JP2000061498A - Equipment for treatment of organic sludge - Google Patents

Equipment for treatment of organic sludge

Info

Publication number
JP2000061498A
JP2000061498A JP10235769A JP23576998A JP2000061498A JP 2000061498 A JP2000061498 A JP 2000061498A JP 10235769 A JP10235769 A JP 10235769A JP 23576998 A JP23576998 A JP 23576998A JP 2000061498 A JP2000061498 A JP 2000061498A
Authority
JP
Japan
Prior art keywords
sludge
methane fermentation
concentration
treatment
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10235769A
Other languages
Japanese (ja)
Other versions
JP4164906B2 (en
Inventor
Kensuke Matsui
謙介 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP23576998A priority Critical patent/JP4164906B2/en
Publication of JP2000061498A publication Critical patent/JP2000061498A/en
Application granted granted Critical
Publication of JP4164906B2 publication Critical patent/JP4164906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance methane fermentation efficiency and activated sludge treatment efficiency by increasing the retention amount of bacterial cells in the treatment system, also, to efficiently remove even hardly-decomposable organic matter and further to improve properties with respect to separation, dehydration and composting, of organic sludge. SOLUTION: The treatment using this equipment comprises: concentrating organic sludge, together with excess sludge from a sedimentation vessel 4 in a latter stage, by a concentration/separation means 7; subjecting the concentrated sludge to methane fermentation in a methane fermenter 1; dehydrating the methane-fermented sludge by a dehydrator 2; treating a liquid separated by the dehydrator 2, together with a liquid separated by the concentration/ separation means 7, with activated sludge, in an aeration vessel 3; thereafter, subjecting the resulting treated liquid to solid-liquid separation in the sedimentation vessel 4; also, carbonizing dehydrated cake obtained by dehydrating the methane-fermented sludge, with a carbonization device 8 to obtain a carbonized material; and adding the carbonized material to an aeration vessel 3.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は有機性汚泥をメタン
醗酵処理し、このメタン醗酵処理で得られた分離液を活
性汚泥処理する有機性汚泥の処理装置に係り、特に、メ
タン醗酵汚泥を炭化させて得られた炭化物を活性汚泥処
理手段に投入し、この炭化物を含む余剰汚泥を有機性汚
泥と混合して濃縮し、濃縮汚泥をメタン醗酵処理するこ
とにより、処理効率の向上を図った有機性汚泥の処理装
置に関する。 【0002】 【従来の技術】従来の有機性汚泥の処理装置の典型的な
構成を図2に示す。図2に示す通り、有機性汚泥をまず
メタン醗酵槽1でメタン醗酵処理し、得られたメタン醗
酵汚泥を脱水機2で脱水処理し、脱水ケーキを焼却装置
6で焼却処理する。この脱水機2の分離液は曝気槽3で
活性汚泥処理した後、沈殿槽4で固液分離し、分離液を
処理水として系外へ排出する。沈殿槽4の分離汚泥の一
部は曝気槽3に返送し、余剰汚泥は脱水機5で脱水処理
し、脱水ケーキは焼却装置6で焼却処理する。 【0003】 【発明が解決しようとする課題】図2に示す従来の有機
性汚泥の処理装置では次のような問題があった。 【0004】 有機性汚泥や余剰汚泥の沈降性、脱水
性が悪いことが多いが、このような場合沈殿槽が大型と
なり、脱水コストや焼却コストが高くつく。 メタン醗酵槽や曝気槽から菌体が流出し易く、高濃
度に菌体を保持することができない。また、このため、
処理効率が低く、大型のメタン醗酵槽や曝気槽が必要と
なる。 難分解性の有機物が除去されにくい。 【0005】本発明は上記従来の問題点を解決し、系内
の菌体保持量を多くしてメタン醗酵処理効率及び活性汚
泥処理効率を高めると共に、難分解性有機物をも効率的
に除去し、更に、汚泥の分離性、脱水性、コンポスト化
特性等を向上させることができる有機性汚泥の処理装置
を提供することを目的とする。 【0006】 【課題を解決するための手段】本発明の有機性汚泥の処
理装置は、有機性汚泥を濃縮分離処理する濃縮分離手段
と、該濃縮分離手段で分離された濃縮汚泥をメタン醗酵
処理して固液分離するメタン醗酵手段と、該メタン醗酵
手段で分離されたメタン醗酵分離液及び前記濃縮分離手
段で分離された濃縮分離液が導入される活性汚泥処理手
段とを備える有機性汚泥の処理装置であって、前記メタ
ン醗酵手段で分離されたメタン醗酵汚泥を炭化し、得ら
れた炭化物を該活性汚泥処理手段に添加する手段と、該
活性汚泥処理手段で発生する余剰汚泥の一部を前記濃縮
分離手段に返送する手段とを設けたことを特徴とする。 【0007】かかる本発明の有機性汚泥の処理装置で
は、メタン醗酵汚泥を炭化して得られた炭化物が難分解
性有機物の吸着能力を有するため、活性汚泥処理手段に
この炭化物を添加することにより、該活性汚泥処理手段
において難分解性有機物が除去されるようになる。 【0008】また、活性汚泥処理手段から分離された炭
化物を含む余剰汚泥を混合することにより、有機性汚泥
の濃縮性が向上し、高濃度濃縮汚泥に対して高濃度メタ
ン醗酵を行える。 【0009】この炭化物は、活性汚泥処理手段から濃縮
分離手段に返送される余剰汚泥中に混在して系内を循環
することとなるが、この炭化物に菌体が付着するように
なるところから、メタン醗酵手段や活性汚泥処理手段の
菌体保持量が多くなる。 【0010】更に、この炭化物が混在する汚泥は比重が
大きく沈降性に優れ、しかも水抜けが良いため脱水性も
良好である。 【0011】 【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。 【0012】図1は本発明の実施の形態を示す系統図で
ある。 【0013】I この実施の形態では、有機性汚泥を、
後段の沈殿槽4で分離された余剰汚泥と共に濃縮分離手
段7に導入し、必要に応じて凝集剤や凝集助剤を添加し
て濃縮分離処理する。 【0014】この濃縮分離手段7としては、自然沈降濃
縮槽、凝集分離槽、遠心分離機、ベルトプレス脱水機、
スクリュープレス脱水機、凝集スクリーン等を用いるこ
とができる。 【0015】濃縮分離手段7においては、後述の炭化物
を含む余剰汚泥を混合することにより、有機性汚泥の濃
縮性が高められ、効率的に濃縮分離することができる。
この濃縮分離手段7からの濃縮汚泥は、次工程のメタン
醗酵槽1で高濃度メタン醗酵を行うために、5〜20%
程度に濃縮されたものであることが好ましい。 【0016】なお、凝集助剤を用いる場合、例えば、カ
チオン性高分子凝集剤等を有機性汚泥と余剰汚泥との合
計に対して0.3〜1.0重量%添加すれば良いが、本
発明においては、上述の如く、炭化物を含む余剰汚泥を
混合することにより有機性汚泥の濃縮性が向上するた
め、凝集助剤の添加は必須ではない。 【0017】なお、有機性汚泥と余剰汚泥との混合割合
は、通常の場合、有機性汚泥:余剰汚泥=1:0.1〜
0.5(固形物比)程度とするのが好ましい。 【0018】II この濃縮分離手段7で分離した濃縮汚
泥をメタン醗酵槽1に送給してメタン醗酵処理し、分離
液は後段の曝気槽3に送給する。 【0019】メタン醗酵槽1では、濃縮分離手段7で濃
縮された高濃度濃縮汚泥を高濃度メタン醗酵することが
できる。しかも、このメタン醗酵槽1内には、後段の沈
殿槽4からの余剰汚泥中に含有されている炭化物が導入
され、この炭化物に菌体が付着することで槽内に多量の
菌体を保有することが可能となり、メタン醗酵効率が高
められる。 【0020】なお、メタン醗酵槽1には、上記濃縮汚泥
の他、生ごみなどを投入しても良い。 【0021】III このメタン醗酵槽1のメタン醗酵で
得られたメタン醗酵汚泥を、脱水機2で好ましくは含水
率60〜80%程度に脱水処理する。この脱水処理に当
り、メタン醗酵汚泥に炭化物が混在することで水抜けが
良くなり、汚泥脱水性が高められ、効率的に脱水処理す
ることができる。 【0022】IV この脱水機2で得られた脱水ケーキを
炭化装置8で炭化処理し、得られた炭化物の所要量を曝
気槽3に供給し、残部は系外へ排出する。 【0023】炭化処理は、例えば空気を供給せずに60
0〜800℃に20〜60分加熱することにより行うこ
とができる。 【0024】この炭化処理で得られる炭化物は、5〜2
0mm程度の粒状であることが望ましく、このような粒
状の炭化物とするために、必要に応じて脱水ケーキは造
粒又は解砕しても良い。 【0025】なお、この炭化処理されるメタン醗酵汚泥
中にも炭化物が含有されており、この炭化物を含有する
汚泥は、炭化物を含有しない汚泥に比べて粘着性が低い
ため、容易に炭化させることができる。 【0026】V 上記の脱水機2の脱水分離液を曝気槽
3に導入し、濃縮分離手段7からの分離液と共に活性汚
泥処理する。この曝気槽3においては、メタン醗酵汚泥
を炭化して得られる炭化物が投入されることにより、メ
タン醗酵槽1の場合と同様に多量の菌体が保持されるよ
うになり、効率的な生物処理が行われる。 【0027】また、この曝気槽3に添加された上記の炭
化物は、難分解性有機物の吸着能を有するため、曝気槽
3内で難分解性有機物が吸着除去される。この炭化物は
市販の活性炭に比べて有機物の吸着量は少ないが、この
炭化物は系内で発生するメタン醗酵汚泥から容易に製造
できるため、多量に添加することができ、難分解性有機
物を十分に除去することができる。炭化物に吸着した難
分解性有機物は、曝気槽3から沈殿槽4で分離された汚
泥に混在して系内を循環し、炭化装置8で炭化される。 【0028】曝気槽3への炭化物の添加量は、系内の難
分解性有機物量等によっても異なるが、通常の場合処理
水量に対して1〜3%程度とするのが好ましい。 【0029】VI この曝気槽3の活性汚泥処理液は沈殿
槽4で固液分離され、分離液は処理水として系外へ排出
される。分離汚泥の一部は曝気槽3に返送され、残部は
濃縮分離手段7に返送される。 【0030】この沈殿槽4では、炭化物が混在し、比重
が大きく、沈降性の高い汚泥を効率的に固液分離するこ
とができる。 【0031】なお、この曝気処理液の固液分離には、沈
殿槽に限らず、膜分離装置を用いても良い。 【0032】炭化装置8から系外へ排出される余剰の炭
化物は、土壌改良材等として有効利用することができ
る。 【0033】本発明において、メタン醗酵汚泥を脱水し
て得られる脱水ケーキの一部を抜き取ってコンポスト化
しても良く、この場合において、炭化物を含有する脱水
汚泥は通気性が良く、コンポスト化に適し、添加物を特
に添加することなく、高品質のコンポスト製品とするこ
とができる。 【0034】 【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。 【0035】実施例1 図1に示す有機性汚泥の処理装置により、浄化槽から排
出された有機性汚泥の処理を行った。各部の装置仕様は
次の通りである。 【0036】濃縮分離手段:凝集スクリーン メタン醗酵槽:容量4m3 脱水機:遠心分離機 炭化装置:650℃×0.5hrの処理により炭化する
炭化装置 曝気槽:容量3m 沈殿槽:容量1m 有機性汚泥1000L/日と後段の沈殿槽からの余剰汚
泥100L/日とを濃縮分離手段7に導入し、10%の
濃縮汚泥200L/日と分離液900L/日とに分離し
た。濃縮汚泥をメタン醗酵槽1に導入し、滞留時間20
日で処理し、生じたメタン醗酵汚泥を脱水機2で脱水処
理した。生じた含水率60%の脱水ケーキ30L/日を
炭化装置8で炭化して炭化物4kg/日を得た。この炭
化物のうち2kg/日を曝気槽3に添加した。 【0037】濃縮分離手段7の分離液900L/日と脱
水機2の分離液170L/日とを曝気槽3に導入し、滞
留時間67時間で処理し、曝気処理液を沈殿槽4で固液
分離した。得られた処理水の水質は表1に示す通りであ
った。 【0038】この沈殿槽4の分離汚泥のうち500L/
日を曝気槽3に返送し、残部は前述の割合で濃縮分離手
段7に送給した。 【0039】比較例1 実施例1において、炭化物を曝気槽3に添加しなかった
こと以外は全く同様にして処理を行った。 【0040】その結果、メタン醗酵効率、活性汚泥効率
が低下すると共に難分解性有機物の除去も行われなくな
り、加えて汚泥の固液分離性も低下したために、処理水
の水質は表1に示す通り、実施例1と比べて格段に劣る
ものとなった。 【0041】比較例2 実施例1において、沈殿槽4の分離汚泥を濃縮分離手段
7へ供給しなかったこと以外は全く同様にして処理を行
った。 【0042】その結果、濃縮分離手段7での汚泥濃縮性
が悪くなり、加温のための熱量を多く要した。また、メ
タン醗酵槽1に炭化物が供給されないことにより、メタ
ン醗酵効率が低下し、処理水の水質は表1に示す通り低
下した。 【0043】また、メタン醗酵汚泥の脱水性も悪くな
り、脱水機2での脱水効率も悪化すると共に、炭化処理
効率も悪くなった。 【0044】比較例3 実施例1において、濃縮分離手段を設けず、有機性汚泥
及び余剰汚泥を直接メタン醗酵槽に導入したこと以外は
全く同様にして処理を行った。 【0045】その結果、メタン醗酵槽の滞留時間が4日
弱となり、処理不能となった。 【0046】 【表1】 【0047】 【発明の効果】以上詳述した通り、本発明の有機性汚泥
の処理装置によれば、次のような効果が奏される。 【0048】 活性汚泥処理において難分解性有機物
を吸着除去できる。 有機性汚泥の濃縮性が向上し、高濃度メタン醗酵が
可能となる。 系内の菌体保持量が多くなるので、メタン醗酵手段
や活性汚泥処理手段の容量を小さくできる。 活性汚泥処理汚泥の固液分離性が向上するため、固
液分離手段としての沈殿槽が小さくて済む。また、固液
分離を膜分離装置で行う場合は、その透過流束が向上す
るため、膜面積が小さくて済む。 メタン醗酵汚泥の脱水性が向上するため、メタン醗
酵手段の脱水機の処理量を大きくでき、また、脱水ケー
キの含水率を低くすることができる。 脱水汚泥の通気性が良いので、これをコンポスト化
する場合もコンポスト化工程で添加物を必要とせず、高
品質のコンポスト製品を製造できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating organic sludge, comprising subjecting organic sludge to methane fermentation, and treating the separated liquid obtained by the methane fermentation to activated sludge. In particular, the charcoal obtained by carbonizing the methane fermentation sludge is introduced into activated sludge treatment means, and excess sludge containing the carbide is mixed with organic sludge and concentrated, and the concentrated sludge is subjected to methane fermentation treatment. Accordingly, the present invention relates to an organic sludge treatment apparatus for improving treatment efficiency. 2. Description of the Related Art FIG. 2 shows a typical structure of a conventional organic sludge treatment apparatus. As shown in FIG. 2, the organic sludge is first subjected to methane fermentation in a methane fermentation tank 1, the obtained methane fermentation sludge is dehydrated in a dehydrator 2, and the dewatered cake is incinerated in an incinerator 6. The separated liquid from the dehydrator 2 is subjected to activated sludge treatment in an aeration tank 3, and then separated into solid and liquid in a settling tank 4, and the separated liquid is discharged out of the system as treated water. Part of the separated sludge in the sedimentation tank 4 is returned to the aeration tank 3, excess sludge is dewatered by a dehydrator 5, and the dewatered cake is incinerated by an incinerator 6. [0005] The conventional organic sludge treatment apparatus shown in FIG. 2 has the following problems. In many cases, the sedimentation and dewatering properties of organic sludge and excess sludge are poor, but in such a case, the sedimentation tank becomes large and dewatering costs and incineration costs are high. The cells easily flow out of the methane fermentation tank or the aeration tank, and the cells cannot be maintained at a high concentration. Also for this,
The treatment efficiency is low and a large methane fermentation tank and aeration tank are required. Hardly decomposable organic matter is not easily removed. The present invention solves the above-mentioned conventional problems and increases the methane fermentation treatment efficiency and activated sludge treatment efficiency by increasing the amount of cells retained in the system, and efficiently removes hardly decomposable organic substances. It is another object of the present invention to provide an organic sludge treatment apparatus capable of improving the sludge separation property, dewatering property, composting property and the like. The organic sludge treatment apparatus of the present invention comprises a concentration separation means for concentrating and separating organic sludge, and a methane fermentation treatment for the concentrated sludge separated by the concentration separation means. Organic sludge comprising methane fermentation means for solid-liquid separation and activated sludge treatment means into which the methane fermentation separation liquid separated by the methane fermentation means and the concentrated separation liquid separated by the concentration separation means are introduced. A treatment apparatus, comprising means for carbonizing the methane fermentation sludge separated by the methane fermentation means and adding the obtained carbide to the activated sludge treatment means, and a part of excess sludge generated by the activated sludge treatment means. And a means for returning to the concentration / separation means. In the organic sludge treatment apparatus of the present invention, since the char obtained by carbonizing the methane fermentation sludge has the ability to adsorb hardly decomposable organic substances, the char is added to the activated sludge treatment means. Then, the hardly decomposable organic matter is removed in the activated sludge treatment means. [0008] Further, by mixing the excess sludge containing carbide separated from the activated sludge treatment means, the concentration of organic sludge is improved, and high-concentration methane fermentation can be performed on high-concentration concentrated sludge. [0009] The carbonized material is circulated in the system by being mixed in excess sludge returned from the activated sludge treatment means to the concentration and separation means, and the cells are attached to the carbonized material. The amount of cells retained by the methane fermentation means and the activated sludge treatment means is increased. Furthermore, the sludge mixed with the carbide has a large specific gravity and excellent sedimentation properties, and also has good dewaterability because of good drainage. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of the present invention. I In this embodiment, the organic sludge is
The excess sludge separated in the sedimentation tank 4 at the subsequent stage is introduced into the concentration separation means 7 and, if necessary, a coagulant or a coagulation aid is added to perform the concentration separation treatment. The concentration and separation means 7 includes a natural sedimentation concentration tank, a coagulation separation tank, a centrifugal separator, a belt press dehydrator,
A screw press dehydrator, a coagulation screen, or the like can be used. In the concentration / separation means 7, by mixing excess sludge containing carbide described later, the concentration of the organic sludge is enhanced, and the concentration and separation can be performed efficiently.
The concentrated sludge from the concentration / separation means 7 is subjected to high concentration methane fermentation in the methane fermentation tank 1 in the next step.
Preferably, it is concentrated to a certain extent. When a coagulation aid is used, for example, a cationic polymer coagulant may be added in an amount of 0.3 to 1.0% by weight based on the total amount of organic sludge and excess sludge. In the present invention, as described above, the addition of the coagulant is not essential because the mixing of excess sludge containing carbides improves the concentration of organic sludge. The mixing ratio of the organic sludge and the excess sludge is usually organic sludge: excess sludge = 1: 0.1 to
It is preferably set to about 0.5 (solid content ratio). II The concentrated sludge separated by the concentration separating means 7 is sent to the methane fermentation tank 1 for methane fermentation, and the separated liquid is sent to the aeration tank 3 at the subsequent stage. In the methane fermentation tank 1, the high-concentration sludge concentrated by the concentration / separation means 7 can be subjected to high-concentration methane fermentation. In addition, in this methane fermentation tank 1, carbide contained in excess sludge from the latter settling tank 4 is introduced, and a large amount of cells are retained in the tank by the cells adhering to the char. Methane fermentation efficiency can be improved. The methane fermentation tank 1 may be filled with garbage in addition to the above-mentioned concentrated sludge. III The methane fermentation sludge obtained by the methane fermentation in the methane fermentation tank 1 is dehydrated by a dehydrator 2 to a water content of preferably about 60 to 80%. In this dehydration treatment, the presence of carbides in the methane fermentation sludge improves water drainage, enhances sludge dewatering properties, and enables efficient dehydration treatment. IV The dewatered cake obtained by the dehydrator 2 is carbonized by the carbonizing device 8, a required amount of the obtained carbide is supplied to the aeration tank 3, and the remainder is discharged out of the system. The carbonization treatment is performed, for example, without supplying air.
It can be performed by heating to 0 to 800 ° C for 20 to 60 minutes. The carbide obtained by this carbonization treatment is 5-2
It is preferable that the dehydrated cake has a granular shape of about 0 mm. In order to obtain such a granular carbide, the dewatered cake may be granulated or crushed as necessary. The methane-fermented sludge to be carbonized also contains carbides, and the sludge containing the carbides has a lower adhesiveness than the sludge containing no carbides. Can be. V The dewatered separated liquid from the dehydrator 2 is introduced into the aeration tank 3 and activated sludge treatment is performed together with the separated liquid from the concentration and separation means 7. In this aeration tank 3, a large amount of cells are retained as in the case of the methane fermentation tank 1 by introducing the char obtained by carbonizing the methane fermentation sludge, and efficient biological treatment is performed. Is performed. Since the above-mentioned carbides added to the aeration tank 3 have a capability of adsorbing hardly decomposable organic substances, the hardly decomposable organic substances are adsorbed and removed in the aeration tank 3. This carbide has a smaller amount of organic matter adsorbed than commercially available activated carbon, but since this carbide can be easily produced from methane fermentation sludge generated in the system, it can be added in a large amount, and the hardly decomposable organic matter can be sufficiently removed. Can be removed. The hardly decomposable organic matter adsorbed on the carbide is mixed with the sludge separated from the aeration tank 3 in the sedimentation tank 4 and circulates in the system, and is carbonized by the carbonization device 8. The amount of carbide to be added to the aeration tank 3 varies depending on the amount of hardly decomposable organic matter in the system and the like, but is usually preferably about 1 to 3% with respect to the amount of treated water. VI The activated sludge treatment liquid in the aeration tank 3 is separated into solid and liquid in the settling tank 4, and the separated liquid is discharged out of the system as treated water. A part of the separated sludge is returned to the aeration tank 3, and the remaining part is returned to the concentration / separation means 7. In the sedimentation tank 4, sludge containing carbides and having a large specific gravity and a high sedimentation property can be efficiently separated into solid and liquid. The solid-liquid separation of the aeration treatment liquid is not limited to the sedimentation tank, and a membrane separation device may be used. Excess carbide discharged from the carbonization device 8 to the outside of the system can be effectively used as a soil improvement material or the like. In the present invention, a part of the dewatered cake obtained by dewatering the methane fermentation sludge may be extracted and composted. In this case, the dehydrated sludge containing carbide has good air permeability and is suitable for composting. A high-quality compost product can be obtained without adding any additives. The present invention will be described more specifically below with reference to examples and comparative examples. Example 1 Organic sludge discharged from a septic tank was treated by the organic sludge treatment apparatus shown in FIG. The equipment specifications of each part are as follows. Concentration / separation means: flocculation screen methane fermentation tank: capacity 4 m 3 Dehydrator: centrifugal separator carbonization equipment: carbonization equipment that carbonizes by treatment at 650 ° C. × 0.5 hr Aeration tank: capacity 3 m 3 precipitation tank: capacity 1 m 3 1000 L / day of organic sludge and 100 L / day of excess sludge from a sedimentation tank at the subsequent stage were introduced into the concentration separation means 7 and separated into 200 L / day of 10% concentrated sludge and 900 L / day of the separated liquid. The concentrated sludge is introduced into the methane fermentation tank 1 and the residence time is 20
Methane fermentation sludge was dehydrated by a dehydrator 2. 30 L / day of the resulting dehydrated cake having a moisture content of 60% was carbonized by the carbonization device 8 to obtain 4 kg / day of carbide. 2 kg / day of this carbide was added to the aeration tank 3. 900 L / day of the separated liquid from the concentration / separation means 7 and 170 L / day of the separated liquid from the dehydrator 2 are introduced into the aeration tank 3, and are treated with a residence time of 67 hours. separated. The quality of the obtained treated water was as shown in Table 1. Of the sludge separated in the sedimentation tank 4, 500 L /
The day was returned to the aeration tank 3, and the remainder was sent to the concentration and separation means 7 at the above-mentioned ratio. Comparative Example 1 The procedure of Example 1 was repeated, except that no carbide was added to the aeration tank 3. As a result, the efficiency of the methane fermentation and the efficiency of the activated sludge were reduced, and the removal of the hardly decomposable organic substances was not performed. In addition, the solid-liquid separation property of the sludge was also reduced. As a result, it was significantly inferior to Example 1. Comparative Example 2 The same treatment as in Example 1 was carried out except that the separated sludge in the settling tank 4 was not supplied to the concentration / separation means 7. As a result, the sludge thickening property of the thickening / separating means 7 deteriorated, and a large amount of heat was required for heating. In addition, since no carbide was supplied to the methane fermentation tank 1, the methane fermentation efficiency was reduced, and the quality of the treated water was reduced as shown in Table 1. In addition, the dewatering property of the methane fermentation sludge also deteriorated, the dewatering efficiency in the dehydrator 2 deteriorated, and the carbonization efficiency also deteriorated. Comparative Example 3 A treatment was carried out in the same manner as in Example 1 except that the organic sludge and the excess sludge were directly introduced into the methane fermentation tank without providing the concentration and separation means. As a result, the residence time in the methane fermentation tank became less than 4 days, and the treatment became impossible. [Table 1] As described above in detail, the organic sludge treatment apparatus of the present invention has the following effects. In the activated sludge treatment, hardly decomposable organic substances can be adsorbed and removed. The concentration of organic sludge is improved, and high-concentration methane fermentation becomes possible. Since the amount of cells retained in the system increases, the capacity of the methane fermentation means and the activated sludge treatment means can be reduced. Since the solid-liquid separation property of the activated sludge treatment sludge is improved, the size of the sedimentation tank as the solid-liquid separation means can be reduced. Further, when the solid-liquid separation is performed by a membrane separation device, the permeation flux is improved, so that the membrane area can be small. Since the dewatering property of the methane fermentation sludge is improved, the throughput of the dehydrator of the methane fermentation means can be increased, and the water content of the dewatered cake can be reduced. Since the dewatered sludge has good air permeability, even when it is composted, no additives are required in the composting step, and a high-quality compost product can be manufactured.

【図面の簡単な説明】 【図1】本発明の有機性汚泥の処理装置の実施の形態を
示す系統図である。 【図2】従来の有機性汚泥の処理装置を示す系統図であ
る。 【符号の説明】 1 メタン醗酵槽 2 脱水機 3 曝気槽 4 沈殿槽 5 脱水機 6 焼却装置 7 濃縮分離手段 8 炭化装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram showing an embodiment of an organic sludge treatment apparatus of the present invention. FIG. 2 is a system diagram showing a conventional organic sludge treatment apparatus. [Description of Signs] 1 Methane fermentation tank 2 Dehydrator 3 Aeration tank 4 Sedimentation tank 5 Dehydrator 6 Incinerator 7 Concentrator / separator 8 Carbonizer

Claims (1)

【特許請求の範囲】 【請求項1】 有機性汚泥を濃縮分離処理する濃縮分離
手段と、該濃縮分離手段で分離された濃縮汚泥をメタン
醗酵処理して固液分離するメタン醗酵手段と、該メタン
醗酵手段で分離されたメタン醗酵分離液及び前記濃縮分
離手段で分離された濃縮分離液が導入される活性汚泥処
理手段とを備える有機性汚泥の処理装置であって、 前記メタン醗酵手段で分離されたメタン醗酵汚泥を炭化
し、得られた炭化物を該活性汚泥処理手段に添加する手
段と、 該活性汚泥処理手段で発生する余剰汚泥の一部を前記濃
縮分離手段に返送する手段とを設けたことを特徴とする
有機性汚泥の処理装置。
Claims: 1. Concentrating and separating means for concentrating and separating organic sludge, methane fermenting means for subjecting the concentrated sludge separated by the concentrating and separating means to methane fermentation and solid-liquid separation, An activated sludge treatment device comprising: a methane fermentation separation liquid separated by the methane fermentation means; and an activated sludge treatment means into which the concentrated separation liquid separated by the concentration separation means is introduced. A means for carbonizing the methane fermentation sludge thus obtained and adding the obtained carbide to the activated sludge treatment means; and a means for returning a part of excess sludge generated in the activated sludge treatment means to the concentration separation means. An organic sludge treatment apparatus, characterized in that:
JP23576998A 1998-08-21 1998-08-21 Organic sludge treatment equipment Expired - Fee Related JP4164906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23576998A JP4164906B2 (en) 1998-08-21 1998-08-21 Organic sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23576998A JP4164906B2 (en) 1998-08-21 1998-08-21 Organic sludge treatment equipment

Publications (2)

Publication Number Publication Date
JP2000061498A true JP2000061498A (en) 2000-02-29
JP4164906B2 JP4164906B2 (en) 2008-10-15

Family

ID=16990975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23576998A Expired - Fee Related JP4164906B2 (en) 1998-08-21 1998-08-21 Organic sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP4164906B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353500A (en) * 2000-06-13 2001-12-25 Japan Sewage Works Agency Sludge treating method using carbonized sludge
JP2002310419A (en) * 2001-04-12 2002-10-23 Meidensha Corp Thermal decomposition facility by gas engine power generation facility using digestive gas
JP2005052692A (en) * 2003-08-04 2005-03-03 Kangen Yoyu Gijutsu Kenkyusho:Kk Processing system and processing method for using biomass resource effectively
JP2016019966A (en) * 2014-06-17 2016-02-04 日本臓器製薬株式会社 Sludge treatment method and sludge treatment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723899B (en) * 2014-01-23 2015-06-17 杭州互惠环保科技有限公司 Sludge comprehensive treatment method based on anaerobic digestion and hydrothermal carbonization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353500A (en) * 2000-06-13 2001-12-25 Japan Sewage Works Agency Sludge treating method using carbonized sludge
JP2002310419A (en) * 2001-04-12 2002-10-23 Meidensha Corp Thermal decomposition facility by gas engine power generation facility using digestive gas
JP2005052692A (en) * 2003-08-04 2005-03-03 Kangen Yoyu Gijutsu Kenkyusho:Kk Processing system and processing method for using biomass resource effectively
JP2016019966A (en) * 2014-06-17 2016-02-04 日本臓器製薬株式会社 Sludge treatment method and sludge treatment system

Also Published As

Publication number Publication date
JP4164906B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP6121589B2 (en) Anaerobic treatment method
JPH09201599A (en) Method for recovering useful substance from organic waste and utilizing the same as resources
US11512028B2 (en) Method for dry biological treatment of organic waste
JPH11197636A (en) Method for treatment of organic waste
JP3835927B2 (en) Organic waste treatment methods
JP3276139B2 (en) Organic waste treatment method
JP4164906B2 (en) Organic sludge treatment equipment
JPH11309493A (en) Dry methane fermentation method
JP2000153259A (en) Methane fermentation method of easily degradable organic waste
JP2000015230A (en) Method for removing ammonia
JP2004230273A (en) Method for treating organic waste
JPH11333416A (en) Method for recycling resource from organic waste
JP3276138B2 (en) Organic waste treatment
JP4168552B2 (en) Organic waste treatment methods
KR20010001588A (en) Food waste aerobic/anaerobic co-ferementation process
JP2000514714A (en) Process for optimizing and increasing the volume filling of fermentation reactors
JP2002052398A (en) Method for treating dry methane fermentation sludge
JP2002224645A (en) Method of high concentration methane fermentation
JP2006281087A (en) Processing method of organic waste
JP3835925B2 (en) Dephosphorization method
JP3915217B2 (en) Organic waste treatment equipment
JP3906323B2 (en) Treatment method for highly concentrated waste liquid
JP3835924B2 (en) Dephosphorization method
JPH11285698A (en) Biological dephosphorization method
SU1127848A1 (en) Method for treating precipitates of waste liquors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees