JP2000049280A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JP2000049280A
JP2000049280A JP21704898A JP21704898A JP2000049280A JP 2000049280 A JP2000049280 A JP 2000049280A JP 21704898 A JP21704898 A JP 21704898A JP 21704898 A JP21704898 A JP 21704898A JP 2000049280 A JP2000049280 A JP 2000049280A
Authority
JP
Japan
Prior art keywords
conductor
electrode
semiconductor device
wiring board
semiconductor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21704898A
Other languages
Japanese (ja)
Inventor
Shinpei Yoshioka
心平 吉岡
Yasuto Saito
康人 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP21704898A priority Critical patent/JP2000049280A/en
Publication of JP2000049280A publication Critical patent/JP2000049280A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/77Apparatus for connecting with strap connectors
    • H01L2224/7725Means for applying energy, e.g. heating means
    • H01L2224/77272Oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having a switching element and manufacture thereof, which has bond zones having reduced wiring inductances and reduced thermal stresses, esp. in a mounting structure for thyristors, power transistors, etc., which are used in the power electronics. SOLUTION: In a wiring between a semiconductor switching element 1 and wiring board 2 on which it is mounted, at least one of connections of a positive electrode 4 or a control electrode 8 of the semiconductor switching element 1 or a load electrode 5 to the wiring board 2 is made by a conductor 7 composed of woven thin lead wires.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スイッチング素子
を有する半導体装置で、特にパワーエレクトロニクスの
分野で使用されるサイリスタやパワートランジスタなど
の実装構造で、配線インダクタンスが低く、かつ、熱応
力を小さくした接合部を有する半導体装置とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a switching element, and more particularly to a mounting structure of a thyristor or a power transistor used in the field of power electronics, which has a low wiring inductance and a small thermal stress. The present invention relates to a semiconductor device having a junction and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、産業用ポンプやファン等のパワー
エレクトロニクスの制御分野では、エネルギーの有効利
用の観点からインバータ装置が注目されている。インバ
ータ装置の心臓部は電流をスイツチングする半導体素子
である。
2. Description of the Related Art In recent years, in the field of control of power electronics such as industrial pumps and fans, inverter devices have attracted attention from the viewpoint of effective use of energy. The heart of the inverter device is a semiconductor element for switching a current.

【0003】半導体スィッチング素子としては従来から
サイリスタ、パワー・トランジスタなどが知られてお
り、最近ではGTO(ゲート・ターン・オフ・サイリス
タ)やIGBT(インシユレーテツド・ゲート・バイポ
ーラ・トランジスタ)などが広く使用されている。
As a semiconductor switching element, a thyristor, a power transistor and the like have been conventionally known, and recently, a GTO (gate turn-off thyristor), an IGBT (insulated gate bipolar transistor) and the like have been known. Widely used.

【0004】半導体スイッチング素子は種類により呼び
方は異なるものの、いずれも正極(エミッタ)電極、負
極(コレクタ)電極と制御極(ゲート)電極の3端子で
構成され、制御極への電圧、電流を制御することにより
正極と負極間の導通の制御を行なつている。これらの素
子をパッケージ内に実装する場合には、正極、負極には
大電流が通電されるため配線の電流容量を考慮すると共
に、スイッチングにより著しく発熱するため放熱構造に
留意した構造が採用されている。
Although the semiconductor switching element is called differently depending on the type, each of the semiconductor switching elements has three terminals of a positive electrode (emitter) electrode, a negative electrode (collector) electrode and a control electrode (gate) electrode. By controlling, conduction between the positive electrode and the negative electrode is controlled. When these elements are mounted in a package, a large current is applied to the positive electrode and the negative electrode, so that the current capacity of the wiring is taken into consideration, and a structure that pays attention to the heat dissipation structure is adopted because the switching generates significant heat. I have.

【0005】図5は、従来のバッケ一ジ内部での実装例
を示す断面図である。半導体スイツチング素子の一種で
あるIGBT101は、裏面に設けられたコレクタ電極
105がDBC基板(銅張りセラミツク基板)102の
表面銅パターン103に半田104により接合されてい
る。IGBT101の表面にはエミッタ電極110が設
けられており、DBG基板102の表面銅パターン10
6にアルミニウム線を用いたワイヤボンディング107
により複数のワイヤで接続されている。
FIG. 5 is a sectional view showing an example of mounting inside a conventional bucket. In an IGBT 101 which is a kind of semiconductor switching element, a collector electrode 105 provided on a back surface is joined to a surface copper pattern 103 of a DBC substrate (copper clad ceramic substrate) 102 by solder 104. An emitter electrode 110 is provided on the surface of the IGBT 101, and the surface copper pattern 10 of the DBG substrate 102 is provided.
6. Wire bonding 107 using aluminum wire
Are connected by a plurality of wires.

【0006】また、IGBT101の表面にはゲート電
極108が設けられて、DBC基板102の表面銅パタ
ーン109にアルミニウム線を用いたワイヤボンディン
グ110により接続されている。ゲート電極は大電流を
流す必要がないため、通常1本のワイヤで構成されてい
る。
A gate electrode 108 is provided on the surface of the IGBT 101, and is connected to a surface copper pattern 109 of the DBC substrate 102 by wire bonding 110 using an aluminum wire. Since the gate electrode does not need to flow a large current, it is usually composed of one wire.

【0007】また、DBC基板102の裏面銅パターン
111はヒートシンク112と半田113により接合さ
れており、IGBT101で発生した熱は、半田10
4、表面銅パターン103、セラミック層114、裏面
銅パターン111、半田113を経てヒートシンク11
2に達し外部に放熱される。
[0007] The backside copper pattern 111 of the DBC substrate 102 is joined to a heat sink 112 by solder 113, and the heat generated by the IGBT 101 is
4. Heat sink 11 through front surface copper pattern 103, ceramic layer 114, rear surface copper pattern 111, and solder 113
2 and heat is radiated outside.

【0008】また、ここでは図示しないが、ヒートシン
クの周囲にはプラスチック製の外囲器が設けられてお
り、IGBT101やDBC基板102の表面は絶縁の
ためのシリコンゲル等で封止されている。
Although not shown here, a plastic envelope is provided around the heat sink, and the surfaces of the IGBT 101 and the DBC substrate 102 are sealed with silicon gel or the like for insulation.

【0009】なお、半導体スイッチング素子としてGT
Oを使用したの場合も、エミッタ電極をアノード電極、
コレクタ電極をカソード電極と読み替えることで、実装
構造は同様である。
Note that GT is used as a semiconductor switching element.
Also when O is used, the emitter electrode is used as the anode electrode,
By replacing the collector electrode with the cathode electrode, the mounting structure is the same.

【0010】図6は、配線に銅製の平板を用いて、接合
部を半田で接合したパッケージ内部の実装例を示す断面
図である。
FIG. 6 is a cross-sectional view showing an example of mounting inside a package in which a joint portion is joined by soldering using a copper flat plate for wiring.

【0011】半導体スィッチング素子の一種であるIG
BT151は、裏面に設けられたコレクタ電極150が
DBC基板152の表面銅パターン153に半田154
により接合されている。IGBT151の表面にはエミ
ッタ電極155が設けられており、DBC基板152の
表面銅パターン156と平板状の導体157により接続
されている。
IG which is a kind of semiconductor switching element
The BT 151 has a collector electrode 150 provided on the back surface and a solder 154 attached to the surface copper pattern 153 of the DBC substrate 152.
It is joined by. An emitter electrode 155 is provided on the surface of the IGBT 151, and is connected to a surface copper pattern 156 of the DBC substrate 152 by a flat conductor 157.

【0012】また、IGBT151の表面にはゲート電
極158が設けられており、DBC基板152の表面銅
パターン153(紙面に垂直方向にあるため図示せず)
に、同様に平板状の導体159(紙面に垂直方向に延
長)により接続されている。ゲート電極は大電流を流す
必要がないため、通常は細い導体1本で構成されてい
る。
A gate electrode 158 is provided on the surface of the IGBT 151, and a surface copper pattern 153 of the DBC substrate 152 (not shown because it is perpendicular to the plane of the drawing).
Are similarly connected by a flat conductor 159 (extending in a direction perpendicular to the paper surface). Since a large current does not need to flow through the gate electrode, it is usually composed of one thin conductor.

【0013】また、DBC基板152の裏面銅パターン
161はヒートシンク162と半田163により接合さ
れており、IGBT151で発生した熱は、半田15
4、表面銅パターン153、セラミック層164、裏面
銅パターン161、半田163を経てヒートシンク16
2に達し、外部に放熱される。
The backside copper pattern 161 of the DBC substrate 152 is joined to a heat sink 162 by solder 163, and the heat generated by the IGBT 151
4, the heat sink 16 through the front surface copper pattern 153, the ceramic layer 164, the rear surface copper pattern 161, and the solder 163.
2 and heat is radiated to the outside.

【0014】また、ここでは図示しないが、ヒートシン
ク162の周囲にはプラスチック製の外囲器があり、I
GBT161やDBC基板152の表面は絶縁のための
シリコンゲル等で封止されている。
Although not shown here, a plastic envelope is provided around the heat sink 162.
The surfaces of the GBT 161 and the DBC substrate 152 are sealed with silicon gel or the like for insulation.

【0015】なお半導体スイッチング素子としてGT0
を使用したの場合も、エミッタ電極をアノード電極、コ
レクタ電極をカソード電極と読み替えることで、実装構
造は同様である。
GT0 is used as a semiconductor switching element.
Is used, the mounting structure is the same by replacing the emitter electrode with the anode electrode and the collector electrode with the cathode electrode.

【0016】[0016]

【発明が解決しようとする課題】以上述べた様に、図5
で示した技術では、特に高負荷下で使用した場合、エミ
ッタ電極のワイヤボンディング部が熱応力による疲労に
より破壊することが挙げられる。
As described above, FIG.
In the technique described in (1), particularly when used under a high load, the wire bonding portion of the emitter electrode may be broken by fatigue due to thermal stress.

【0017】その対策として、エミッタ電極についても
コレクタ電極と同様に半田接合とする方法が試みられて
いる。しかしながら、この方法では平板または棒状の電
極によりコレクタ電極を構成しているが、接続プロセス
を一元化するためゲート電極を同様の構造で構成する
と、配線同士が相互に干渉する場合が生じたり、配線の
引き回しによっては電極の製作が困難となる欠点が生じ
ていた。
As a countermeasure, a method of soldering the emitter electrode similarly to the collector electrode has been attempted. However, in this method, the collector electrode is formed by a flat or rod-shaped electrode. However, if the gate electrode is formed to have the same structure in order to unify the connection process, the wirings may interfere with each other, or the wiring may not be formed. Some drawbacks have made it difficult to manufacture electrodes.

【0018】また、図6に示した技術では、 平板また
は棒状の電極によりコレクタ電極を構成するが、電極の
剛性が高いと、素子発熱時の熱応力が大きくなり、これ
による疲労で素子や接合部などが破壊する欠点があっ
た。
In the technique shown in FIG. 6, the collector electrode is constituted by a flat or rod-shaped electrode. However, if the electrode has a high rigidity, the thermal stress at the time of heat generation of the element increases, and the element and the junction are fatigued due to the fatigue. There was a drawback that the part was destroyed.

【0019】本発明は、素子発熱時の熱応力で素子や接
合部などが破壊することのない実装がなされたさ半導体
装置とその製造方法を提供するものである。
An object of the present invention is to provide a semiconductor device and a method of manufacturing the semiconductor device, which are mounted without destruction of an element or a joint due to a thermal stress when the element is heated.

【0020】[0020]

【課題を解決するための手段】請求項1の発明による手
段によれば、一表面に正極電極と制御電極とが形成され
他表面に負極電極が形成された半導体スイッチング素子
と、金属導体が設けられ且つ前記半導体スイッチング素
子が実装される配線基板とを具備し、この配線基板の、
金属導体と前記正極電極及び制御電極及び負極電極の少
なくとも一つに対する電気的接続は、細導線を編み上げ
た導体により行われていることを特徴とする半導体装置
にある。
According to the first aspect of the present invention, there is provided a semiconductor switching element having a positive electrode and a control electrode formed on one surface and a negative electrode formed on the other surface, and a metal conductor. And a wiring board on which the semiconductor switching element is mounted.
The semiconductor device is characterized in that the electrical connection to the metal conductor and at least one of the positive electrode, the control electrode and the negative electrode is made by a conductor in which fine conductive wires are woven.

【0021】請求項2の発明による手段によれば、前記
配線基板の金属導体と、前記細導線を編み上げた導体と
は半田接合により接合されていることを特徴とする請求
項1記載の半導体装置にある。
According to a second aspect of the present invention, in the semiconductor device according to the first aspect of the present invention, the metal conductor of the wiring board and the conductor formed by knitting the fine conductive wires are joined by soldering. It is in.

【0022】請求項3の発明による手段によれば、前記
細導線を編み上げた導体と接続されている前記正極電極
及び前記制御電極及び前記負極電極の少なくとも一つは
半田接合により接合されていることを特徴とする請求項
1記載の半導体装置にある。
According to the third aspect of the present invention, at least one of the positive electrode, the control electrode, and the negative electrode connected to the conductor in which the fine conductive wire is woven is joined by soldering. 2. The semiconductor device according to claim 1, wherein:

【0023】請求項4の発明による手段によれば、前記
半導体スイツチング素子がIGBT素子又はIEGT素
子であることを特徴とする請求項1記載の半導体装置に
ある。
According to the fourth aspect of the present invention, there is provided the semiconductor device according to the first aspect, wherein the semiconductor switching element is an IGBT element or an IEGT element.

【0024】請求項5の発明による手段によれば、前記
配線基板がセラミック基板上に金属導体を形成したもの
であることを特徴とする請求項1記載の半導体装置にあ
る。
According to a fifth aspect of the present invention, there is provided the semiconductor device according to the first aspect, wherein the wiring substrate is formed by forming a metal conductor on a ceramic substrate.

【0025】請求項6の発明による手段によれば、前記
配線基板は金属べース上に絶縁層を形成し、さらにその
上に金属導体を形成したものであることを特徴とする請
求項1記載の半導体装置にある。
According to a sixth aspect of the present invention, the wiring board is formed by forming an insulating layer on a metal base and further forming a metal conductor thereon. In the described semiconductor device.

【0026】請求項7の発明による手段によれば、前記
細導線は銅製の線材を平帯状に編み上げたものであるこ
とを特徴とする請求項1記載の半導体装置にある。
According to a seventh aspect of the present invention, there is provided the semiconductor device according to the first aspect, wherein the fine conductive wire is formed by braiding a copper wire into a flat band shape.

【0027】請求項8の発明による手段によれば、前記
細導線を平帯状に編み上げた導体の長手方向の弾性率が
1GPa以下であることを特徴とする請求項7記載の半
導体装置にある。
According to the means of the invention of claim 8, there is provided the semiconductor device according to claim 7, wherein the elastic modulus in the longitudinal direction of the conductor in which the fine conductive wire is woven in a flat band shape is 1 GPa or less.

【0028】請求項9の発明による手段によれば、前記
半導体スイッチング素子が複数個前記配線基板上設けら
れた際に、各半導体スイッチング素子間の配線の一部と
して細導線を編み上げた導体を使用したことを特徴とす
る半導体装置にある。
According to the ninth aspect of the present invention, when a plurality of the semiconductor switching elements are provided on the wiring board, a conductor in which a fine conductive wire is woven is used as a part of a wiring between the semiconductor switching elements. A semiconductor device is characterized in that:

【0029】請求項10の発明による手段によれば、一
表面に正極電極と制御電極とが形成され且つ他裏面に負
極電極が形成された半導体スイッチング素子と、金属導
体が設けられ且つ前記半導体スイッチ素子が実装される
配線基板とを具備する半導体装置の製造方法において、
前記正極電極と前記制御電極とを前記配線基板の金属導
体に対して半田接合するか、又は、前記負極電極を前記
配線基板の金属導体に対して半田接合する第1の半田接
合工程と、前記正極電極及び前記制御電極及び前記負極
電極の少なくとも一つを一端が前記配線基板の金属導体
に電気的に接続される細導線を編み上げた導体の他端に
半田接合する第2の半田接合工程とを有することを特徴
とする半導体装置の製造方法にある。
According to the tenth aspect of the present invention, there is provided a semiconductor switching element in which a positive electrode and a control electrode are formed on one surface and a negative electrode is formed on the other surface, A method of manufacturing a semiconductor device comprising: a wiring board on which an element is mounted;
A first soldering step of soldering the positive electrode and the control electrode to a metal conductor of the wiring board, or a soldering step of soldering the negative electrode to a metal conductor of the wiring board; A second soldering step of soldering at least one of the positive electrode, the control electrode, and the negative electrode to the other end of a conductor formed by braiding a thin conductive wire having one end electrically connected to the metal conductor of the wiring board; A method for manufacturing a semiconductor device, comprising:

【0030】[0030]

【発明の実施の形態】図1は本発明にかかる半導体装置
の第1の実施の形態を示したものである。半導体スイッ
チング素子の一種であるIGBT1は、裏面に設けられ
たコレクタ電極5がDBC基板2の表面銅パターン3に
半田6により接合されている。IGBT1の表面にはエ
ミッタ電極4が設けられており、DBC基板2の表面銅
パターン3と銅製の細導線を平帯状に編み上げた導体7
により接続されている。この導体の長手方向の弾性率
は、1GPa以下が好ましい。またIGBT1の表面に
はゲート電極8が設けられており、DBC基板2の表面
銅パターン(紙面に垂直方向にあるため図示せず)に同
様に平板状の導体9(紙面に垂直方向に延長)により接
続されている。
FIG. 1 shows a first embodiment of a semiconductor device according to the present invention. In an IGBT 1 which is a kind of semiconductor switching element, a collector electrode 5 provided on a back surface is joined to a surface copper pattern 3 of a DBC substrate 2 by solder 6. An emitter electrode 4 is provided on the surface of the IGBT 1, and a copper pattern 3 on the surface of the DBC substrate 2 and a conductor 7 formed by braiding a thin copper wire into a flat band shape.
Connected by The elastic modulus in the longitudinal direction of this conductor is preferably 1 GPa or less. Further, a gate electrode 8 is provided on the surface of the IGBT 1, and similarly to the copper pattern on the surface of the DBC substrate 2 (not shown because it is perpendicular to the plane of the drawing), a flat conductor 9 (extending in the direction perpendicular to the plane of drawing) Connected by

【0031】ゲート電極8は大電流を流す必要がないた
め、通常細い導体1本で構成されている。なお、IGB
T1の表面および裏面の各電極4、5、8、は、半田接
合が可能なようにメタライズされている。メタライズの
方法は特定されるものではなく、アルミニウム電極上に
チタン・白金・金やチタン・パラジウム・金などの方法
で表面に金属層を設ける方法やニッケル等で被覆する方
法等を用いる。
Since there is no need to flow a large current, the gate electrode 8 is usually composed of one thin conductor. In addition, IGB
The electrodes 4, 5, and 8 on the front surface and the back surface of T1 are metallized so that solder bonding can be performed. The method of metallizing is not specified, and a method of providing a metal layer on the surface of the aluminum electrode using a method such as titanium, platinum, gold or titanium, palladium, gold, or a method of coating with a nickel or the like is used.

【0032】また、DBC基板2の裏面銅パターン11
はヒートシンク12に半田13を介して接合されてお
り、IGBT1で発生した熱は、半田6、表面銅パター
ン3、セラミック層14、裏面銅パターン11、半田1
3を経てヒートシンク12に達し、外部に放熱される。
The backside copper pattern 11 of the DBC substrate 2
Is bonded to a heat sink 12 via a solder 13, and heat generated by the IGBT 1 is applied to the solder 6, the front copper pattern 3, the ceramic layer 14, the back copper pattern 11, and the solder 1.
3, the heat reaches the heat sink 12 and is radiated to the outside.

【0033】また、ここでは図示しないが、ヒートシン
ク12の周囲にはプラスチツク製の外囲器があり、IG
BT1やDBC基板2の表面は絶縁のためのシリコンゲ
ル等で封止されている。なお半導体スイッチング素子と
してGT0を使用したの場合も、エミッタ電極5をアノ
ード電極、コレクタ電極10をカソード電極と読み替え
ることで、実装構造は同様である。
Although not shown here, there is a plastic envelope around the heat sink 12, and an IG
The surface of the BT1 or DBC substrate 2 is sealed with silicon gel or the like for insulation. In the case where GT0 is used as the semiconductor switching element, the mounting structure is the same by replacing the emitter electrode 5 with the anode electrode and the collector electrode 10 with the cathode electrode.

【0034】本発明によれば、エミッタ電極4と配線基
板2間に形成された配線を銅製の細導線を平帯状に編み
上げた導体7とすることにより、素子の発熱によりエミ
ッタ電極4とDBC基板2の間が変位して熱応力による
疲労が発生する状態となっても、配線部分の剛性を小さ
くすることにより、熱応力発生を大幅に軽減することが
出来る。
According to the present invention, the wiring formed between the emitter electrode 4 and the wiring substrate 2 is made of a conductor 7 formed by braiding a copper thin conductive wire into a flat band, so that the emitter electrode 4 and the DBC substrate are generated by the heat generated by the element. Even when the gap between the two is displaced and fatigue occurs due to thermal stress, the generation of thermal stress can be greatly reduced by reducing the rigidity of the wiring portion.

【0035】従って、半導体素子との半田接合の破壊を
免れることができ、さらに長寿命化を図ることが可能と
なる。
Accordingly, it is possible to avoid the destruction of the solder joint with the semiconductor element, and it is possible to further extend the life.

【0036】なお、細導線を編み上げた導体の材質や形
状は、これを限定するものではないが、電気伝導性の点
からは銅線であることが好ましく、またパッケージ形状
を薄型とする観点からは、平帯状に形成されたいわゆる
平網線とすることが好ましい。
The material and shape of the conductor formed by knitting the fine conductor are not limited, but are preferably copper wires from the viewpoint of electrical conductivity, and from the viewpoint of reducing the thickness of the package. Is preferably a so-called flat mesh wire formed in a flat band shape.

【0037】平網線はその素線径と数により各種ある
が、ここでは応力緩和を目的とするため、長手方向の弾
性率が1GPa以下とすることが特に好ましい。また編
線の端子部分はそのままであつても、薄板等でばらけ防
止のため端子処理したものでも良い。
Although there are various types of flat wire depending on the diameter and number of the wires, it is particularly preferable that the elastic modulus in the longitudinal direction is 1 GPa or less for the purpose of relaxing stress. Further, the terminal portion of the braided wire may be used as it is, or may be a thin plate or the like which has been subjected to terminal treatment in order to prevent dispersion.

【0038】配線基板は、半導体素子で発生する熱を放
熱するため、放熱性に優れた基板が好ましい。このため
アルミニウム・インバー・鉄などの金属べース上にエボ
キシ・ポリブタジエン・ポリイミドなどの絶縁層を形成
し、その上に銅箔などで配線パターンを形成したいわゆ
るメタルコア基板や、アルミニウム・窒化アルミニウム
などのセラミック材料を基材として、表面に銅・アルミ
ニウムなどの金属による配線を形成した基板が好適で、
中でも絶縁耐圧が要求される分野では、アルミニウム・
窒化アルミニウムなどに銅箔を直接貼り付けたいわゆる
DBC基板(銅張りセラミック基板)等が好適である。
The wiring board is preferably a board excellent in heat dissipation, in order to radiate heat generated in the semiconductor element. For this reason, a so-called metal core substrate in which an insulating layer such as ethoxy, polybutadiene, polyimide, etc. is formed on a metal base such as aluminum, invar, iron, etc., and a wiring pattern is formed with copper foil, etc., or aluminum, aluminum nitride, etc. A substrate having a wiring formed of a metal such as copper or aluminum on the surface thereof is preferable, using a ceramic material as a base material,
In fields where dielectric strength is required, aluminum
A so-called DBC substrate (copper-clad ceramic substrate) in which a copper foil is directly attached to aluminum nitride or the like is suitable.

【0039】また、半田接合の材料としては各種の半田
材料をし使用することが可能であるが、本発明の半田接
合部は、高い熱ストレスに晒されることから、耐ストレ
ス性を有する半田材料が好適である。また複数の半田接
合部が存在する場合には、これらを順次、単独に半田付
けしても、また複数の部位を一括して半田付けしても良
く、前者においては順位に応じて融点を順次低くしてい
かなければならないことは当然である。
Various solder materials can be used as the material for the solder joint. However, since the solder joint of the present invention is exposed to high thermal stress, a solder material having stress resistance can be used. Is preferred. When there are a plurality of solder joints, these may be soldered individually and sequentially, or a plurality of portions may be soldered collectively. In the former, the melting points are sequentially determined according to the order. It is natural that we have to keep it low.

【0040】次にこれらの構造の製造方法について説明
すると、図示しない実装装置であるダイマウンターの所
定位置に銅張りセラミック基板2をセットし、IGBT
1を保持したヘッドが所定位置に降下してコレクタ電極
10を銅張りセラミック基板2の所定位置にダイマウン
ティングを行う。このダイマウンティングは窒素雰囲気
中でフラックスレス半田を用いてスクラブマウントを行
う。半田はシート半田でも滴下による半田供給でもよ
い。
Next, a method of manufacturing these structures will be described. A copper-clad ceramic substrate 2 is set at a predetermined position of a die mounter, which is a mounting device (not shown), and an IGBT is mounted.
The head holding 1 is lowered to a predetermined position, and the collector electrode 10 is die-mounted at a predetermined position on the copper-clad ceramic substrate 2. In this die mounting, scrub mounting is performed using fluxless solder in a nitrogen atmosphere. The solder may be sheet solder or solder supplied by dropping.

【0041】次の工程でIGBT1のエミッタ電極4と
ゲート電極8をそれぞれ銅製の平織線である導体7、9
と半田接合する。その後、ヒートシンク12を銅張りセ
ラミック基板2の裏面に半田接合する。これらの半田接
合はそれぞれ仮付けしておきリフロー炉で同時に半田付
けを行う。
In the next step, the emitter electrode 4 and the gate electrode 8 of the IGBT 1 are connected to conductors 7 and 9 which are copper plain weave wires, respectively.
And soldering. Thereafter, the heat sink 12 is soldered to the back surface of the copper-clad ceramic substrate 2. These solder joints are temporarily attached, and are simultaneously soldered in a reflow furnace.

【0042】なお、これらの半田付はリフロー炉で同時
に行わず順次それぞれの個所を行ってもよい。
The soldering may be carried out in each place sequentially without performing the soldering simultaneously in the reflow furnace.

【0043】図2は本発明にかかる半導体装置の第2の
実施の形態を示したものである。第1のIEGT21と
第2のIEGT22は、いづれも半導体スイツチング素
子の一種である。第1のIEGT21の表面に設けられ
たエミッタ電極23はDBC基板24の表面銅パターン
25と細導線を編み上げた第1の導体26により接続さ
れている。
FIG. 2 shows a second embodiment of the semiconductor device according to the present invention. Each of the first IEGT 21 and the second IEGT 22 is a kind of semiconductor switching element. The emitter electrode 23 provided on the surface of the first IEGT 21 is connected to the surface copper pattern 25 of the DBC substrate 24 by a first conductor 26 formed by knitting fine conductive wires.

【0044】第2のIEGT22の表面エミッタ電極2
7は、銅製の細導線を平帯状に編み上げた第2の導体2
8により、引き出し端子29と接続されている。また第
1のIEGT21と第2のIEGT22の表面にはそれ
ぞれゲート電極30、31が設けられており、DBC基
板24の表面銅パターン(紙面に垂直方向にあるため図
示せず)に平帯状の導体32と33(紙面に垂直方向に
延長)により接続されている。また、また第1のIEG
T21と第2のIEGT22の裏面にはそれぞれコレク
タ電極43、44が設けられていて、それぞれDBC基
板24の表面銅パターン25、39に半田接続されてい
る。
Surface emitter electrode 2 of second IEGT 22
7 is a second conductor 2 formed by braiding a copper thin conductive wire into a flat band shape.
8 connects to the extraction terminal 29. Gate electrodes 30 and 31 are provided on the surfaces of the first IEGT 21 and the second IEGT 22, respectively, and a flat strip-shaped conductor is formed on the surface copper pattern of the DBC substrate 24 (not shown because it is perpendicular to the plane of the paper). 32 and 33 (extended in the direction perpendicular to the paper). Also, the first IEG
Collector electrodes 43 and 44 are provided on the back surfaces of T21 and the second IEGT 22, respectively, and are connected by soldering to the surface copper patterns 25 and 39 of the DBC substrate 24, respectively.

【0045】ゲート電極30、31は大電流を流す必要
がないため、通常細い導体1本で構成されている。また
DBC基板24の裏面銅パターン34はヒートシンク3
5と半田36により接合されており、IEGT21で発
生した熱は、半田37、38、表面銅パターン25と銅
パターン39、セラミック層40、裏面銅パターン3
4、半田36を経てヒートシンク35に達して外部に放
熱される。
The gate electrodes 30 and 31 do not need to flow a large current, and are therefore usually composed of one thin conductor. The backside copper pattern 34 of the DBC substrate 24 is
5 and the solder 36, and heat generated by the IEGT 21 is applied to the solders 37 and 38, the surface copper pattern 25 and the copper pattern 39, the ceramic layer 40, and the back copper pattern 3.
4. The heat reaches the heat sink 35 via the solder 36 and is radiated to the outside.

【0046】また、ここでは図示しないが、ヒートシン
ク35の周囲にはプラスチック製の外囲器があり、IE
GT21やDBC基板24の表面は絶縁のためのシリコ
ンゲル等で封止されている。
Although not shown here, there is a plastic envelope around the heat sink 35, and the IE
The surfaces of the GT 21 and the DBC substrate 24 are sealed with silicon gel or the like for insulation.

【0047】なお、半導体スイッチング素子としてGT
0を使用したの場合も、エミッタ電極を正極(アノー
ド)電極、コレクタ電極を負極(カソード)電極と読み
替えることで、実装構造は同様である。
Note that GT is used as a semiconductor switching element.
Even when 0 is used, the mounting structure is the same by replacing the emitter electrode with a positive electrode (anode) electrode and the collector electrode with a negative electrode (cathode) electrode.

【0048】次にこれらの構造の製造方法について説明
すると、図示しない実装装置であるダイマウンターの所
定位置に銅張りセラミック基板24をセットし、第1の
IGBT21を保持したヘッドが所定位置に降下してコ
レクタ電極43を銅張りセラミック基板24にダイマウ
ンティングを行う。続いて同様に、第2のIGBT22
を保持したヘッドが所定位置に降下してコレクタ電極4
4を銅張りセラミック基板24の所定位置にダイマウン
ティングを行う。このダイマウンティングは窒素・水素
混合雰囲気中でフラックスレス半田を用いてスクラブマ
ウントを行う。半田はシート半田でも滴下による半田供
給でもよい。
Next, a method of manufacturing these structures will be described. The copper-clad ceramic substrate 24 is set at a predetermined position of a die mounter, which is a mounting device (not shown), and the head holding the first IGBT 21 is lowered to the predetermined position. The collector electrode 43 is die-mounted on the copper-clad ceramic substrate 24. Subsequently, similarly, the second IGBT 22
Is lowered to a predetermined position and the collector electrode 4
4 is die-mounted at a predetermined position on the copper-clad ceramic substrate 24. In this die mounting, scrub mounting is performed using fluxless solder in a nitrogen / hydrogen mixed atmosphere. The solder may be sheet solder or solder supplied by dropping.

【0049】次の工程でIGBT21のエミッタ電極2
3とゲート電極30をそれぞれ銅製の平織線である導体
26、32と半田接合する。続いて同様に、IGBT2
2のエミッタ電極27とゲート電極31をそれぞれ銅製
の平織線である導体28、33と半田接合する。さら
に、導体28、33の他端部を基板24上の所定の導体
に半田接続する。その後、ヒートシンク35を銅張りセ
ラミック基板24の裏面に半田接合する。これらの半田
接合はそれぞれ仮付けしておきリフロー炉で同時に半田
付けを行う。
In the next step, the emitter electrode 2 of the IGBT 21 is
3 and the gate electrode 30 are respectively soldered to the conductors 26 and 32 which are copper plain woven wires. Then, in the same manner, IGBT2
The two emitter electrodes 27 and the gate electrode 31 are soldered to conductors 28 and 33, which are copper plain woven wires, respectively. Further, the other ends of the conductors 28 and 33 are soldered to predetermined conductors on the substrate 24. Thereafter, the heat sink 35 is soldered to the back surface of the copper-clad ceramic substrate 24. These solder joints are temporarily attached, and are simultaneously soldered in a reflow furnace.

【0050】なお、これらの半田付けはリフロー炉で同
時に行わず順次それぞれの個所を行ってもよい。
It is to be noted that these soldering operations may be performed sequentially at respective locations instead of simultaneously in a reflow furnace.

【0051】この第2の実施の形態によれば、半導体ス
イッチング素子の発熱による熱応力は配線部分の剛性を
小さくすることにより、応力発生を大幅に軽減すること
が出来る。したがって、半導体スイッチ素子との半田接
合部の半田の疲労を抑えることが可能になり、接合寿命
の高信頼かが可能となる。従って、半導体スイッチング
素子や半田接合部の半田の疲労を押さえることが可能と
なり、接合寿命の高信頼性化が可能となる。
According to the second embodiment, the generation of the thermal stress due to the heat generated by the semiconductor switching element can be greatly reduced by reducing the rigidity of the wiring portion. Therefore, it is possible to suppress the fatigue of the solder at the solder joint portion with the semiconductor switch element, and it is possible to achieve high reliability of the joint life. Therefore, it is possible to suppress the fatigue of the semiconductor switching element and the solder at the solder joint, and to increase the reliability of the joint life.

【0052】図3は本発明に関する半導体装置の第3の
実施の形態を示す断面図である。半導体スイッチング素
子の一つであるIGBT1aは、裏面に正極電極である
エミッタ電極4aが配線基板である銅張セラミック基板
2aの表面の銅パターン3aの所定位置に半田層6aに
よって半田接合されている。また、その裏面の端部には
制御電極であるゲート電極8aが設けられ、同様に銅張
セラミック基板2aの所定位置に半田層6aによって半
田接合されている。また、銅張セラミック基板2aの裏
面側には裏面の銅パターン3aを介してヒートシンク1
2aが半田層6aによって半田接合されている。このヒ
ートシンク12aの周囲には図示しないプラスチック製
の外囲器が設けられ、IGBT1aや銅張セラミック基
板2aの表面は絶縁のためシリコンゲル等で封止されて
いる。
FIG. 3 is a sectional view showing a third embodiment of the semiconductor device according to the present invention. An IGBT 1a, which is one of the semiconductor switching elements, has an emitter electrode 4a, which is a positive electrode, on the back surface, and is soldered to a predetermined position of a copper pattern 3a on the surface of a copper-clad ceramic substrate 2a, which is a wiring substrate, by a solder layer 6a. A gate electrode 8a serving as a control electrode is provided at an end of the back surface, and is similarly solder-bonded to a predetermined position of the copper-clad ceramic substrate 2a by a solder layer 6a. A heat sink 1 is provided on the back side of the copper-clad ceramic substrate 2a via the copper pattern 3a on the back side.
2a is soldered by the solder layer 6a. A plastic envelope (not shown) is provided around the heat sink 12a, and the surfaces of the IGBT 1a and the copper-clad ceramic substrate 2a are sealed with silicon gel or the like for insulation.

【0053】IGBT1aの表面には負極電極のコレク
タ電極5aが所定の対向位置(半導体装置として表面側
に位置)に配設された導体7aに半田層6aを介して半
田接合されている。この導体7aは、銅製の細導線を平
帯状に編み上げて成形されたものである。そして、この
導体7aの長手方向の弾性率は1GPa以下が好まし
い。
On the surface of the IGBT 1a, a collector electrode 5a of a negative electrode is solder-bonded via a solder layer 6a to a conductor 7a disposed at a predetermined facing position (position on the front side as a semiconductor device). The conductor 7a is formed by braiding a copper thin conductive wire into a flat band shape. The elastic modulus in the longitudinal direction of the conductor 7a is preferably 1 GPa or less.

【0054】その結果、この第3の実施の形態の半導体
装置も、熱応力の発生を大幅に軽減することができるの
で、半田接合破壊を防止して長寿命化を図ることができ
る。
As a result, also in the semiconductor device of the third embodiment, the occurrence of thermal stress can be greatly reduced, so that solder joint destruction can be prevented and the life can be extended.

【0055】図4は、本発明の第4の実施の形態を示す
断面図である。半導体スイッチング素子の一つであるI
EGT11aは、裏面に正極電極であるエミッタ電極4
aが銅張りセラミック基板2aの表面の銅パターン3a
の所定位置に半田接合され半田層6aを形成している。
この半田層6aの中には熱応力を緩和するための緩衝板
16aが挿入されている。緩衝板16aはIEGT11
aに応力を加えないためにIEGT11aの基材である
シリコンと熱膨張率の近い材料が好ましく、モリブテ
ン、タングステン等の単体金属や銅−タングステン、4
2アロイ等の合金や銅−インバー−銅等のクラッド材を
用いる。
FIG. 4 is a sectional view showing a fourth embodiment of the present invention. I, one of the semiconductor switching elements
The EGT 11a has an emitter electrode 4 as a positive electrode on the back surface.
a is a copper pattern 3a on the surface of the copper-clad ceramic substrate 2a
At a predetermined position to form a solder layer 6a.
A buffer plate 16a for reducing thermal stress is inserted in the solder layer 6a. The buffer plate 16a is IEGT11
In order not to apply stress to a, a material having a coefficient of thermal expansion close to that of silicon, which is the base material of IEGT 11a, is preferable.
2 An alloy such as an alloy or a clad material such as copper-invar-copper is used.

【0056】また、IEGT11a表面の端部には制御
電極であるゲート電極8aが設けられ、同様に銅張りセ
ラミック基板2aの所定位置に半田層6aで半田接合さ
れている。この半田層6aも同様に緩衝板16aが挿入
されている。また、銅張りセラミック基板2aの裏面側
にも表面の銅パターン3Yを介してヒートシンク12a
が半田層6aによって半田接合されている。このヒート
シンク12aの周囲には図示しないプラスチック製の外
囲器が設けられ、IEGT11aや銅張りセラミック基
板2aの表面は絶縁のためシリコンゲル等で封止されて
いる。IEGT11aの表面には負極電極のコレクタ電
極5aが(半導体装置として表面側に位置)対向位置に
配設された所定の導体7aに半田層6aを介して半田接
合されている。この半田層6aにもエミッタ電極4a等
と同様に緩衝板16aが挿入されている。
A gate electrode 8a as a control electrode is provided at an end of the surface of the IEGT 11a, and is similarly solder-bonded to a predetermined position of the copper-clad ceramic substrate 2a with a solder layer 6a. The buffer plate 16a is similarly inserted into the solder layer 6a. The heat sink 12a is also provided on the back side of the copper-clad ceramic substrate 2a via the copper pattern 3Y on the front side.
Are joined by the solder layer 6a. A plastic envelope (not shown) is provided around the heat sink 12a, and the surfaces of the IEGT 11a and the copper-clad ceramic substrate 2a are sealed with silicon gel or the like for insulation. On the surface of the IEGT 11a, a collector electrode 5a of a negative electrode is soldered to a predetermined conductor 7a disposed at an opposite position (located on the front surface side as a semiconductor device) via a solder layer 6a. A buffer plate 16a is inserted into the solder layer 6a as in the case of the emitter electrode 4a and the like.

【0057】前記導体7aは、銅製の細導線を平帯状に
編み上げて成形されたものである。そして、この導体7
aの長手方向の弾性率は1GPa以下が好ましい。その
結果、この第4の実施の形態の半導体装置も、熱応力の
発生を大幅に軽減することができるので、半田接合破壊
を防止して長寿命化を図ることができる。
The conductor 7a is formed by braiding a thin copper wire into a flat band. And this conductor 7
The elastic modulus in the longitudinal direction of a is preferably 1 GPa or less. As a result, also in the semiconductor device of the fourth embodiment, the occurrence of thermal stress can be greatly reduced, so that solder joint destruction can be prevented and the life can be extended.

【0058】特に、半田層6a内に挿入している緩衝板
12aにより、熱応力を緩和することができる効果は、
平帯状に編み上げられた導体7aを用いる効果と相俟っ
て相乗的に作用する。
In particular, the effect of reducing the thermal stress by the buffer plate 12a inserted in the solder layer 6a is as follows.
It works synergistically with the effect of using the conductor 7a woven in a flat band shape.

【0059】なお、各緩衝板16aはそれぞれ半田層6
aの中に挿入されているが、半田で接合される部材のい
ずれかに接合してもよい。
Each of the buffer plates 16a is connected to the solder layer 6
a, but may be joined to any of the members joined by solder.

【0060】[0060]

【発明の効果】以上に述べたように本発明によれば、従
来の平板または棒状の電極に代えて、細導線を編み上げ
た導体を用いることで、配線インダクタンスが低い平板
配線の利点を保ったまま、電極の剛性を低下させたと共
に熱応力を小さくした。
As described above, according to the present invention, the advantage of a flat wiring having a low wiring inductance is maintained by using a conductor in which fine conductive wires are woven in place of the conventional flat or rod-shaped electrode. As it was, the rigidity of the electrode was reduced and the thermal stress was reduced.

【0061】従って、熱疲労による半導体素子の接合部
等の破壊を確実に防止することができる。
Accordingly, it is possible to reliably prevent the destruction of the junction of the semiconductor element due to thermal fatigue.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の半導体装置を示す
断面図である。
FIG. 1 is a sectional view showing a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の半導体装置を示す
断面図である。
FIG. 2 is a sectional view showing a semiconductor device according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態の半導体装置を示す
断面図である。
FIG. 3 is a sectional view showing a semiconductor device according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態の半導体装置を示す
断面図である。
FIG. 4 is a sectional view showing a semiconductor device according to a fourth embodiment of the present invention.

【図5】従来の半導体装置を基板に実装した例を示す断
面図である。
FIG. 5 is a cross-sectional view showing an example in which a conventional semiconductor device is mounted on a substrate.

【図6】従来の半導体装置を基板に実装した別の例を示
す断面図である。
FIG. 6 is a cross-sectional view showing another example in which a conventional semiconductor device is mounted on a substrate.

【符号の説明】[Explanation of symbols]

1、1a、21、22…IGBT、2、2a,24…D
BC基板(銅張セラミック基板)、3、3a…表面銅パ
ターン、4、4a、23、27…エミッタ電極、5、5
a、10、43、44…コレクタ電極、6、6a…半田
(層)、7、7a…導体、8、30、31…ゲート電
極、11…裏面銅パターン
1, 1a, 21, 22 ... IGBT, 2, 2a, 24 ... D
BC substrate (copper-clad ceramic substrate), 3, 3a ... surface copper pattern, 4, 4a, 23, 27 ... emitter electrode, 5, 5
a, 10, 43, 44 ... collector electrode, 6, 6a ... solder (layer), 7, 7a ... conductor, 8, 30, 31 ... gate electrode, 11 ... backside copper pattern

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 一表面に正極電極と制御電極とが形成さ
れ他表面に負極電極が形成された半導体スイッチング素
子と、金属導体が設けられ且つ前記半導体スイッチング
素子が実装される配線基板とを具備し、この配線基板の
金属導体の、前記正極電極及び制御電極及び負極電極の
少なくとも一つに対する電気的接続は、細導線を編み上
げた導体により行われていることを特徴とする半導体装
置。
1. A semiconductor switching element having a positive electrode and a control electrode formed on one surface and a negative electrode formed on the other surface, and a wiring board provided with a metal conductor and mounted with the semiconductor switching element. An electrical connection of the metal conductor of the wiring board to at least one of the positive electrode, the control electrode and the negative electrode is made by a conductor formed by knitting fine conductive wires.
【請求項2】 前記配線基板の金属導体と、前記細導線
を編み上げた導体とは半田接合により接合されているこ
とを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the metal conductor of the wiring board and the conductor obtained by knitting the fine conductive wire are joined by soldering.
【請求項3】 前記細導線を編み上げた導体と接続され
ている前記正極電極及び前記制御電極及び前記負極電極
の少なくとも一つは半田接合により接合されていること
を特徴とする請求項1記載の半導体装置。
3. The method according to claim 1, wherein at least one of the positive electrode, the control electrode, and the negative electrode, which are connected to the conductor in which the fine conductive wire is braided, is joined by soldering. Semiconductor device.
【請求項4】 前記半導体スイツチング素子がIGBT
素子又はIEGT素子であることを特徴とする請求項1
記載の半導体装置。
4. The semiconductor switching device according to claim 1, wherein the semiconductor switching element is an IGBT.
2. An element or an IEGT element.
13. The semiconductor device according to claim 1.
【請求項5】 前記配線基板がセラミック基板上に金属
導体を形成したものであることを特徴とする請求項1記
載の半導体装置。
5. The semiconductor device according to claim 1, wherein said wiring substrate is formed by forming a metal conductor on a ceramic substrate.
【請求項6】 前記配線基板は金属べース上に絶縁層を
形成し、さらにその上に金属導体を形成したものである
ことを特徴とする請求項1記載の半導体装置。
6. The semiconductor device according to claim 1, wherein said wiring board is formed by forming an insulating layer on a metal base and further forming a metal conductor thereon.
【請求項7】 前記細導線は銅製の線材を平帯状に編み
上げたものであることを特徴とする請求項1記載の半導
体装置。
7. The semiconductor device according to claim 1, wherein the fine conductive wire is formed by braiding a copper wire into a flat band shape.
【請求項8】 前記細導線を平帯状に編み上げた導体
の長手方向の弾性率が1GPa以下であることを特徴と
する請求項7記載の半導体装置。
8. The semiconductor device according to claim 7, wherein a longitudinal elastic modulus of the conductor in which the fine conductive wire is woven in a flat band shape is 1 GPa or less.
【請求項9】 前記半導体スイッチング素子が複数個前
記配線基板上設けられた際に、各半導体スイッチング素
子間の配線の一部として細導線を編み上げた導体を使用
したことを特徴とする半導体装置。
9. A semiconductor device, wherein when a plurality of the semiconductor switching elements are provided on the wiring board, a conductor in which a fine conductive wire is braided is used as a part of a wiring between the semiconductor switching elements.
【請求項10】 一表面に正極電極と制御電極とが形成
され且つ他裏面に負極電極が形成された半導体スイッチ
ング素子と、金属導体が設けられ且つ前記半導体スイッ
チ素子が実装される配線基板とを具備する半導体装置の
製造方法において、 前記正極電極と前記制御電極とを前記配線基板の金属導
体に対して半田接合するか、又は、前記負極電極を前記
配線基板の金属導体に対して半田接合する第1の半田接
合工程と、 前記正極電極及び前記制御電極及び前記負極電極の少な
くとも一つを一端が前記配線基板の金属導体に電気的に
接続される細導線を編み上げた導体の他端に半田接合す
る第2の半田接合工程とを有することを特徴とする半導
体装置の製造方法。
10. A semiconductor switching element having a positive electrode and a control electrode formed on one surface and a negative electrode formed on the other back surface, and a wiring board on which a metal conductor is provided and on which the semiconductor switch element is mounted. In the method for manufacturing a semiconductor device provided, the positive electrode and the control electrode are soldered to a metal conductor of the wiring board, or the negative electrode is soldered to a metal conductor of the wiring board. A first solder bonding step, and soldering at least one of the positive electrode, the control electrode, and the negative electrode to the other end of a conductor in which a fine conductive wire having one end electrically connected to a metal conductor of the wiring board is knitted; And a second solder bonding step of bonding.
JP21704898A 1998-07-31 1998-07-31 Semiconductor device and manufacture thereof Pending JP2000049280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21704898A JP2000049280A (en) 1998-07-31 1998-07-31 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21704898A JP2000049280A (en) 1998-07-31 1998-07-31 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000049280A true JP2000049280A (en) 2000-02-18

Family

ID=16698023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21704898A Pending JP2000049280A (en) 1998-07-31 1998-07-31 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000049280A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043508A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2003023137A (en) * 2001-07-09 2003-01-24 Sansha Electric Mfg Co Ltd Power semiconductor module
JP2003197864A (en) * 2001-12-06 2003-07-11 Abb Res Ltd Power semiconductor module
JP2006310341A (en) * 2005-04-26 2006-11-09 Fuji Electric Device Technology Co Ltd Semiconductor device
EP1764832A1 (en) * 2005-08-24 2007-03-21 Semikron Elektronik GmbH & Co. KG Patentabteilung Bonding connection for semiconductor power devices
JP2007243157A (en) * 2006-02-09 2007-09-20 Diamond Electric Mfg Co Ltd Semiconductor module, semiconductor device provided with the same, and manufacturing method of semiconductor module
JP2008042041A (en) * 2006-08-09 2008-02-21 Fuji Electric Holdings Co Ltd Semiconductor device
JP2012235088A (en) * 2011-04-22 2012-11-29 Panasonic Corp Thermoelectric conversion module and manufacturing method thereof
JP2013042135A (en) * 2011-08-16 2013-02-28 General Electric Co <Ge> Power overlay structure with leadframe connections
JP2014187146A (en) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd Semiconductor device
US10269688B2 (en) 2013-03-14 2019-04-23 General Electric Company Power overlay structure and method of making same
JP2019169609A (en) * 2018-03-23 2019-10-03 株式会社東芝 Semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043508A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2003023137A (en) * 2001-07-09 2003-01-24 Sansha Electric Mfg Co Ltd Power semiconductor module
JP4669650B2 (en) * 2001-12-06 2011-04-13 エー ビー ビー リサーチ リミテッド Power semiconductor module
JP2003197864A (en) * 2001-12-06 2003-07-11 Abb Res Ltd Power semiconductor module
JP2006310341A (en) * 2005-04-26 2006-11-09 Fuji Electric Device Technology Co Ltd Semiconductor device
EP1764832A1 (en) * 2005-08-24 2007-03-21 Semikron Elektronik GmbH &amp; Co. KG Patentabteilung Bonding connection for semiconductor power devices
JP2007243157A (en) * 2006-02-09 2007-09-20 Diamond Electric Mfg Co Ltd Semiconductor module, semiconductor device provided with the same, and manufacturing method of semiconductor module
JP2008042041A (en) * 2006-08-09 2008-02-21 Fuji Electric Holdings Co Ltd Semiconductor device
JP2012235088A (en) * 2011-04-22 2012-11-29 Panasonic Corp Thermoelectric conversion module and manufacturing method thereof
JP2013042135A (en) * 2011-08-16 2013-02-28 General Electric Co <Ge> Power overlay structure with leadframe connections
US10269688B2 (en) 2013-03-14 2019-04-23 General Electric Company Power overlay structure and method of making same
JP2014187146A (en) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd Semiconductor device
JP2019169609A (en) * 2018-03-23 2019-10-03 株式会社東芝 Semiconductor device

Similar Documents

Publication Publication Date Title
JP5241177B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4613077B2 (en) Semiconductor device, electrode member, and method for manufacturing electrode member
KR100284241B1 (en) Semiconductor device
US11107744B2 (en) Insulated gate bipolar transistor module and manufacturing method thereof
US20040014267A1 (en) Power device and direct aluminum bonded substrate thereof
JP3333409B2 (en) Semiconductor module
JP5525024B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2000049280A (en) Semiconductor device and manufacture thereof
JPH11204724A (en) Power module
JP2000049281A (en) Semiconductor device
JPH11163045A (en) Semiconductor device and its manufacture
EP4047645A1 (en) Power device, power device assembly, and related apparatus
JP2017123360A (en) Semiconductor module
CN216563091U (en) Double-sided heat dissipation power module
JP6054345B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3841007B2 (en) Semiconductor device
JPH09321216A (en) Power semiconductor device
JP2014027324A (en) Semiconductor device and method of manufacturing semiconductor device
JP7476540B2 (en) Semiconductor Device
JP2004235566A (en) Semiconductor device for electric power
JP2003188318A (en) Semiconductor device and its manufacturing method
JP5485833B2 (en) Semiconductor device, electrode member, and method for manufacturing electrode member
JP2005026524A (en) Semiconductor device and method of manufacturing the same
JP2007027308A (en) Semiconductor device
JP6603098B2 (en) Circuit board and electronic device