JP2000026968A - Formation of high-tensile film on grain oriented silicon steel sheet and forming device - Google Patents

Formation of high-tensile film on grain oriented silicon steel sheet and forming device

Info

Publication number
JP2000026968A
JP2000026968A JP10192987A JP19298798A JP2000026968A JP 2000026968 A JP2000026968 A JP 2000026968A JP 10192987 A JP10192987 A JP 10192987A JP 19298798 A JP19298798 A JP 19298798A JP 2000026968 A JP2000026968 A JP 2000026968A
Authority
JP
Japan
Prior art keywords
silicon steel
steel sheet
substrate
sample holder
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10192987A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10192987A priority Critical patent/JP2000026968A/en
Publication of JP2000026968A publication Critical patent/JP2000026968A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently coat a steel sheet with an Si series ceramics film with high reproducibility and to effectively improve its core loss characteristics by executing film formation to the surface and back face of a silicon steel sheet substrate under the same conditions while optimum tensile strength is applied thereto. SOLUTION: In a vacuum chamber, a DC magnetron sputtering device having a silicon target and a manget is set, and Si ions are vapor-deposited on a silicon steel sheet fixed to the inside of a sample holder via the opening and shuttering of a shutter. The lower end part of the sample holder 6 is provided with a fixing pin 12, and the upper end part is provided with a moving pin 13. A nob 15 provided with a screw groove 14 is rotated to move the moving pin 13 in the direction of the arrow 16, the interval between the fixing pin 12 and the moving pin 13 is expanded, and tensile strength is applied to the silicon steel sheet substrate 17. The sample holder 6 is rotated by 180 deg. by the operation of a handle provided at the outside of a tank, and film formation is executed to the surface and rear face of the substrate 17 under the same conditions. The additional tensile strength for the substrate 17 is preferably controlled to about 0.1 to 5.0 kg/mm2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、方向性珪素鋼板の張力
被膜形成方法および形成装置に関し、特に方向性珪素鋼
板の表面に、いわゆるマグネトロン・スパッタ法によっ
てSi系のセラミック膜を成膜するに際し、珪素鋼板基板
に適正な張力を付加しつつ、しかも表面と裏面を同一条
件下で成膜することによって、鉄損特性の一層の向上を
図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a tensile coating on a grain-oriented silicon steel sheet, and more particularly, to forming a Si-based ceramic film on the surface of a grain-oriented silicon steel sheet by a so-called magnetron sputtering method. By applying an appropriate tension to the silicon steel plate substrate and forming the film on the front and back surfaces under the same conditions, the iron loss characteristics are further improved.

【0002】[0002]

【従来の技術】プラズマを利用したイオンプレーティン
グ法がTiN, TiC, Ti(CN)等のセラミックコーティング
に適用されている。イオンプレーティング法としては、
HCD法、EB(Electron Beam) +RF(Radio Frequen
cy) 法、マルティ・アーク法およびアーク放電法等の手
法が実施されている。これらの手法の中で特にHCD法
は、イオン化率が20〜40%と高く、また成膜速度も0.05
〜0.5 μm/min と比較的速いため、TiN, TiC, Ti(CN)
あるいはCrNなどのセラミックコーティングに広く利用
されている。また、このHCD法には、N2ガス流量、真
空度、バイアス電圧、基板温度、基板の前処理などの要
件が少々変化しても容易かつスムーズにセラミックコー
ティングを行うことができるという利点もある。
2. Description of the Related Art An ion plating method using plasma has been applied to ceramic coatings of TiN, TiC, Ti (CN) and the like. As the ion plating method,
HCD method, EB (Electron Beam) + RF (Radio Frequen)
cy) method, the multi-arc method, the arc discharge method and the like have been implemented. Among these methods, particularly, the HCD method has a high ionization rate of 20 to 40% and a film formation rate of 0.05%.
0.50.5 μm / min, which is relatively fast, so TiN, TiC, Ti (CN)
Alternatively, it is widely used for a ceramic coating such as CrN. In addition, the HCD method has an advantage that the ceramic coating can be easily and smoothly performed even if the requirements such as the N 2 gas flow rate, the degree of vacuum, the bias voltage, the substrate temperature, and the pretreatment of the substrate slightly change. .

【0003】この他、最近では、マグネトロン・スパッ
タ法を用いて反応性のセラミック膜を成膜する方法も盛
んに行われるようになってきた。この方法には、比較
的高速成膜が可能である、幅方向に均一な膜が得られ
る、蒸着効率が良い、長時間安定したコ−ティング
膜が得られる等の利点があるだけでなく、DD(直
流)マグネトロン・スパッタ法を用いた場合には、大表
面積を有する基板への成膜も比較的容易で、かつ高速成
膜が可能であり、優れた反応性コ−ティング膜(例えば
Si系セラミック膜等)が得られることが指摘されてい
る。
In addition, recently, a method of forming a reactive ceramic film using a magnetron sputtering method has also been actively performed. This method not only has the advantages of enabling relatively high-speed film formation, obtaining a uniform film in the width direction, good vapor deposition efficiency, and obtaining a long-term stable coating film. When the DD (direct current) magnetron sputtering method is used, film formation on a substrate having a large surface area is relatively easy, high-speed film formation is possible, and an excellent reactive coating film (for example,
It is pointed out that a Si-based ceramic film or the like can be obtained.

【0004】建築材等に用いる大表面積を有する鋼板に
ついて、耐食性や装飾性あるいは耐磨耗性の改善のため
に上記したHCD法の利用が試みられているが、現在ま
でのところ、実用化までには至っていない。というの
は、前述したように、HCD法の成膜速度は大きいとは
いえ、0.05〜0.5 μm/min 程度では、バッチタイプのコ
ーティングには十分ではあるものの、大表面積のコーテ
ィングに適用するには不十分だからであり、蒸発物質の
イオン化率をより高めて高速成膜を行う必要がある。
With respect to steel sheets having a large surface area used for building materials and the like, the use of the above-mentioned HCD method has been attempted in order to improve corrosion resistance, decorativeness, and abrasion resistance. Has not been reached. This is because, as described above, although the film formation rate of the HCD method is high, a thickness of about 0.05 to 0.5 μm / min is sufficient for a batch type coating, but is not suitable for a coating with a large surface area. This is because it is insufficient, and it is necessary to increase the ionization rate of the evaporated substance to perform high-speed film formation.

【0005】このような鋼板表面へのセラミック被覆に
よる表面制御法の高機能化に加えて、最近、一方向性珪
素鋼板の表面にTiNセラミック膜を被覆すると珪素鋼板
表面近傍に強力な引張張力が付与され、 180°磁区が極
端に細分化されため、結果として珪素鋼板は超低鉄損を
示すことが見出された。このように、TiNセラミック膜
のコ−ティングは、新たな高機能材料を有する製品の製
造の可能性を示すものとして注目されている。
[0005] In addition to the enhancement of the surface control method by the ceramic coating on the surface of the steel sheet, recently, when the surface of a unidirectional silicon steel sheet is coated with a TiN ceramic film, a strong tensile tension is generated near the silicon steel sheet surface. It has been found that the silicon steel sheet exhibits an extremely low iron loss as a result, because the 180 ° magnetic domain is extremely subdivided. As described above, the coating of the TiN ceramic film has attracted attention as an indication of the possibility of manufacturing a product having a new high-performance material.

【0006】しかしながら、このような高機能材料の製
造においても、製品品質や製造コストの観点から、コ−
ティング物質、コ−ティング法の再検討が余儀なくされ
ている。すなわち、一方向性珪素鋼板の表面にTiNセラ
ミック膜を被覆した場合、超低鉄損は得られるものの、
製造コストが高価であるというところに問題を残してい
た。例えば、HCD法を用いてTiNを珪素鋼板に被覆し
た場合、Ti材料が高価であるばかりか、蒸着効率が約20
%と低いこと、Taカソ−ドの値段が高いこと等のため、
TiNのコ−ティングコストが高価になるという大きな欠
点を有していたのである。
[0006] However, even in the production of such high-performance materials, from the viewpoints of product quality and production cost, the cost is low.
It is necessary to reconsider the coating materials and coating methods. That is, when a TiN ceramic film is coated on the surface of a unidirectional silicon steel sheet, although an ultra-low iron loss is obtained,
The problem is that the manufacturing cost is high. For example, when TiN is coated on a silicon steel sheet using the HCD method, not only is the Ti material expensive, but the vapor deposition efficiency is reduced by about 20%.
% And the high price of Ta Cathode, etc.
This has the major disadvantage that the coating cost of TiN is high.

【0007】このTiN被覆とは別に、ごく最近上記の欠
点を克服するために、DC(直流)マグネトロン・スパ
ッタ法を用いて一方向性珪素鋼板の表面にSi系セラミッ
ク(Si−N−O−C)を被覆することによっても、珪素
鋼板は超低鉄損を示すことが見出された。このDCマグ
ネトロン・スパッタ法を使用した珪素鋼板表面へのSi系
セラミック(Si−N−O−C)膜の被覆は、かなりの高
速成膜が可能であるだけでなく、蒸着効率が良いこと、
幅方向に均一な膜が得られること、長時間安定したコ−
ティングが可能であること等が判明している。
[0007] Apart from this TiN coating, in order to overcome the above-mentioned drawbacks, very recently, a DC (direct current) magnetron sputtering method has been used to apply a Si-based ceramic (Si-N-O- It has been found that the silicon steel sheet also exhibits ultra-low iron loss by coating with C). The coating of a silicon-based ceramic (Si-NO-C) film on the surface of a silicon steel sheet by using the DC magnetron sputtering method is not only capable of forming a considerably high-speed film, but also has a good deposition efficiency.
A uniform film can be obtained in the width direction.
It has been found that it is possible to use

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のDC
マグネトロン・スパッタ法を利用して、処理面積が広い
一方向性珪素鋼板に対し、再現性良く、しかも効率的に
Si系セラミック膜をコ−ティングして、珪素鋼板の磁気
特性とくに鉄損特性を効果的に向上させることができる
張力被膜形成方法を、その方法の実施に用いて好適な張
力被膜形成装置と共に提案することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to the DC
By using magnetron sputtering, it is possible to efficiently and efficiently reproduce unidirectional silicon steel sheets with a large processing area.
A method of forming a tension coating capable of effectively improving the magnetic properties, particularly iron loss properties, of a silicon steel sheet by coating a Si-based ceramic film is proposed together with a tension coating forming apparatus suitable for use in implementing the method. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、反
応ガスを導入した真空槽内において、DCマグネトロン
・スパッタ法によって一方向性珪素鋼板の表面に、Si系
セラミック膜を成膜処理するに当たり、基板に張力を付
加しつつ、かつ表面と裏面を同一条件で成膜することを
特徴とする、方向性珪素鋼板に対する張力被膜形成方法
である。
That is, the present invention relates to a method of forming a Si-based ceramic film on a surface of a unidirectional silicon steel sheet by a DC magnetron sputtering method in a vacuum chamber into which a reaction gas has been introduced. A method of forming a tension film on a grain-oriented silicon steel sheet, wherein a film is formed under the same conditions on the front and back surfaces while applying tension to the substrate.

【0010】また、本発明は、反応ガスを導入した真空
槽内に、シリコン・ターゲットとマグネットをそなえる
マグネトロン・スパッタ装置を設けると共に、このシリ
コン・ターゲットに対向して珪素鋼板基板を保持する試
料ホルダーを設け、この試料ホルダーは、槽外からの操
作によってシリコン・ターゲットに対し 180°回転が可
能な回転機構を有すると共に、保持した珪素鋼板基板を
その両端部で引っ張ることによって該基板に対して張力
を付加する張力付加機構を有することを特徴とする方向
性珪素鋼板の張力被膜形成装置である。
Further, the present invention provides a magnetron sputtering apparatus having a silicon target and a magnet in a vacuum chamber into which a reaction gas is introduced, and a sample holder for holding a silicon steel plate substrate facing the silicon target. The sample holder has a rotation mechanism that can rotate the silicon target 180 ° with respect to the silicon target by operation from outside the tank, and pulls the held silicon steel substrate at both ends to tension it. A tension film forming apparatus for a grain-oriented silicon steel sheet, comprising a tension applying mechanism for adding a tension.

【0011】本発明において、珪素鋼板基板に対する付
加張力は 0.1〜5.0 kg/mm2程度とすることが好ましい。
In the present invention, it is preferable that the applied tension to the silicon steel plate substrate is about 0.1 to 5.0 kg / mm 2 .

【0012】[0012]

【発明の実施の形態】まず、本発明に従う方向性珪素鋼
板の張力被膜形成装置について説明する。図1に、本発
明の実施に用いて好適な張力被膜形成装置を模式で示
す。図中番号1は真空槽であり、吸引口2からの吸引に
よって内部を高真空に保持することができるようになっ
ている。この真空槽1内には、シリコン・タ−ゲット3
およびマグネット4(この例で3個)を有するDCマグ
ネトロン・スパッタ装置が設置されていて、シャッタ−
5の開閉を介して、試料ホルダー6内に固定された珪素
鋼板に対し、Siイオンを蒸着させる仕組みになってい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an apparatus for forming a tensile coating on a grain-oriented silicon steel sheet according to the present invention will be described. FIG. 1 schematically shows a tension film forming apparatus suitable for use in carrying out the present invention. In the figure, reference numeral 1 denotes a vacuum tank, and the inside thereof can be maintained at a high vacuum by suction from a suction port 2. In the vacuum chamber 1, a silicon target 3 is provided.
And a DC magnetron sputtering apparatus having magnets 4 (three in this example) and a shutter
Through the opening and closing of 5, the mechanism is configured to deposit Si ions on the silicon steel plate fixed in the sample holder 6.

【0013】本発明では、この試料ホルダー6の構造に
特徴を備えていて、槽外に設けたハンドル7を操作する
ことにより、ピニオン8を介して、試料ホルダー6を 1
80°回転できる仕組みになっている。なお、9はラッ
ク、10は試料ホルダーケース、11はヒーターである。
According to the present invention, the structure of the sample holder 6 is characterized by operating the handle 7 provided outside the tank so that the sample holder 6 can be moved through the pinion 8 to the first position.
It can be rotated by 80 °. In addition, 9 is a rack, 10 is a sample holder case, and 11 is a heater.

【0014】図2は、この試料ホルダー6の縦断面を示
したものであるが、試料ホルダー6の下端部には固定ピ
ン12が、一方上端部には移動ピン13が設けられていて、
ネジ溝14を設けたノブ15を回転させることにより、移動
ピン13を矢印16の方向に移動させるすなわち固定ピン12
と移動ピン13との間隔を拡げることによって、これらの
ピン12, 13で固定した珪素鋼板基板17に張力を付加でき
る仕組みになっている。一方、前述したとおり、試料ホ
ルダー6は、槽外に設けたハンドル7の操作によって 1
80°回転できる仕組みになっているので、珪素鋼板基板
14の表面にSi系セラミック膜を被成したのち、この珪素
鋼板基板17を反転させて同様にしてSi系セラミック膜を
被成すれば、表面と裏面を同一の条件で成膜することが
可能なわけである。
FIG. 2 shows a vertical cross section of the sample holder 6, in which a fixed pin 12 is provided at a lower end of the sample holder 6 and a moving pin 13 is provided at an upper end thereof.
By rotating the knob 15 provided with the screw groove 14, the moving pin 13 is moved in the direction of the arrow 16, i.e., the fixed pin 12
By widening the distance between the pin 12 and the movable pin 13, tension can be applied to the silicon steel plate substrate 17 fixed by the pins 12 and 13. On the other hand, as described above, the sample holder 6 is moved by operating the handle 7 provided outside the tank.
Since it is designed to rotate by 80 °, silicon steel substrate
After the Si-based ceramic film is formed on the surface of 14, if the silicon steel substrate 17 is reversed and the Si-based ceramic film is formed in the same manner, the front and back surfaces can be formed under the same conditions. That's why.

【0015】なお、上記の装置を用いて、珪素鋼板の表
面にSi系セラミック膜を被成する場合、珪素鋼板基板に
対する付加張力は 0.1〜5.0 kg/mm2程度とすることが好
ましい。というのは、付加張力が 0.1 kg/mm2 に満たな
いとその効果に乏しく、一方5.0 kg/mm2を超えると珪素
鋼板の弾性限界を超えるようになって磁束密度の低下を
招くからである。また、図1中、記号Lは、シリコン・
タ−ゲット3と試料ホルダ−6に保持された珪素鋼板基
板17間の距離であるが、本発明装置では、この距離Lも
自由に変位できるように設計されている。
When an Si-based ceramic film is formed on the surface of a silicon steel sheet by using the above-described apparatus, the additional tension applied to the silicon steel sheet substrate is preferably set to about 0.1 to 5.0 kg / mm 2 . The is because the additional tension leads to a decrease in magnetic flux density so as exceeding the elastic limit of 0.1 kg / mm 2 to less than not the poor that effect, whereas 5.0 kg / mm 2 by weight, the silicon steel sheet that . In FIG. 1, the symbol L is
The distance between the target 3 and the silicon steel plate substrate 17 held by the sample holder 6 is designed so that the distance L can be freely displaced in the apparatus of the present invention.

【0016】次に、上記した張力被膜形成装置を用いて
珪素鋼板の表面にSi系セラミック膜を成膜し、その場合
に得られる磁気特性について調査した結果について説明
する。 C:0.072 wt%、Si:3.39wt%、Mn:0.076 wt%、Mo:
0.013 wt%、Se:0.021 wt%、Al:0.020 wt%、Sb:0.
026 wt%およびN:0.0071wt%を含有し、残部は実質的
にFeの組成になる珪素鋼熱延板(厚み:2.0 mm,幅:12
00mm)を、1050℃の中間焼鈍をはさむ2回の冷間圧延に
て0.23mm厚の最終冷延板とした。その後珪素鋼板の表面
に、幅:200 μm 、深さ:20μm の溝を圧延方向に対し
て直角の方向に4mm間隔で導入した。その後、 840℃の
湿水素中で脱炭・1次再結晶焼鈍を施したのち、MgO(25
%),Al2O3(50%), ZnO(3%), SiO2(20%)およびTiO2(2%)を
主成分とする焼鈍分離剤を塗布してから 850℃で15hの
2次再結晶焼鈍を行い、ついで12℃/hで1080℃まで昇温
してGoss方位に集積した2次再結晶粒を発達させた後、
1220℃の乾水素中で純化焼鈍を施した。
Next, a result of investigating the magnetic properties obtained by forming a Si-based ceramic film on the surface of a silicon steel sheet by using the above-described tension film forming apparatus will be described. C: 0.072 wt%, Si: 3.39 wt%, Mn: 0.076 wt%, Mo:
0.013 wt%, Se: 0.021 wt%, Al: 0.020 wt%, Sb: 0.
026 wt% and N: 0.0071 wt%, with the balance being a substantially Fe composition silicon steel hot rolled sheet (thickness: 2.0 mm, width: 12
00mm) was cold rolled twice with intermediate annealing at 1050 ° C. to obtain a final cold-rolled sheet having a thickness of 0.23 mm. Thereafter, grooves having a width of 200 μm and a depth of 20 μm were introduced into the surface of the silicon steel sheet at intervals of 4 mm in a direction perpendicular to the rolling direction. Then, after decarburization and primary recrystallization annealing in wet hydrogen at 840 ° C, MgO (25
%), Al 2 O 3 (50%), ZnO (3%), SiO 2 (20%) and TiO 2 (2%) after applying an annealing separating agent as a main component. After performing secondary recrystallization annealing, and then increasing the temperature to 1080 ° C at 12 ° C / h to develop secondary recrystallized grains accumulated in the Goss orientation,
Purification annealing was performed in dry hydrogen at 1220 ° C.

【0017】ついで、鋼板表面上の酸化物を除去し、電
解研磨により中心線平均粗さで0.05μm に仕上げた。そ
の後、図1に模式で示した張力被膜形成装置を用いて、
Si系セラミック(Si−N−O−C系)膜を 0.5μm 厚
(片面当たり)被成した。なお、この時、珪素鋼板基板
に対する付与張力は 2.0 kg/mm2 とした。
Next, oxides on the surface of the steel sheet were removed, and the center line average roughness was finished to 0.05 μm by electrolytic polishing. Then, using the tension film forming apparatus schematically shown in FIG.
A 0.5-μm thick (per side) Si-based ceramic (Si-N-OC-based) film was formed. At this time, the tension applied to the silicon steel plate substrate was 2.0 kg / mm 2 .

【0018】かくして得られた製品の磁気特性について
調べたところ、以下に示す結果が得られた。 磁束密度 B8 = 1.92 T 鉄損 W17/50 = 0.48 W/kg このように、本発明に従う張力被膜形成装置を用いて、
珪素鋼板の表裏面にSi系セラミック(Si−N−O−C
系)膜を成膜した場合には、珪素鋼板の磁気特性、とく
に鉄損特性W17/50 が 0.48 W/kgまで低減したことが注
目される。
When the magnetic properties of the product thus obtained were examined, the following results were obtained. Magnetic flux density B 8 = 1.92 T Iron loss W 17/50 = 0.48 W / kg Thus, using the tension film forming apparatus according to the present invention,
Silicon ceramic (Si-N-O-C)
It is noted that when a (system) film was formed, the magnetic properties of the silicon steel sheet, particularly the iron loss property W 17/50, were reduced to 0.48 W / kg.

【0019】このように、本発明の張力被膜形成装置を
用い、珪素鋼板に適切な張力を付加しつつ、しかも珪素
鋼板の表面および裏面を同一の条件でセラミックコ−テ
ィングすることにより、極めて優れた鉄損特性が得られ
るのである。
As described above, by using the tension film forming apparatus of the present invention and applying the appropriate tension to the silicon steel sheet and performing the ceramic coating on the front and back surfaces of the silicon steel sheet under the same conditions, it is extremely excellent. Iron loss characteristics can be obtained.

【0020】[0020]

【実施例】実施例1 C:0.074 wt%、Si:3.43wt%、Mn:0.078 wt%、Mo:
0.012 wt%、Se:0.020 wt%、Al:0.020 wt%、Sb:0.
025 wt%およびN:0.0077wt%を含有し、残部は実質的
にFeの組成になる珪素鋼熱延板(厚み:2.2 mm,幅:12
00mm)を、1050℃の中間焼鈍をはさむ2回の冷間圧延に
て0.23mm厚の最終冷延板とした。ついで、冷延板の表面
に幅:200 μm 、深さ:20μm の溝を圧延方向と直角方
向に4mm間隔で導入した。その後、 840℃の湿水素中で
脱炭・1次再結晶焼鈍を施してから、MgO(25%),Al2O3(5
0%), ZnO(3%), SiO2(20%)およびTiO2(2%)を主成分とす
る焼鈍分離剤を塗布し、ついで 850℃で15hの2次再結
晶焼鈍を行った後、さらに12℃/hで1080℃まで昇温して
Goss方位に集積した2次再結晶粒を発達させたのち、12
20℃の乾水素中で純化焼鈍を施した。
EXAMPLES Example 1 C: 0.074 wt%, Si: 3.43 wt%, Mn: 0.078 wt%, Mo:
0.012 wt%, Se: 0.020 wt%, Al: 0.020 wt%, Sb: 0.
025 wt% and N: 0.0077 wt%, with the balance being substantially Fe-composed silicon steel hot rolled sheet (thickness: 2.2 mm, width: 12
00mm) was cold rolled twice with intermediate annealing at 1050 ° C. to obtain a final cold-rolled sheet having a thickness of 0.23 mm. Then, grooves having a width of 200 μm and a depth of 20 μm were introduced into the surface of the cold-rolled sheet at intervals of 4 mm in a direction perpendicular to the rolling direction. Then, after decarburization and primary recrystallization annealing in 840 ° C wet hydrogen, MgO (25%), Al 2 O 3 (5
0%), ZnO (3%), SiO 2 (20%) and TiO 2 (2%) as the main components, followed by secondary recrystallization annealing at 850 ° C for 15 hours. And then raise the temperature to 1080 ° C at 12 ° C / h
After developing secondary recrystallized grains accumulated in the Goss orientation, 12
Purification annealing was performed in dry hydrogen at 20 ° C.

【0021】ついで、鋼板表面上の酸化物を除去し電解
研磨により中心線平均粗さで0.05μm に仕上げた。その
後、図1の模式図に示すDCマグネトロン・スパッタ装
置を用いて、Si系セラミック(Si−N−O−C系)膜を
0.6μm 厚(片面当たり)被成した。なお、この時、珪
素鋼板基板に対する付与張力は 1.5 kg/mm2 とした。得
られた製品の磁気特性について調べた結果を、以下に示
す。 磁束密度 B8 = 1.92 T 鉄損 W17/50 = 0.49 W/kg
Next, the oxide on the surface of the steel sheet was removed and the center line average roughness was finished to 0.05 μm by electrolytic polishing. Then, using a DC magnetron sputtering apparatus shown in the schematic diagram of FIG.
0.6 μm thick (per side) was formed. At this time, the applied tension to the silicon steel plate substrate was 1.5 kg / mm 2 . The results of examining the magnetic properties of the obtained product are shown below. Magnetic flux density B 8 = 1.92 T Iron loss W 17/50 = 0.49 W / kg

【0022】[0022]

【発明の効果】かくして、本発明に従い、珪素鋼板基板
に適切な張力を付加しつつ、しかも表面と裏面を同一条
件でセラミックコ−ティングすることにより、極めて優
れた鉄損特性を得ることができる。
As described above, according to the present invention, by applying a proper tension to the silicon steel plate substrate and performing ceramic coating on the front and rear surfaces under the same conditions, extremely excellent iron loss characteristics can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う方向性珪素鋼板の張力被膜形成装
置の模式図である。
FIG. 1 is a schematic view of an apparatus for forming a tensile coating on a grain-oriented silicon steel sheet according to the present invention.

【図2】試料ホルダ−の詳細図である。FIG. 2 is a detailed view of a sample holder.

【符号の説明】[Explanation of symbols]

1 真空槽 2 吸引口 3 シリコン・タ−ゲット 4 マグネット 5 シャッタ− 6 試料ホルダー 7 ハンドル 8 ピニオン 9 ラック 10 試料ホルダーケース 11 ヒーター 12 固定ピン 13 移動ピン 14 ネジ溝 15 ノブ 16 引っ張り方向 17 珪素鋼板基板 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Suction port 3 Silicon target 4 Magnet 5 Shutter 6 Sample holder 7 Handle 8 Pinion 9 Rack 10 Sample holder case 11 Heater 12 Fixing pin 13 Moving pin 14 Screw groove 15 Knob 16 Pulling direction 17 Silicon steel plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応ガスを導入した真空槽内において、
DCマグネトロン・スパッタ法によって一方向性珪素鋼
板の表面にSi系セラミック膜を形成するに当たり、 珪素鋼板基板に張力を付加しつつ、しかも表面と裏面を
同一条件で成膜することを特徴とする方向性珪素鋼板の
張力被膜形成方法。
In a vacuum chamber into which a reaction gas has been introduced,
When forming a Si-based ceramic film on the surface of a unidirectional silicon steel sheet by DC magnetron sputtering, the film is formed under the same conditions while applying tension to the silicon steel sheet substrate, and on the same surface. For forming a tensile coating on a conductive silicon steel sheet.
【請求項2】 請求項1において、珪素鋼板基板に対す
る付加張力が 0.1〜5.0 kg/mm2であることを特徴とする
方向性珪素鋼板の張力被膜形成方法。
2. The method according to claim 1, wherein an additional tension applied to the silicon steel plate substrate is 0.1 to 5.0 kg / mm 2 .
【請求項3】 反応ガスを導入した真空槽内に、シリコ
ン・ターゲットとマグネットをそなえるマグネトロン・
スパッタ装置を設けると共に、このシリコン・ターゲッ
トに対向して珪素鋼板基板を保持する試料ホルダーを設
け、この試料ホルダーは、槽外からの操作によってシリ
コン・ターゲットに対し 180°回転が可能な回転機構を
有すると共に、保持した珪素鋼板基板をその両端部で引
っ張ることによって該基板に対して張力を付加する張力
付加機構を有することを特徴とする方向性珪素鋼板の張
力被膜形成装置。
3. A magnetron having a silicon target and a magnet in a vacuum chamber into which a reaction gas has been introduced.
In addition to providing a sputtering device, a sample holder for holding the silicon steel plate substrate is provided facing the silicon target, and this sample holder has a rotation mechanism that can rotate 180 ° with respect to the silicon target by operation from outside the tank. A tensile film forming apparatus for a directional silicon steel sheet, comprising a tension applying mechanism for applying tension to a held silicon steel sheet substrate by pulling the held silicon steel sheet substrate at both ends thereof.
JP10192987A 1998-07-08 1998-07-08 Formation of high-tensile film on grain oriented silicon steel sheet and forming device Withdrawn JP2000026968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10192987A JP2000026968A (en) 1998-07-08 1998-07-08 Formation of high-tensile film on grain oriented silicon steel sheet and forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10192987A JP2000026968A (en) 1998-07-08 1998-07-08 Formation of high-tensile film on grain oriented silicon steel sheet and forming device

Publications (1)

Publication Number Publication Date
JP2000026968A true JP2000026968A (en) 2000-01-25

Family

ID=16300356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10192987A Withdrawn JP2000026968A (en) 1998-07-08 1998-07-08 Formation of high-tensile film on grain oriented silicon steel sheet and forming device

Country Status (1)

Country Link
JP (1) JP2000026968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457965C (en) * 2006-10-30 2009-02-04 北京航空航天大学 Method for preparing Fe-6.5 wt% Si thin plate using continuous magnetic control sputtering physical gas phase depositing
CN108085647A (en) * 2017-11-28 2018-05-29 中国科学院宁波材料技术与工程研究所 A kind of screw transporter for vacuum coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457965C (en) * 2006-10-30 2009-02-04 北京航空航天大学 Method for preparing Fe-6.5 wt% Si thin plate using continuous magnetic control sputtering physical gas phase depositing
CN108085647A (en) * 2017-11-28 2018-05-29 中国科学院宁波材料技术与工程研究所 A kind of screw transporter for vacuum coating
CN108085647B (en) * 2017-11-28 2019-10-15 中国科学院宁波材料技术与工程研究所 A kind of screw transporter for vacuum coating

Similar Documents

Publication Publication Date Title
CN109804105B (en) Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
JP6350773B1 (en) Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
JP2000026968A (en) Formation of high-tensile film on grain oriented silicon steel sheet and forming device
JP6624246B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
WO2018116829A1 (en) Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
Lee et al. Application of inductively coupled plasma to super-hard and decorative coatings
JP4206942B2 (en) Oriented electrical steel sheet with extremely low iron loss and excellent film adhesion and method for producing the same
JPH11323511A (en) Silicon steel sheet low in residual magnetic flux density and excellent in high frequency core loss characteristic
JPS6277103A (en) Roll coated with hard film on surface
JPH024963A (en) Ion plating apparatus
JP2898650B2 (en) Ion plating equipment
JP2593198B2 (en) Method for improving magnetic properties of unidirectional silicon steel sheet
JPS63192855A (en) Production of low carbon steel sheet and stainless steel sheet coated with ceramic film having superior adhesion, uniformity and corrosion resistance
JP2003129196A (en) Grain-oriented silicon steel sheet with ultra-low core loss, and manufacturing method therefor
JP2005340334A (en) Ceramic-coated magnetic material and its manufacturing method
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH0254753A (en) Preheating method in continuous dry plating treatment
JPH068495B2 (en) Method for forming ceramic coating on steel sheet with excellent adhesion, uniformity and corrosion resistance
JP2004115835A (en) Evaporation apparatus for hcd ion plating
JPS62284068A (en) (be+rf) system ion plating apparatus
JP2004238669A (en) Superlow core loss grain-oriented silicon steel plate and method for manufacturing the same, and film deposition apparatus
JPH03111554A (en) Production of steel sheet having highly wear resistant ceramic film
JP2002256420A (en) High-bias applying device, film forming device, and method for manufacturing grain oriented silicon steel-sheet
JP2019019410A (en) Directional magnetic steel plate, and production method thereof
JP2000096228A (en) Magnetron sputtering device for grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050304