JP2000058119A - Manufacture of nonaqueous electrolyte for secondary battery - Google Patents

Manufacture of nonaqueous electrolyte for secondary battery

Info

Publication number
JP2000058119A
JP2000058119A JP10220008A JP22000898A JP2000058119A JP 2000058119 A JP2000058119 A JP 2000058119A JP 10220008 A JP10220008 A JP 10220008A JP 22000898 A JP22000898 A JP 22000898A JP 2000058119 A JP2000058119 A JP 2000058119A
Authority
JP
Japan
Prior art keywords
activated alumina
carbonate
ppm
solution
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10220008A
Other languages
Japanese (ja)
Inventor
Katsuaki Hasegawa
勝昭 長谷川
Yuji Yoshida
勇次 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10220008A priority Critical patent/JP2000058119A/en
Publication of JP2000058119A publication Critical patent/JP2000058119A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance electrolytic solution by processing a solution dissolved with an electrolyte in a nonaqueous solvent with active alumina, having moisture content and soluble sodium content in specified ranges by adsorption. SOLUTION: Active alumina is refined in advance, and alumina with the moisture content 50ppm or below, preferably 20ppm or below, and soluble sodium content 100ppm or below, preferably 50ppm or below, is used. The active alumina with the specific surface area 100-400m2/g and the average grain size 10-200μm is preferably used as a raw material. The active alumina is put in a large quantity of an acid aqueous solution, then it is stirred at room temperature and filtered. After these processes are repeated several times, it is thoroughly washed by pure water to remove acid, then it is dried and baked at 400-600 deg.C to obtain active alumina. A carbonate selected from a group of ethylene carbonate and propylene carbonate is contained in a nonaqueous solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池の
ような非水電解液二次電池に用いられる非水電解液の精
製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a non-aqueous electrolyte used for a non-aqueous electrolyte secondary battery such as a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池は、携帯電話など種々
の電気機器の電源として広く用いられている。この電池
の電解液としては非水溶媒にリチウム塩を溶解させたも
のが用いられているが、電解液中の水分や酸などの微量
不純物が電池の性能に悪影響を及ぼすことが知られてお
り、微量不純物を除去する方法が種々提案されている。
例えば特開昭59−81869号公報には、電解液をリ
チウムイオン型モレキュラーシーブで吸着処理して、水
分その他の不純物を除去することが記載されている。特
開平3−74061号公報には、電解液に活性アルミナ
による吸着処理と通電処理を施すことが記載されてい
る。特開平5−315006号公報には、電解液をアル
ミナやマグネシア等で吸着処理して、電解液中の酸を除
去することが記載されている。特開平7−211349
号公報には、電解液をマグネシアやアルミナ等で吸着処
理して、電解液中の遊離フッ素を除去することが記載さ
れている。
2. Description of the Related Art Lithium secondary batteries are widely used as power sources for various electric devices such as mobile phones. As the electrolyte for this battery, a solution in which a lithium salt is dissolved in a non-aqueous solvent is used, but it is known that trace impurities such as moisture and acid in the electrolyte have a bad effect on the performance of the battery. Various methods have been proposed for removing trace impurities.
For example, JP-A-59-81869 discloses that an electrolytic solution is subjected to an adsorption treatment with a lithium ion type molecular sieve to remove moisture and other impurities. Japanese Patent Application Laid-Open No. 3-74061 describes that an electrolytic solution is subjected to an adsorption treatment with activated alumina and an energization treatment. JP-A-5-315006 describes that an acid is removed from an electrolytic solution by subjecting the electrolytic solution to adsorption treatment with alumina, magnesia, or the like. JP-A-7-213349
The publication describes that an electrolytic solution is adsorbed with magnesia or alumina to remove free fluorine in the electrolytic solution.

【0003】[0003]

【発明が解決しようとする課題】上述のように電解液の
精製方法は種々提案されているが、いずれも未だ満足す
べきものではない。従って本発明は高性能の電解液を与
える二次電池用非水電解液の精製方法を提供しようとす
るものである。
As described above, various methods for purifying an electrolytic solution have been proposed, but none of them is satisfactory yet. Accordingly, an object of the present invention is to provide a method for purifying a non-aqueous electrolyte for a secondary battery that gives a high-performance electrolyte.

【0004】[0004]

【課題を解決するための手段】本発明によれば、非水溶
媒中に電解質を溶解してなる溶液を、水分含量50pp
m以下、可溶性ナトリウム含量100ppm以下の活性
アルミナで吸着処理することにより、高性能の二次電池
用非水電解液とすることができる。
According to the present invention, a solution obtained by dissolving an electrolyte in a non-aqueous solvent is used to prepare a solution having a water content of 50 pp.
By performing adsorption treatment with activated alumina having a soluble sodium content of 100 ppm or less, a high-performance non-aqueous electrolyte for a secondary battery can be obtained.

【0005】[0005]

【発明の実施の形態】本発明について詳細に説明する
と、本発明で吸着処理の対象とするのは、非水溶媒に電
解質を溶解してなる非水電解質溶液である。このような
溶液は公知であり、溶媒としてはエチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、エチルメチルカーボネート、ジ
エチルカーボネートなどのカーボネートをはじめ、γ−
ブチロラクトン、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、1,2−ジブトキシエタン、テトラ
ヒドロフラン、2−メチルテトラヒドロフラン、1,3
−ジオキソラン、4−メチル−1,3−ジオキソランな
どが用いられる。好ましくは上述のカーボネートの1種
または2種以上を含む非水溶媒、特にプロピレンカーボ
ネートのような環状カーボネートとエチルメチルカーボ
ネートのような鎖状カーボネートとの混合溶媒が用いら
れる。電解質としてはフッ素化合物のリチウム塩、例え
ばLiPF6 、LiBF4 、LiAsF6 、LiN(C
3 SO3 2 、LiC(CF3 SO33 、RfSO
3 Liなどが用いられる。ここにRfは炭素数1〜8の
フルオロアルキル基、特にトリフルオロメチル、ペンタ
フルオロエチル、n−ヘプタフルオロプロピル、n−ノ
ナフルオロブチルのような炭素数1〜8のパーフルオロ
アルキル基である、非水電解質溶液中の電解質の濃度は
通常0.5〜4モル/リットル程度である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail. The object of the adsorption treatment in the present invention is a non-aqueous electrolyte solution obtained by dissolving an electrolyte in a non-aqueous solvent. Such a solution is known, and as a solvent, ethylene carbonate, propylene carbonate, butylene carbonate,
Including carbonates such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, γ-
Butyrolactone, 1,2-dimethoxyethane, 1,2-
Diethoxyethane, 1,2-dibutoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3
-Dioxolan, 4-methyl-1,3-dioxolan and the like are used. Preferably, a non-aqueous solvent containing one or more of the above-mentioned carbonates, particularly a mixed solvent of a cyclic carbonate such as propylene carbonate and a linear carbonate such as ethyl methyl carbonate is used. As the electrolyte, a lithium salt of a fluorine compound, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiN (C
F 3 SO 3 ) 2 , LiC (CF 3 SO 3 ) 3 , RfSO
3 Li or the like is used. Here, Rf is a C1-8 fluoroalkyl group, particularly a C1-8 perfluoroalkyl group such as trifluoromethyl, pentafluoroethyl, n-heptafluoropropyl, and n-nonafluorobutyl. The concentration of the electrolyte in the non-aqueous electrolyte solution is usually about 0.5 to 4 mol / l.

【0006】本発明では、この非水電解質溶液を水分含
量が50ppm以下、可溶性ナトリウム含量が100p
pm以下の活性アルミナで吸着処理する。なお、可溶性
ナトリウムとは、活性アルミナ5.0gを80℃の温水
100g中に投入して30分間ゆるく撹拌したときに水
中に溶出したナトリウムであり、濾過して活性アルミナ
を除去したのち濾液のナトリウムを発光分析で定量する
ことにより求めることができる。
According to the present invention, this non-aqueous electrolyte solution has a water content of 50 ppm or less and a soluble sodium content of 100 p.
Adsorption treatment with activated alumina of pm or less. The soluble sodium is sodium that was eluted into water when 5.0 g of activated alumina was put into 100 g of warm water at 80 ° C. and stirred gently for 30 minutes. After filtration to remove activated alumina, sodium in the filtrate was removed. Can be determined by quantifying the amount by an emission analysis.

【0007】前述の如く非水電解質溶液を活性アルミナ
で吸着処理することは公知であるが、従来の活性アルミ
ナによる吸着処理では、必ずしも満足すべき精製効果を
得ることはできなかった。本発明者らはその原因につい
て検討した結果、吸着処理に用いる活性アルミナそのも
のに原因があることをつきとめ、予め活性アルミナに精
製処理を施して、アルミナの水分含量を50ppm以
下、好ましくは20ppm以下、可溶性ナトリウム含量
を100ppm以下、好ましくは50ppm以下とした
ものを用いることにより、優れた精製効果が得られるこ
とを見出したものである。
Although it is known to adsorb a non-aqueous electrolyte solution with activated alumina as described above, a satisfactory adsorption effect cannot always be obtained by the conventional adsorption treatment with activated alumina. The present inventors have studied the cause, as a result, found that there is a cause in the activated alumina itself used for the adsorption treatment, and previously subjected the purification treatment to the activated alumina to reduce the water content of the alumina to 50 ppm or less, preferably 20 ppm or less, It has been found that an excellent purification effect can be obtained by using a soluble sodium content of 100 ppm or less, preferably 50 ppm or less.

【0008】本発明で用いる水分含量50ppm以下、
可溶性ナトリウム含量100ppm以下の活性アルミナ
は、市販の活性アルミナを希塩酸や希硝酸のような酸水
溶液で洗浄したのち、乾燥・焼成することにより調製す
ることができる。原料の活性アルミナとしては、比表面
積が100〜400m2 /g、平均粒径10〜200μ
mのものを用いるのが好ましい。この活性アルミナを大
量の酸水溶液中に投入し、室温で撹拌したのち濾過す
る。この操作を数回反復したのち純水で十分に洗浄して
酸を除去する。この洗浄操作を経た活性アルミナを乾燥
したのち、400〜600℃で焼成して、水分含量50
ppm以下、可溶性ナトリウム含量100ppm以下の
活性アルミナとする。焼成温度が400℃未満では50
ppm以下まで脱水するのに長時間を要し、また600
℃を越える温度で焼成すると得られる活性アルミナの比
表面積が小さくなるので、いずれも好ましくない。な
お、活性アルミナの水分含量が50ppmよりも多い
と、非水電解質溶液の吸着処理に際し、活性アルミナの
もちこむ水分により溶液中の水分が増加し、電解質の加
水分解が起こるおそれがある。また活性アルミナ中の可
溶性ナトリウムの含量が100ppmよりも多いと、吸
着処理に際しナトリウムが溶出して非水電解質溶液を汚
染するおそれがある。活性アルミナ中の水分含量は20
ppm以下が好ましく、また可溶性ナトリウムの含量は
50ppm以下が好ましい。
[0008] The water content used in the present invention is 50 ppm or less,
Activated alumina having a soluble sodium content of 100 ppm or less can be prepared by washing commercially available activated alumina with an aqueous acid solution such as dilute hydrochloric acid or dilute nitric acid, followed by drying and firing. The raw material of activated alumina has a specific surface area of 100 to 400 m 2 / g and an average particle size of 10 to 200 μm
It is preferable to use m. This activated alumina is put into a large amount of an aqueous acid solution, stirred at room temperature, and then filtered. After repeating this operation several times, it is sufficiently washed with pure water to remove the acid. After drying the activated alumina after this washing operation, it is calcined at 400 to 600 ° C. to obtain a water content of 50%.
Activated alumina with a soluble sodium content of 100 ppm or less. If the firing temperature is less than 400 ° C, 50
It takes a long time to dehydrate to below ppm,
When calcined at a temperature higher than ℃, the specific surface area of the obtained activated alumina becomes small, and neither is preferred. If the water content of the activated alumina is more than 50 ppm, the water contained in the activated alumina increases the water content of the activated alumina during the adsorption treatment of the non-aqueous electrolyte solution, and the electrolyte may be hydrolyzed. If the content of soluble sodium in the activated alumina is more than 100 ppm, sodium may be eluted during the adsorption treatment and contaminate the non-aqueous electrolyte solution. The water content in activated alumina is 20
ppm or less, and the content of soluble sodium is preferably 50 ppm or less.

【0009】活性アルミナによる非水電解質溶液の吸着
処理は常法に従って行うことができる。例えば活性アル
ミナを、所望により適当な粒径に成形して、カラムに充
填し、これに非水電解質溶液を通液することにより、吸
着処理を行うことができる。しかし通常は、非水電解質
溶液中に活性アルミナを添加して撹拌したのち、濾過し
て活性アルミナを除去する方法によるのが好ましい。非
水電解質溶液に対する活性アルミナの添加量は0.1〜
5.0重量%、特に0.5〜3.0重量%が好ましい。
添加量が少ないと十分な精製効果をあげることができな
いし、添加量が多すぎると活性アルミナから溶出する水
分やナトリウムによる汚染が起こるおそれがある。本発
明によれば、水分及び酸含有量の著しく少ない非水電解
液を得ることができる。例えば水分含量20ppm以
下、酸含量30ppm以下、更には20ppm以下の非
水電解液を容易に得ることができる。また、活性アルミ
ナからのナトリウムの溶出も少ないので、ナトリウム含
量も5ppm以下とすることができる。
The adsorption treatment of the nonaqueous electrolyte solution with activated alumina can be carried out according to a conventional method. For example, an activated alumina can be formed into an appropriate particle size as required, filled in a column, and a non-aqueous electrolyte solution can be passed through the column to perform an adsorption treatment. However, it is usually preferable to add activated alumina to the non-aqueous electrolyte solution, stir, and then remove the activated alumina by filtration. The amount of activated alumina added to the non-aqueous electrolyte solution is 0.1 to
5.0 wt%, especially 0.5 to 3.0 wt% is preferred.
If the addition amount is small, a sufficient purification effect cannot be obtained, and if the addition amount is too large, there is a possibility that contamination by water or sodium eluted from activated alumina may occur. According to the present invention, it is possible to obtain a non-aqueous electrolytic solution having extremely small amounts of water and acid. For example, a non-aqueous electrolyte having a water content of 20 ppm or less, an acid content of 30 ppm or less, and even 20 ppm or less can be easily obtained. Further, since the elution of sodium from activated alumina is small, the sodium content can be reduced to 5 ppm or less.

【0010】[0010]

【実施例】以下に実施例により本発明をさらに具体的に
説明するが、本発明は以下の実施例に限定されるもので
はない。なお、非水電解質溶液の水分含量はカールフィ
ッシャー法で測定した。活性アルミナの水分含量は、活
性アルミナを無水メタノールに投入し、無水メタノール
の水分増加をカールフィッシャー法で測定することによ
り求めた。非水電解質溶液の酸含量は、ブロムチモール
ブルーを指示薬とする酸塩基滴定により弗化水素(H
F)として測定した。ナトリウム含量は発光分析により
測定した。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the following examples. The water content of the non-aqueous electrolyte solution was measured by the Karl Fischer method. The water content of the activated alumina was determined by charging the activated alumina into anhydrous methanol and measuring the increase in the water content of the anhydrous methanol by the Karl Fischer method. The acid content of the non-aqueous electrolyte solution is determined by acid-base titration using bromthymol blue as an indicator.
F). The sodium content was measured by emission analysis.

【0011】活性アルミナの調製;活性アルミナ(スミ
アル製品販売社製品 AC−11.比表面積140m2
/g、平均粒径80〜100μm、水分含量1500p
pm、可溶性ナトリウム含量800ppm)100g
を、1リットルの0.5%硝酸水溶液に加え、室温で撹
拌したのち濾過することを3回反復した。次いで得られ
た活性アルミナを1リットルの純水に加え、室温で撹拌
したのち濾過する操作を同じく3回反復し。この酸洗浄
及び水洗を経た活性アルミナを風乾したのちマッフル炉
により空気雰囲気下、500℃で4時間、引続いて60
0℃で4時間焼成した。この活性アルミナは水分含量1
0ppm、可溶性ナトリウム含量30ppmであった。
Preparation of Activated Alumina; Activated Alumina (AC-11. Specific surface area 140 m 2, manufactured by Sumial Products Co., Ltd.)
/ G, average particle size 80-100 μm, water content 1500p
pm, soluble sodium content 800 ppm) 100 g
Was added to 1 liter of a 0.5% nitric acid aqueous solution, stirred at room temperature and then filtered three times. Next, the operation of adding the obtained activated alumina to 1 liter of pure water, stirring at room temperature, and then filtering was repeated three times. The activated alumina that has been subjected to the acid washing and the water washing is air-dried.
It was baked at 0 ° C. for 4 hours. This activated alumina has a water content of 1
It was 0 ppm and the soluble sodium content was 30 ppm.

【0012】実施例1 露点−60℃の乾燥窒素雰囲気のグローブボックス中
で、撹拌装置付の容量1000mlのテフロン製容器
に、エチレンカーボネートとジエチルカーボネートとの
混合溶媒(容量比1:1)に六フッ化リン酸リチウム
(LiPF6 )を1.0モル/リットルとなるように溶
解した非水電解質溶液500gを仕込んだ。これに上記
で得た活性アルミナ5.0gを加えて室温で30分間撹
拌したのち濾過して、濾液480gを得た。活性アルミ
ナ処理の前後における非水電解質溶液の水分含量、酸含
量及びナトリウム含量の分析値を表−1に示す。
Example 1 In a glove box in a dry nitrogen atmosphere at a dew point of -60 ° C, a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) was placed in a 1000 ml Teflon container equipped with a stirrer. 500 g of a non-aqueous electrolyte solution in which lithium fluorophosphate (LiPF 6 ) was dissolved at a concentration of 1.0 mol / liter was charged. To this, 5.0 g of the activated alumina obtained above was added, and the mixture was stirred at room temperature for 30 minutes, and then filtered to obtain 480 g of a filtrate. Table 1 shows the analysis values of the water content, acid content and sodium content of the nonaqueous electrolyte solution before and after the activated alumina treatment.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例2 非水電解質溶液として、プロピレンカーボネートとエチ
ルメチルカーボネートとの混合溶媒(容量比1:1)に
六フッ化リン酸リチウムを1.0モル/リットルとなる
ように溶解した溶液を用いた以外は実施例1と全く同様
にして、活性アルミナ処理を経た非水電解質溶液480
gを得た。分析値を表−2に示す。
Example 2 As a non-aqueous electrolyte solution, a solution prepared by dissolving lithium hexafluorophosphate in a mixed solvent of propylene carbonate and ethyl methyl carbonate (volume ratio 1: 1) so as to be 1.0 mol / liter. In the same manner as in Example 1 except that the nonaqueous electrolyte solution 480 subjected to the activated alumina treatment was used.
g was obtained. The analytical values are shown in Table-2.

【0015】[0015]

【表2】 [Table 2]

【0016】実施例3 活性アルミナを10.0g加えた以外は実施例1と全く
同様にして、活性アルミナ処理を経た非水電解質溶液4
70gを得た。このものは水分含量10ppm、酸含量
3ppm、ナトリウム含量1ppm以下であった。 比較例 活性アルミナとしてAC−11をそのまま用いた以外は
実施例1と全く同様にして、活性アルミナ処理を経た非
水電解質溶液480gを得た。このものは水分含量25
ppm、酸含量40ppm、ナトリウム含量7ppmで
あった。
Example 3 Except that 10.0 g of activated alumina was added, a non-aqueous electrolyte solution 4 which had been treated with activated alumina was exactly the same as in Example 1.
70 g were obtained. It had a water content of 10 ppm, an acid content of 3 ppm and a sodium content of 1 ppm or less. Comparative Example 480 g of a non-aqueous electrolyte solution that had been subjected to active alumina treatment was obtained in exactly the same manner as in Example 1 except that AC-11 was used as the active alumina. It has a water content of 25
ppm, the acid content was 40 ppm, and the sodium content was 7 ppm.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒中に電解質を溶解させてなる溶
液を、水分含量50ppm以下、可溶性ナトリウム含量
100ppm以下の活性アルミナで吸着処理することを
特徴とする二次電池用非水電解液の精製方法。
1. A non-aqueous electrolyte for a secondary battery, wherein a solution obtained by dissolving an electrolyte in a non-aqueous solvent is subjected to adsorption treatment with activated alumina having a water content of 50 ppm or less and a soluble sodium content of 100 ppm or less. Purification method.
【請求項2】 電解質が、LiPF6 、LiBF4 、L
iAsF6 、LiN(CF3 SO3 2 、LiC(CF
3 SO3 3 及びRfSO3 Li(Rfは炭素数1〜8
のフルオロアルキル基を示す)よりなる群から選ばれた
ものであることを特徴とする請求項1記載の精製方法。
2. The electrolyte according to claim 1, wherein the electrolyte is LiPF 6 , LiBF 4 , L
iAsF 6 , LiN (CF 3 SO 3 ) 2 , LiC (CF
3 SO 3 ) 3 and RfSO 3 Li (Rf has 1 to 8 carbon atoms)
The purification method according to claim 1, wherein the fluoroalkyl group is selected from the group consisting of:
【請求項3】 非水溶媒が、エチレンカーボネート、プ
ロピレンカーボネート、ブチレンカーボネート、ジメチ
ルカーボネート、エチルメチルカーボネート及びジエチ
ルカーボネートよりなる群から選ばれたカーボネートを
含有することを特徴とする請求項1又は2記載の精製方
法。
3. The non-aqueous solvent contains a carbonate selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. Purification method.
【請求項4】 吸着処理を、得られる非水電解液が、水
分含量20ppm以下、酸含有量30ppm以下となる
ように行うことを特徴とする請求項1ないし3のいずれ
かに記載の精製方法。
4. The purification method according to claim 1, wherein the adsorption treatment is carried out so that the obtained non-aqueous electrolyte has a water content of 20 ppm or less and an acid content of 30 ppm or less. .
【請求項5】 活性アルミナが、活性アルミナを酸水溶
液で洗浄したのち400〜600℃で焼成することによ
り調製したものであることを特徴とする請求項1ないし
4のいずれかに記載の精製方法。
5. The purification method according to claim 1, wherein the activated alumina is prepared by washing the activated alumina with an aqueous acid solution and then calcining the activated alumina at 400 to 600 ° C. .
JP10220008A 1998-08-04 1998-08-04 Manufacture of nonaqueous electrolyte for secondary battery Pending JP2000058119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10220008A JP2000058119A (en) 1998-08-04 1998-08-04 Manufacture of nonaqueous electrolyte for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10220008A JP2000058119A (en) 1998-08-04 1998-08-04 Manufacture of nonaqueous electrolyte for secondary battery

Publications (1)

Publication Number Publication Date
JP2000058119A true JP2000058119A (en) 2000-02-25

Family

ID=16744493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10220008A Pending JP2000058119A (en) 1998-08-04 1998-08-04 Manufacture of nonaqueous electrolyte for secondary battery

Country Status (1)

Country Link
JP (1) JP2000058119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151054A1 (en) * 2008-06-09 2009-12-17 日立マクセル株式会社 Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
WO2010098497A1 (en) * 2009-02-24 2010-09-02 帝人株式会社 Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, adsorbent for nonaqueous secondary battery, and nonaqueous secondary battery
US8920960B2 (en) 2007-07-04 2014-12-30 Hitachi Maxell, Ltd. Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
CN108539266A (en) * 2018-05-03 2018-09-14 大同新成新材料股份有限公司 A kind of preparation method of lithium battery electrolytes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920960B2 (en) 2007-07-04 2014-12-30 Hitachi Maxell, Ltd. Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
WO2009151054A1 (en) * 2008-06-09 2009-12-17 日立マクセル株式会社 Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
JP5530353B2 (en) * 2008-06-09 2014-06-25 日立マクセル株式会社 Porous membrane for separator, battery separator, battery electrode and manufacturing method thereof, and lithium secondary battery
WO2010098497A1 (en) * 2009-02-24 2010-09-02 帝人株式会社 Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, adsorbent for nonaqueous secondary battery, and nonaqueous secondary battery
CN108539266A (en) * 2018-05-03 2018-09-14 大同新成新材料股份有限公司 A kind of preparation method of lithium battery electrolytes

Similar Documents

Publication Publication Date Title
EP2436066B1 (en) Titanium system composite and the preparing method of the same
JP3860542B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2015191844A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof, and positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof
JP2011198771A (en) High purity lithium polyhalogenated boron cluster salts useful in lithium battery
KR20120103640A (en) Purifier for removing hydrogen fluoride from electrolytic solution
JP6151386B2 (en) Manufacturing method of olivine type lithium phosphate positive electrode material
CN108598379A (en) A kind of tungstate lithium cladding nickel cobalt aluminic acid lithium composite material and its preparation method and application
RU2152355C1 (en) Improved method of preparing lithium dope spinel of lithium-manganeses oxide
JP6237229B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
CN114678592A (en) Non-aqueous electrolyte containing cyano cyclic amine compound, lithium ion battery and application thereof
JPH10172571A (en) Lithium secondary battery and manufacture of its positive electrode active material
CN107408694A (en) Active material for anode of secondary cell and its manufacture method
CN108155377A (en) Ternary material battery anode and preparation method thereof and lithium ion battery
JPS5981869A (en) Manufacture of lithium battery
JP3575313B2 (en) Positive electrode active material, method for producing the same, and lithium ion secondary battery using the above positive electrode active material
JP2000058119A (en) Manufacture of nonaqueous electrolyte for secondary battery
JP2000357537A (en) Magnesium oxide for purification of nonaqueous electrolyte and its preparation
JP2015170432A (en) Manganese lithium phosphate positive electrode active material, and manufacturing method thereof
JPH11185810A (en) Electrolyte for lithium battery and its manufacture
JP2000299126A (en) Method of refining nonaqueous electrolyte for secondary battery
JP6307127B2 (en) Method for producing lithium phosphate positive electrode active material
JP7089297B6 (en) Tungsten-doped lithium manganese iron phosphate fine particles, powder material containing the fine particles, and method for producing the powder material
JP2847417B2 (en) Manganese dioxide for lithium adsorption and method for producing the same
JP4676691B2 (en) Positive electrode material for Li-ion secondary battery
JP5831234B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery