was formed in the same manner as in Comparative Example 1 except that two prepregs were used. Using this multilayer board forming material, a multilayer printed wiring board (six layer board) having a thickness of 0.76 mm was formed in the same manner as in Example 5.

【0036】(比較例5)プリプレグを2枚重ねにして
用いた以外は、比較例2と同様にして厚み0.4mmの
多層板形成材料を形成した。この多層板形成材料を用い
て実施例5と同様にして厚み0.75mmの多層プリン
ト配線板(6層板)を形成した。
Comparative Example 5 A multilayer board forming material having a thickness of 0.4 mm was formed in the same manner as in Comparative Example 2 except that two prepregs were used. Using this multilayer board-forming material, a multilayer printed wiring board (six-layer board) having a thickness of 0.75 mm was formed in the same manner as in Example 5.

【0037】(比較例6)プリプレグを4枚重ねにして
用いた以外は、比較例3と同様にして厚み0.4mmの
多層板形成材料を形成した。この多層板形成材料を用い
て実施例5と同様にして厚み0.75mmの多層プリン
ト配線板(6層板)を形成した。
(Comparative Example 6) A multilayer board forming material having a thickness of 0.4 mm was formed in the same manner as in Comparative Example 3 except that four prepregs were stacked and used. Using this multilayer board-forming material, a multilayer printed wiring board (six-layer board) having a thickness of 0.75 mm was formed in the same manner as in Example 5.

【0038】上記の実施例5乃至8及び比較例4乃至6
について、常温での撓み量の測定を行なった。この測定
方法は、幅33mm、長さ130mmの大きさにした実
施例5乃至8及び比較例4乃至6を、100mmの支点
間距離に設定した曲げ試験用治具に置き、その中央部分
に分銅を置いた時に撓んだ量を測定した。尚、この測定
は100gと300gの分銅を用いて行なった。結果を
表3、4に示す。
The above Examples 5 to 8 and Comparative Examples 4 to 6
The bending amount was measured at room temperature. In this measurement method, Examples 5 to 8 and Comparative Examples 4 to 6 each having a width of 33 mm and a length of 130 mm were placed on a bending test jig set to a fulcrum distance of 100 mm, and a weight was placed at the center thereof. The amount of bending when placed was measured. This measurement was performed using 100 g and 300 g weights. The results are shown in Tables 3 and 4.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 表3、4から実施例1乃至4と同様の多層板形成材料を
用いて作製された実施例5乃至8では、比較例4乃至6
のものと比較して撓み量が小さくなった。
[Table 4] Tables 3 and 4 show Comparative Examples 4 to 6 in Examples 5 to 8 produced using the same multilayer board forming material as Examples 1 to 4.
The amount of deflection was smaller than that of No.

【0041】[0041]

【発明の効果】上記のように本発明の請求項1に係る発
明は、無アルカリガラス布に熱硬化性樹脂を含浸させて
プリプレグを形成し、このプリプレグを硬化させて形成
される多層板形成材料であって、20℃における曲げ弾
性率が2400kgf/mm2以上、平面方向における
熱膨張率が10〜13ppm/℃であるので、スルーホ
ール形成時や回路形成時や電子部品の実装時などの加工
時に大きな撓みが発生せず、加工が行ないやすく、また
割れなどの破損も発生することがないものであり、加工
性や強度を高くすることができるものである。
As described above, in the invention according to claim 1 of the present invention, a non-alkali glass cloth is impregnated with a thermosetting resin to form a prepreg, and the prepreg is cured to form a multilayer board. Since the material has a flexural modulus of 2400 kgf / mm 2 or more at 20 ° C and a thermal expansion coefficient of 10 to 13 ppm / ° C in the plane direction, it can be used for forming through holes, circuits, or mounting electronic components. No significant bending occurs during processing, processing is easy to perform, and breakage such as cracking does not occur, and workability and strength can be improved.

【0042】また本発明の請求項2に係る発明は、15
0℃における曲げ弾性率が1200kgf/mm2以上
であるので、半田付け時など高温下において大きな撓み
が発生せず、加工が行ないやすく、また割れなどの破損
も発生することがないものであり、高温下の加工性や強
度を高くすることができるものである。
The invention according to claim 2 of the present invention is 15
Since the bending elastic modulus at 0 ° C. is 1200 kgf / mm 2 or more, large bending does not occur at high temperature such as soldering, processing is easy, and breakage such as cracking does not occur. The workability and strength under high temperature can be enhanced.

【0043】また本発明の請求項4に係る発明は、請求
項1乃至3のいずれかに記載の多層板形成材料を積層し
たので、常温下及び高温下での加工性や強度を高くする
ことができるものである。
Further, in the invention according to claim 4 of the present invention, since the multilayer board forming material according to any one of claims 1 to 3 is laminated, the workability and strength at room temperature and at high temperature are enhanced. Is something that can be done.

フロントページの続き Fターム(参考) 4F072 AA01 AA07 AB09 AB28 AB29 AC01 AD23 AD29 AD45 AD46 AG03 AK14 AL13 4F100 AB17 AB33 AG00A AG00B AH07H AK49A AK49B AK53A AK53B AK54A AK54B AL06A AL06B BA01 BA02 CA02 CC00 DG11A DG11B DH01A DH01B EJ82A EJ82B GB43 JA02A JA02B JB13A JB13B JK01 JK07A JK07B JL01 YY00A YY00B Continued front page    F-term (reference) 4F072 AA01 AA07 AB09 AB28 AB29                       AC01 AD23 AD29 AD45 AD46                       AG03 AK14 AL13                 4F100 AB17 AB33 AG00A AG00B                       AH07H AK49A AK49B AK53A                       AK53B AK54A AK54B AL06A                       AL06B BA01 BA02 CA02                       CC00 DG11A DG11B DH01A                       DH01B EJ82A EJ82B GB43                       JA02A JA02B JB13A JB13B                       JK01 JK07A JK07B JL01                       YY00A YY00B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無アルカリガラス布に熱硬化性樹脂を含
浸させてプリプレグを形成し、このプリプレグを硬化さ
せて形成される多層板形成材料であって、20℃におけ
る曲げ弾性率が2400kgf/mm2以上、平面方向
における熱膨張率が10〜13ppm/℃であることを
特徴とする多層板形成材料。
1. A multilayer board forming material formed by impregnating a non-alkali glass cloth with a thermosetting resin to form a prepreg, and curing the prepreg, which has a bending elastic modulus at 20 ° C. of 2400 kgf / mm. A material for forming a multilayer board, which has a coefficient of thermal expansion of 2 or more in the plane direction of 10 to 13 ppm / ° C.
【請求項2】 150℃における曲げ弾性率が1200
kgf/mm2以上であることを特徴とする請求項1に
記載の多層板形成材料。
2. The flexural modulus at 150 ° C. is 1200.
The material for forming a multilayer board according to claim 1, wherein the material has a kgf / mm 2 or more.
【請求項3】 熱硬化性樹脂がエポキシ樹脂、イミド系
樹脂、変性ポリフェニレンオキサイドから選ばれる一つ
であることを特徴とする請求項1又は2に記載の多層板
形成材料。
3. The material for forming a multilayer board according to claim 1, wherein the thermosetting resin is one selected from an epoxy resin, an imide resin, and a modified polyphenylene oxide.
【請求項4】 請求項1乃至3のいずれかに記載の多層
板形成材料を積層して成ることを特徴とする多層板。
4. A multi-layer board, which is formed by laminating the multi-layer board forming material according to any one of claims 1 to 3.
JP10240587A 1998-08-26 1998-08-26 Material for forming multilayer board, and multilayer board Pending JP2000063545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10240587A JP2000063545A (en) 1998-08-26 1998-08-26 Material for forming multilayer board, and multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10240587A JP2000063545A (en) 1998-08-26 1998-08-26 Material for forming multilayer board, and multilayer board

Publications (1)

Publication Number Publication Date
JP2000063545A true JP2000063545A (en) 2000-02-29

Family

ID=17061740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10240587A Pending JP2000063545A (en) 1998-08-26 1998-08-26 Material for forming multilayer board, and multilayer board

Country Status (1)

Country Link
JP (1) JP2000063545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315391A (en) * 2005-04-12 2006-11-24 Hitachi Chem Co Ltd Laminated plate and printed circuit board using the same
WO2008032383A1 (en) * 2006-09-14 2008-03-20 Panasonic Electric Works Co., Ltd. Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal clad laminate, printed wiring board and multilayer printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315391A (en) * 2005-04-12 2006-11-24 Hitachi Chem Co Ltd Laminated plate and printed circuit board using the same
WO2008032383A1 (en) * 2006-09-14 2008-03-20 Panasonic Electric Works Co., Ltd. Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal clad laminate, printed wiring board and multilayer printed wiring board
JPWO2008032383A1 (en) * 2006-09-14 2010-01-21 パナソニック電工株式会社 Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal-clad laminate, printed wiring board, and multilayer printed wiring board
JP5039707B2 (en) * 2006-09-14 2012-10-03 パナソニック株式会社 Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal-clad laminate, printed wiring board, and multilayer printed wiring board
US8344262B2 (en) 2006-09-14 2013-01-01 Panasonic Corporation Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal clad laminate, printed wiring board and multilayer printed wiring board

Similar Documents

Publication Publication Date Title
JP5338187B2 (en) Inorganic filler-containing resin composition, prepreg, laminate and wiring board
JP4926811B2 (en) Resin composition, prepreg, laminate and wiring board
TWI642151B (en) Prepreg, metal-clad laminate and printed wiring board
JP2007070418A (en) Adhesive sheet, metal foil-clad laminated sheet and built-up type multilayered printed wiring board
JP2013239701A (en) Interlayer dielectric film with carrier material, and multilayer printed circuit board using the same
US6534181B2 (en) Styrene-maleic anhydride copolymer and epoxy resin blend crosslinked with multifunctional amine compounds
JP6778889B2 (en) Prepreg, metal-clad laminate and printed wiring board
JP2692508B2 (en) Manufacturing method of laminated board
KR20210062632A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal clad laminate, and printed wiring board
KR20180067715A (en) Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
JP2000063545A (en) Material for forming multilayer board, and multilayer board
JP5293075B2 (en) Metal foil-clad laminate and printed wiring board
JP2014070098A (en) Prepreg, laminate and printed wiring board
JP2000063544A (en) Material for forming multilayer board, and multilayer board
JP3033335B2 (en) Manufacturing method of laminated board
JP5275533B2 (en) Metal foil laminate and prepreg
JPH05309789A (en) Production of composite copper clad laminated sheet
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JPS62169828A (en) Production of substrate for printed circuit
JP3546594B2 (en) Epoxy resin composition, prepreg and laminate
JP2015120890A (en) Thermosetting resin composition
KR100644749B1 (en) Copper clad laminate and multi layer board
JP2005281663A (en) Prepreg and metal foil-clad laminate and printed circuit board using the same
JPH09293971A (en) Manufacture of multilayer board
JPH07276565A (en) Production of composite copper-clad laminate sheet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217