JP2000026190A - Equipment for growing compound single crystal and method for growing compound single crystal, using the same - Google Patents

Equipment for growing compound single crystal and method for growing compound single crystal, using the same

Info

Publication number
JP2000026190A
JP2000026190A JP10194553A JP19455398A JP2000026190A JP 2000026190 A JP2000026190 A JP 2000026190A JP 10194553 A JP10194553 A JP 10194553A JP 19455398 A JP19455398 A JP 19455398A JP 2000026190 A JP2000026190 A JP 2000026190A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
airtight chamber
moving means
compound single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10194553A
Other languages
Japanese (ja)
Other versions
JP3725700B2 (en
Inventor
Yoshihiko Sakashita
由彦 坂下
Takeo Kawanaka
岳穂 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19455398A priority Critical patent/JP3725700B2/en
Publication of JP2000026190A publication Critical patent/JP2000026190A/en
Application granted granted Critical
Publication of JP3725700B2 publication Critical patent/JP3725700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an equipment which is capable of performing vapor pressure control, effectively performing the initial operation for inhibiting a compound single crystal from being contaminated by impurities and accordingly, producing a high quality compound semiconductor single crystal, and also, to provide the method using the equipment. SOLUTION: This equipment is provided with: a crucible 7 for receiving a crystal raw material 7a; an airtight chamber 6 for covering the crucible 7; and a sealing member 10 for keeping the airtight chamber 6 airtight; wherein the crystal raw material 7a received in a crucible 7 Is cooled and solidified from its lower side to grow a compound single crystal. Also, in the crucible 7, a support/movement means 9 is placed in such way that it is freely movable in the direction of the axial center of the airtight chamber 6, to freely opening/ closing a gas passage 12 communicated with the inside and outside of the chamber 6, by the movement of the means 9 through the sealing member 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物単結晶の成
長装置及び成長方法に係り、化合物半導体結晶を処理雰
囲気を制御しながら成長(製造)するための成長装置な
らびに成長方法に関する。
The present invention relates to an apparatus and a method for growing a compound single crystal, and more particularly to a growth apparatus and a method for growing (manufacturing) a compound semiconductor crystal while controlling a processing atmosphere.

【0002】[0002]

【従来の技術】GaAs等のIII−V族化合物半導体や
CdTe等のII−VI族化合物半導体単結晶の製造方法と
しては、水平ブリッジマン法(HB法)、垂直ブリッジ
マン法(VB法)、水平温度勾配付固化法(HGF
法)、垂直温度勾配付固化法(VGF法)及び引き上げ
法(CZ法)等が利用されている。
2. Description of the Related Art As a method for producing a III-V compound semiconductor such as GaAs or a II-VI compound semiconductor single crystal such as CdTe, a horizontal Bridgman method (HB method), a vertical Bridgman method (VB method), Solidification method with horizontal temperature gradient (HGF
Method, a solidification method with a vertical temperature gradient (VGF method), a lifting method (CZ method), and the like.

【0003】これらの方法の中で、特に化合物半導体の
生産に用いられているのが引き上げ法(CZ法)であ
る。この方法はルツボによる拘束のない結晶成長方法で
あるが、大きな温度勾配下での結晶成長であるため、成
長した結晶の転移密度が高くなるなど、高品質な結晶を
得られないという問題がある。これに対し、ルツボ内で
融液を固化させ単結晶を得る垂直ボート法によれば、低
転移の結晶を得ることができる。垂直ボート法には、前
記の垂直ブリッジマン法(VB法)および垂直温度勾配
付固化法(VGF法)があるが、これらの方法によれ
ば、低温度勾配下で結晶成長をおこなうことができ、結
晶性の良い単結晶を得ることができる。
[0003] Among these methods, the pulling method (CZ method) is used particularly for producing compound semiconductors. Although this method is a crystal growth method without constraint by a crucible, since it is a crystal growth under a large temperature gradient, there is a problem that a high-quality crystal cannot be obtained, such as a high transition density of the grown crystal. . On the other hand, according to the vertical boat method in which a melt is solidified in a crucible to obtain a single crystal, a crystal having a low transition can be obtained. The vertical boat method includes the vertical Bridgman method (VB method) and the solidification method with a vertical temperature gradient (VGF method). According to these methods, crystal growth can be performed under a low temperature gradient. Thus, a single crystal having good crystallinity can be obtained.

【0004】これらの方法においては、原料融液から高
解離圧成分の蒸発による成分の変動を防止するため、該
高解離圧成分を気密容器に予め封入しておき、該高解離
圧成分を加熱蒸発させて原料融液の高解離圧成分の解離
圧と平衡する蒸気圧を発生させ、結晶の成長過程におい
て気密容器内を高解離圧成分ガス雰囲気とするのが通例
であるが、気密容器内外の圧力差により種々の障害が生
じる。
In these methods, in order to prevent fluctuation of components due to evaporation of the high dissociation pressure component from the raw material melt, the high dissociation pressure component is previously sealed in an airtight container, and the high dissociation pressure component is heated. It is common practice to evaporate to generate a vapor pressure that balances the dissociation pressure of the high dissociation pressure component of the raw material melt, and to make the inside of the hermetic container a high dissociation pressure component gas atmosphere during the crystal growth process. The pressure difference causes various obstacles.

【0005】このため、特開平4−77383号公報
(従来例1)に開示されているように、不活性ガスが高
圧充填された高圧容器内に気密容器を収容し、気密容器
内外の圧力差を緩和するため、該気密容器に均圧用の圧
力緩衝通路(均圧通路)を設けている。原料として、II
−VI族化合物、III−V族化合物もしくはこれらを主成
分とする化合物を用いる場合、これらの化合物の高解離
圧成分のガスが加圧用不活性ガスよりも分子量が大きい
ため、同公報第(4)頁左下欄第13行目から右下欄第
2行目に開示されているように、前記圧力緩衝通路は高
解離圧成分ガスを容器内に滞留させると共に不活性ガス
を優先的に容器外に排出させるため、気密容器の上部に
設けられる。
For this reason, as disclosed in Japanese Patent Application Laid-Open No. 4-77383 (conventional example 1), an airtight container is accommodated in a high-pressure container filled with an inert gas at a high pressure, and a pressure difference between the inside and outside of the airtight container is increased. In order to reduce the pressure, a pressure buffer passage (equalizing passage) for equalizing pressure is provided in the airtight container. As a raw material, II
When a group-VI compound, a group III-V compound or a compound containing these compounds as a main component is used, since the gas of the high dissociation pressure component of these compounds has a larger molecular weight than the inert gas for pressurization, the publication (4) ) As disclosed in the lower left column, line 13 to the lower right column, second line of the page, the pressure buffer passage allows the high-dissociation pressure component gas to stay in the container and the inert gas to be preferentially removed from the container. It is provided on the upper part of the airtight container to discharge the air to the airtight container.

【0006】また特開平7−330479号公報(従来
例2)では、高圧容器内にヒータエレメントが上下方向
に複数段列設された集合ヒータを設け、該集合ヒータ内
にチャンバーの内外に連通する均圧通路を有する気密チ
ャンバーを設け、該気密チャンバー内に化合物原料を収
容するルツボ及び該ルツボの下方に原料化合物の高解離
圧成分を収容したリザーバが配置され、前記高解離圧成
分を加熱蒸発させるための蒸発用ヒータエレメントが設
けられ、前記ヒータエレメントにより形成された上方か
ら下方に渡り化合物の融点を挟んで高温から低温に推移
する温度分布の融点温度域をルツボに対して下方から上
方へ相対移動させることにより、ルツボ内の原料融液を
下方より冷却固化して単結晶を成長させる化合物単結晶
製造装置において、前記均圧通路が蒸気用ヒータエレメ
ントの下方に設けられている。
In Japanese Patent Application Laid-Open No. 7-330479 (conventional example 2), a collective heater in which a plurality of heater elements are vertically arranged in a high pressure vessel is provided, and the collective heater communicates with the inside and outside of the chamber. An airtight chamber having an equalizing passage is provided, and a crucible containing a compound raw material and a reservoir containing a high dissociation pressure component of the raw material compound are arranged in the airtight chamber, and the high dissociation pressure component is heated and evaporated. A heater element for evaporation is provided, and a melting point temperature range of a temperature distribution transitioning from high temperature to low temperature across the melting point of the compound from above to below formed by the heater element from above to below from the crucible. In a compound single crystal manufacturing apparatus in which a raw material melt in a crucible is cooled and solidified from below to grow a single crystal by relative movement. The pressure equalizing path is provided below the heater element steam.

【0007】従って蒸発用ヒータエレメントにより発生
した前記高解離圧成分の蒸気は、該均圧通路から気密チ
ャンバーの外へ流出する際に冷却され(蒸気の温度は全
てのヒータエレメントの加熱温度未満になるため)て、
蒸発用ヒータエレメントや集合ヒータのヒータエレメン
トに凝結付着するおそれがない。なお、上記従来例2に
おいては、半シール材を設けて蒸気を気密に保持してい
る。
Therefore, the vapor of the high dissociation pressure component generated by the evaporating heater element is cooled when flowing out of the airtight chamber from the equalizing passage (the temperature of the vapor becomes lower than the heating temperature of all the heater elements). To become)
There is no risk of condensation on the evaporation heater element or the heater element of the collective heater. In the second conventional example, a semi-sealing material is provided to keep the steam airtight.

【0008】[0008]

【発明が解決しようとする課題】ところで、化合物単結
晶の電気特性を制御するためには、結晶中の不純物濃度
を制御する必要がある。特にアクセプターとしてのC
(カーボン)は、装置内のグラファイト部材から分離し
たカーボンが、炉内の残留水分や酸素と反応し、COガ
スとなって混入する。従って結晶中の不純物濃度を制御
するためには、炉内の残留水分、酸素、結晶成分の酸化
物などの酸素供給源を低減すればよい。
In order to control the electrical characteristics of the compound single crystal, it is necessary to control the impurity concentration in the crystal. In particular, C as an acceptor
As for (carbon), carbon separated from the graphite member in the apparatus reacts with residual moisture and oxygen in the furnace, and is mixed as CO gas. Therefore, in order to control the impurity concentration in the crystal, the amount of oxygen supply sources such as residual moisture, oxygen, and oxides of crystal components in the furnace may be reduced.

【0009】そのためには結晶成長過程の初期段階にお
いて、真空引き、真空下でのベーキング(空焼き)、ガ
ス置換等の操作(以下、これらの手段を初期操作と総称
する)を行うことが有効である。ガス置換とは、雰囲気
ガスを装置内(炉内)へ充填・排気し、この操作を繰り
返して、残留酸素などの不純物を低減させる方法であ
る。
For this purpose, it is effective to perform operations such as evacuation, baking under vacuum, baking (vacant baking), gas replacement, etc. (hereinafter, these means are collectively referred to as initial operations) in the initial stage of the crystal growth process. It is. The gas replacement is a method of filling and exhausting an atmosphere gas into an apparatus (furnace) and repeating this operation to reduce impurities such as residual oxygen.

【0010】上記従来例において、初期操作を行うため
のガス通路は前記均圧通路である。しかし、初期操作を
行うには前記ガス通路は非常に狭いため、例えば真空引
きの際においては到達真空度が低い、目標真空度までの
真空到達時間が長い、などの問題点があり、また例えば
ガス置換の際においては、ガス置換用ガスの流量を小さ
くしなければならない、ガス置換に長時間が必要などの
問題点がある。
In the above conventional example, the gas passage for performing the initial operation is the equalizing passage. However, since the gas passage is very narrow to perform the initial operation, for example, in the case of evacuation, the ultimate vacuum degree is low, the vacuum reaching time to the target vacuum degree is long, etc. At the time of gas replacement, there are problems that the flow rate of the gas for gas replacement must be reduced and that a long time is required for gas replacement.

【0011】本発明はかかる問題に鑑みてなされたもの
であり、蒸気圧制御をおこなう化合物単結晶成長装置/
方法において、単結晶への不純物の混入を効果的に抑え
ることにより、均一性がよく熱的に安定な、すなわち高
品質な化合物半導体結晶を得るための装置および方法を
提供することを目的としたものである。
The present invention has been made in view of the above problems, and has been made in consideration of a compound single crystal growth apparatus for controlling a vapor pressure.
It is an object of the present invention to provide an apparatus and a method for obtaining a compound semiconductor crystal having good uniformity and good thermal stability, that is, a high-quality compound semiconductor crystal, by effectively suppressing impurities from being mixed into a single crystal. Things.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る装置または方法は、次のようなものであ
る。すなわち、化合物単結晶成長装置においては、化合
物単結晶原料を収納するルツボを気密チャンバーで覆
い、該気密チャンバー内の蒸気が該気密チャンバーの外
部に漏洩しないためのシール部材が設けられ、前記ルツ
ボ内の融液を冷却固化して単結晶を成長させる化合物単
結晶成長装置において、前記ルツボを支える支持移動手
段を備え、該支持移動手段は前記気密チャンバーの軸芯
方向に移動自在であり、前記気密チャンバーの内外に連
通するガス通路を前記支持移動手段の移動によって前記
シール部材を介して開閉自在としたことを特徴とする
(請求項1)。
An apparatus or method according to the present invention for achieving the above object is as follows. That is, in the compound single crystal growing apparatus, a crucible containing a compound single crystal raw material is covered with an airtight chamber, and a seal member is provided to prevent vapor in the airtight chamber from leaking outside the airtight chamber. A compound single crystal growing apparatus for cooling and solidifying the melt to grow a single crystal, comprising a supporting and moving means for supporting the crucible, wherein the supporting and moving means is movable in the axial direction of the hermetic chamber; A gas passage communicating with the inside and outside of the chamber can be opened and closed via the seal member by the movement of the support moving means (claim 1).

【0013】従来の均圧通路は気密チャンバー(気密容
器)に直接設けられていたために、先述の初期操作を十
分に行うための、内径の大きい通路を設けることは不都
合であった。上記装置においては、前記支持移動手段の
周囲または該手段にガス通路を設けて十分な通路面積を
確保したので、内外の圧力差等による気密チャンバーの
損害を考慮することなく先述の初期操作を効率的に行う
ことができる。
Since the conventional pressure equalizing passage is provided directly in the airtight chamber (airtight container), it is inconvenient to provide a passage having a large inner diameter for sufficiently performing the above-mentioned initial operation. In the above device, a gas passage is provided around the support moving means or in the means to secure a sufficient passage area, so that the above-described initial operation can be efficiently performed without considering damage to the airtight chamber due to a pressure difference between the inside and outside. Can be done

【0014】また前記支持移動手段はロッドまたは支持
台であり、該支持移動手段にはくびれが形成されてお
り、該支持移動手段の移動によって該くびれが前記シー
ル部材に対して接離することにより前記ガス通路の開閉
を自在とした(請求項2)。支持ロッドは移動可能であ
り、開閉操作を行うためには稼働部材側に「くびれ」が
ある方が使い易くなる(但し、「くびれ」はロッドと相
手材のどちらに形成しても良い)。
The support moving means is a rod or a support base, and the support moving means is formed with a constriction. The constriction is moved toward and away from the seal member by the movement of the support moving means. The gas passage can be freely opened and closed (Claim 2). The support rod is movable, and it is easier to use the constriction on the operating member side to perform the opening / closing operation (however, the constriction may be formed on either the rod or the counterpart material).

【0015】また初期操作時の前記ルツボの位置が前記
気密チャンバー内上方の場合は、前記くびれが前記支持
移動手段の中途または下方部分に設けられて前記シール
部材に非接触とされており、一方初期操作時の前記ルツ
ボの位置が気密チャンバー内下方の場合は、前記くびれ
が前記支持移動手段の上方部分に設けられて前記シール
部材と非接触とされていることを特徴とする(請求項
3)。
When the position of the crucible at the time of the initial operation is above the inside of the airtight chamber, the constriction is provided in the middle or lower part of the support moving means so as not to contact the seal member. When the position of the crucible at the time of the initial operation is below the inside of the airtight chamber, the constriction is provided at an upper portion of the supporting and moving means so as not to be in contact with the seal member. ).

【0016】この手段を講じることにより、上方又は下
方はそれ以外の途中で停止する場合よりも操作し易いメ
リットがある(電気的インターロック等なくてもストロ
ーク・エンドでは通常停止する)。また、上方又は下方
の場合は被処理品をセットするとき通常どちらか(上方
又は下方)で行うのが普通であることから、わざわざ作
動させて「くびれ」位置まで動かす必要がなく、これ故
操作ミス等を起こすことなく有利である。
By taking this measure, there is a merit that the upper or lower part is easier to operate than when it is stopped halfway (otherwise, it stops normally at the stroke end without an electric interlock or the like). In addition, in the case of an upper or lower position, since it is common to set the object to be processed either normally (upper or lower), it is not necessary to operate and move to the "constricted" position. This is advantageous without making mistakes.

【0017】また前記気密チャンバーの内部に高温から
低温に推移する温度分布を形成し.前記ルツボを前記支
持移動手段によって前記温度分布に沿って移動可能とし
たことを特徴とする(請求項4)。この場合は、VB法
を利用した化合物単結晶成長装置に本来必要な構成を利
用することができるので、機器の付加を最小限に抑え、
装置構成を簡易かつ安価にすることができる。
In addition, a temperature distribution that changes from a high temperature to a low temperature is formed inside the airtight chamber. The crucible can be moved along the temperature distribution by the support moving means (claim 4). In this case, the configuration originally required for the compound single crystal growth apparatus using the VB method can be used, so that the addition of equipment is minimized,
The apparatus configuration can be made simple and inexpensive.

【0018】一方、本発明の化合物単結晶の成長方法
は、化合物単結晶原料を収納するルツボを気密チャンバ
ーで覆い、該気密チャンバー内の蒸気が該気密チャンバ
ーの外部に漏洩しないためのシール部材が設けられ、前
記ルツボ内の融液を冷却固化して単結晶を成長させる化
合物単結晶成長方法において、前記ルツボを支える支持
移動手段の周囲又は該手段にガス通路を設け、該ガス通
路により初期操作を行うことを特徴とする(請求項
5)。
On the other hand, according to the method for growing a compound single crystal of the present invention, a crucible containing a compound single crystal raw material is covered with an airtight chamber, and a sealing member for preventing vapor in the airtight chamber from leaking out of the airtight chamber. In the compound single crystal growth method for cooling and solidifying the melt in the crucible to grow a single crystal, a gas passage is provided around or around the supporting and moving means supporting the crucible, and an initial operation is performed by the gas passage. (Claim 5).

【0019】上記方法においては、前記支持移動手段に
はくびれが形成されていて、該支持移動手段の移動によ
って該くびれが前記シール部材に対して接離することに
より前記ガス通路の開閉を自在とすることが望ましい
(請求項6)。
In the above method, a constriction is formed in the supporting and moving means, and the gas passage can be freely opened and closed by moving the supporting and moving means so that the constriction comes into contact with and separates from the seal member. It is desirable to perform (claim 6).

【0020】[0020]

【発明の実施の形態】以下に本発明の実施例を、GaA
s単結晶の結晶成長の具体例を用いて説明する。図1及
び図2は、本発明の実施例にかかる化合物単結晶成長装
置であり、VB法によるものである。この装置は上下開
口状の円筒形圧力容器2の内部に断熱構造体4と、複数
の加熱装置5と、気密チャンバー6を設け、該気密チャ
ンバー6内には化合物単結晶原料を収納するルツボ7を
備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will now be described with reference to GaAs.
This will be described using a specific example of crystal growth of an s single crystal. 1 and 2 show an apparatus for growing a compound single crystal according to an embodiment of the present invention, which is based on the VB method. In this apparatus, a heat insulating structure 4, a plurality of heating devices 5, and a hermetic chamber 6 are provided inside a cylindrical pressure vessel 2 having an upper and lower opening, and a crucible 7 for accommodating a compound single crystal raw material is provided in the hermetic chamber 6. It has.

【0021】前記上下開口状の圧力容器2は、その上下
をそれぞれ着脱自在な上蓋1及び下蓋3により閉じら
れ、更にO−リング等のシール部材(図示略)により気
密に保持される。該圧力容器2の内側には、上部が閉塞
された筒状の断熱構造体4が配設されているが、これは
結晶成長過程において発生する高温ガスの流れに起因す
る過度の放熱を、効率よく抑制するためのものである。
断熱構造体4の内側には4段の加熱装置5(5a〜5
d)が設置され、各加熱装置5a〜5dにはそれぞれ独
立して電力が供給可能であり、本実施例の場合、5a〜
5cが結晶成長用加熱装置であり5dが化合物原料、本
例の場合GaAs原料のうち、解離圧の高いAs蒸気を
制御するための加熱装置である。
The upper and lower pressure vessels 2 are closed at upper and lower sides by a detachable upper lid 1 and lower lid 3, respectively, and are hermetically held by a sealing member (not shown) such as an O-ring. Inside the pressure vessel 2, a tubular heat insulating structure 4 whose upper part is closed is disposed, which can reduce excessive heat radiation caused by the flow of high-temperature gas generated during the crystal growth process. It is for suppressing well.
Inside the heat insulating structure 4, a four-stage heating device 5 (5a-5)
d) is installed, and power can be independently supplied to each of the heating devices 5a to 5d.
5c is a heating device for crystal growth, and 5d is a heating device for controlling As vapor having a high dissociation pressure among compound raw materials, in this case, GaAs raw material.

【0022】加熱装置5の内側には気密チャンバー6
が、その内部には前記ルツボ7が支持移動手段、本実施
例においては移動ロッド9に支持され備えられている。
また気密チャンバー6の下方部分には、台座13が気密
チャンバー6と下蓋3それぞれに密着するように設けら
れている。下蓋3と台座13には、気密チャンバー6の
内外に連通する通路が設けられ、該通路に移動ロッド9
が挿通される。
Inside the heating device 5, an airtight chamber 6 is provided.
However, the crucible 7 is supported and provided in the inside thereof by a supporting and moving means, in this embodiment, a moving rod 9.
A pedestal 13 is provided below the airtight chamber 6 so as to be in close contact with each of the airtight chamber 6 and the lower lid 3. The lower lid 3 and the pedestal 13 are provided with a passage communicating with the inside and outside of the airtight chamber 6.
Is inserted.

【0023】ここにおいて移動ロッド9の径を上記通路
の径より小さく設定して、上記通路を形成する壁との間
に空隙を形成した。該空隙は、従来気密チャンバー(気
密容器)に直接設けていた均圧通路と比較し十分な通路
面積を持つので、該通路をガス通路12とし初期操作を
効率的に行えるようになる。台座13の上部には先述の
解離圧の高い原料成分を貯蔵するためのリザーバ8が設
置されている。解離圧の高い原料の蒸気を制御するため
の加熱装置5dは、気密チャンバー6を介してリザーバ
8の近傍に位置するように設けられる。また台座13上
には気密チャンバー6を気密に保つためのシール部材1
0を配置している。シール部材10近傍は高温であるた
め、該シール部材10は耐熱性に優れた材質、例えば積
層黒鉛シートであることが好適である。
Here, the diameter of the moving rod 9 was set smaller than the diameter of the passage, and a gap was formed between the moving rod 9 and the wall forming the passage. The gap has a sufficient passage area as compared with a pressure equalizing passage which is conventionally provided directly in an airtight chamber (airtight container), so that the passage can be used as the gas passage 12 for efficient initial operation. A reservoir 8 for storing the above-described raw material component having a high dissociation pressure is provided on the upper portion of the pedestal 13. The heating device 5 d for controlling the vapor of the raw material having a high dissociation pressure is provided so as to be located near the reservoir 8 via the airtight chamber 6. A sealing member 1 for keeping the airtight chamber 6 airtight is provided on the base 13.
0 is arranged. Since the temperature near the seal member 10 is high, the seal member 10 is preferably made of a material having excellent heat resistance, for example, a laminated graphite sheet.

【0024】またシール部材10はガス通路12の気密
チャンバー6内側の開口部14に位置しており結晶成長
中は移動ロッド9と接触して気密チャンバー6内を気密
に保持する。また移動ロッド9にはくびれ11が該ロッ
ドの全周にわたって設けられている。くびれ11がシー
ル部材10の位置に来たとき(両者が非接触のとき)は
両者間に空隙が生じて(図2)、ガス通路12が気密チ
ャンバー6内外に連通する構造となる。従って先述の初
期操作を行う際は、図1の装置においてはくびれ11は
移動ロッド9の上方に設けてあるので、移動ロッド9を
下方に降ろし、くびれ11をシール部材10の位置まで
移動させる(図2)。この手順によりそれまで移動ロッ
ド9とシール部材10で閉鎖されていたガス通路12の
開口部14が、くびれ11により開放されて先述の初期
操作を行うことができる。
The sealing member 10 is located at the opening 14 inside the gas passage 12 inside the airtight chamber 6, and contacts the moving rod 9 during the crystal growth to keep the inside of the airtight chamber 6 airtight. Further, a constriction 11 is provided on the moving rod 9 over the entire circumference of the rod. When the constriction 11 comes to the position of the seal member 10 (when they are not in contact with each other), a gap is created between them (FIG. 2), and the gas passage 12 communicates with the inside and outside of the airtight chamber 6. Therefore, when performing the above-mentioned initial operation, since the constriction 11 is provided above the moving rod 9 in the apparatus of FIG. 1, the moving rod 9 is lowered and the constriction 11 is moved to the position of the seal member 10 ( (Fig. 2). By this procedure, the opening 14 of the gas passage 12 previously closed by the moving rod 9 and the seal member 10 is opened by the constriction 11 so that the above-described initial operation can be performed.

【0025】加えてこの初期操作は、支持移動手段(支
持ロッド9)の周囲に形成されたガス通路12を利用す
るので、従来の狭い均圧通路を利用するよりもガス置換
等が短時間でできるなど、初期操作の効率が向上するの
である。なお、この実施例ではくびれを一つしか設けて
いないが、くびれを二つ以上設けても構わない。次に具
体例に従って、図1及び図2の結晶成長装置及びGaA
s結晶の結晶成長プロセスについて更に詳細に説明す
る。
In addition, since this initial operation utilizes the gas passage 12 formed around the support moving means (support rod 9), gas replacement and the like can be performed in a shorter time than using a conventional narrow pressure equalizing passage. The efficiency of the initial operation is improved. In this embodiment, only one constriction is provided, but two or more constrictions may be provided. Next, according to a specific example, the crystal growth apparatus shown in FIGS.
The crystal growth process of the s crystal will be described in more detail.

【0026】まず下蓋3を降下させ(または圧力容器
2、上蓋1を上方に移動させ)、気密チャンバー6を取
り外す。移動ロッド9の上部に設けられた結晶原料7a
を収納するルツボ7にGaAs原料2kgを収納し、ま
たリザーバ8には高解離圧成分であるAsを約2g入れ
た。気密チャンバー6を設置し、下蓋3を嵌合してO−
リング等のシール部材(図示略)で気密に保持する(圧
力容器2、上蓋3も図示略のシール部材で気密に保持さ
れている)。初期操作を行うために、移動ロッド9を下
方に移動してルツボ7を気密チャンバー6内における最
下段に移動させた(図2)。上述したように、移動ロッ
ド9に設けられたくびれ11とシール部材10間に空隙
が形成され、ガス通路12が気密チャンバー6の内外に
連通する。次に真空ポンプ(図示略)を起動させ、10
0℃×10-3Torrで約2時間保持し、真空引き(真
空ベーキング)を行い、そのあとN2 ガスによる送気・
排気を5回繰り返した。
First, the lower lid 3 is lowered (or the pressure vessel 2 and the upper lid 1 are moved upward), and the airtight chamber 6 is removed. Crystal raw material 7a provided on top of moving rod 9
2 kg of the GaAs raw material was stored in the crucible 7 storing, and about 2 g of As, which is a high dissociation pressure component, was charged in the reservoir 8. The airtight chamber 6 is installed, the lower lid 3 is fitted, and O-
A seal member (not shown) such as a ring is used to maintain the airtightness (the pressure vessel 2 and the upper lid 3 are also held airtight by a seal member (not illustrated)). In order to perform the initial operation, the moving rod 9 was moved downward to move the crucible 7 to the lowest stage in the airtight chamber 6 (FIG. 2). As described above, a gap is formed between the constriction 11 provided on the moving rod 9 and the seal member 10, and the gas passage 12 communicates with the inside and outside of the airtight chamber 6. Next, a vacuum pump (not shown) is started, and 10
Hold at 0 ° C. × 10 −3 Torr for about 2 hours, perform vacuum evacuation (vacuum baking), and then supply with N 2 gas.
The evacuation was repeated 5 times.

【0027】上記初期操作完了後、移動ロッド9を上方
に移動してルツボ7を上昇させ(図1)、シール部材1
0と移動ロッド9とを接触させてガス通路12を閉塞さ
せて、ルツボ7をシーディング位置より約20mm下方
で保持した。その後、加熱装置5に通電し、所定の温度
分布になるように各々の加熱装置5a〜5dを制御し
た。本実施例の場合、加熱装置5a〜5cにより結晶成
長のための温度分布を作り、加熱装置5dにより解離圧
の高い原料成分の蒸気圧制御を行う。
After the completion of the initial operation, the moving rod 9 is moved upward to raise the crucible 7 (FIG. 1), and the sealing member 1
0 and the moving rod 9 were brought into contact with each other to close the gas passage 12, and the crucible 7 was held about 20 mm below the seeding position. Thereafter, the heating device 5 was energized, and each of the heating devices 5a to 5d was controlled so as to have a predetermined temperature distribution. In the case of this embodiment, the temperature distribution for crystal growth is created by the heating devices 5a to 5c, and the vapor pressure of the raw material component having a high dissociation pressure is controlled by the heating device 5d.

【0028】炉内の温度が十分に安定した後、移動ロッ
ド9を上方、シーディング位置に移動させる。約1時間
シーディング位置で保持した後、3mm/Hrで移動ロ
ッド9を下降させ、結晶成長を行った。所定の成長を終
えた後、温度を室温まで降下させて下蓋3及び気密チャ
ンバー6を取り外し、GaAs結晶を取り出して観察し
た処、結晶はAs抜けもなく、転移も平均EPD500
0cm-2以下と非常に高品質の結晶であり、カーボン不
純物濃度も1015cm-3と問題なかった。
After the temperature in the furnace is sufficiently stabilized, the moving rod 9 is moved upward to the seeding position. After holding at the seeding position for about 1 hour, the moving rod 9 was lowered at 3 mm / Hr to grow a crystal. After completion of the predetermined growth, the temperature was lowered to room temperature, the lower lid 3 and the airtight chamber 6 were removed, and the GaAs crystal was taken out and observed.
The crystal was very high quality of 0 cm -2 or less, and the concentration of carbon impurities was 10 15 cm -3, which was no problem.

【0029】本実施例は初期操作時のルツボ7の位置が
気密チャンバー6内の下方であるが、これに限定される
ものではない。すなわち初期操作時のルツボ7の位置が
気密チャンバー6内の上方であっても差し支えない。図
3及び図4にその装置を示す。これらに示された装置は
本発明の第2実施例である。この場合であれば先述のく
びれ11は移動ロッド9の中途または下方部分に設けれ
ばよい。この場合も該くびれは該移動ロッドの全周にわ
たって設けられる。該くびれにより、ガス通路12が気
密チャンバー6の内外に連通し初期操作が行える(図
4)。また初期操作が終了すれば、移動ロッド9をわず
かに下方に移動させればシーリングが完了し(図3)、
速やかに次の操作段階に移行できる。
In the present embodiment, the position of the crucible 7 at the time of the initial operation is below the inside of the airtight chamber 6, but it is not limited to this. That is, the position of the crucible 7 at the time of the initial operation may be above the airtight chamber 6. 3 and 4 show the apparatus. The device shown therein is a second embodiment of the present invention. In this case, the aforementioned constriction 11 may be provided in the middle or lower part of the moving rod 9. Also in this case, the constriction is provided over the entire circumference of the moving rod. The constriction allows the gas passage 12 to communicate with the inside and outside of the airtight chamber 6 to perform an initial operation (FIG. 4). When the initial operation is completed, the moving rod 9 is moved slightly downward to complete the sealing (FIG. 3).
It is possible to move to the next operation stage promptly.

【0030】また第1、第2実施例においては、気密チ
ャンバー6の内部に、加熱装置5a〜5dをそれぞれ独
立して制御することによって高温から低温に推移する温
度分布を形成し、ルツボ7を支持移動手段9によって前
記温度分布に沿って移動可能としているのである。ま
た、上述の第1、第2実施例はいずれもVB法である
が、VGF法への適用も可能である。この場合は、原料
を収納するルツボの支持移動手段としてルツボ支持台を
設けている。従ってルツボ支持台がシール部材と接触す
る部分にくびれをルツボ支持台の全周にわたって設けて
おき、該ルツボ支持台が移動できる構造に設定しておけ
ば、上述の二つの実施例と同様の効果が得られる。
In the first and second embodiments, the temperature distribution which changes from a high temperature to a low temperature is formed in the airtight chamber 6 by independently controlling the heating devices 5a to 5d. The supporting and moving means 9 can move along the temperature distribution. Although the first and second embodiments are all based on the VB method, they can also be applied to the VGF method. In this case, a crucible support is provided as a crucible supporting and moving means for storing the raw material. Therefore, if the crucible support is provided with a constriction at the portion where the crucible support comes into contact with the seal member over the entire circumference of the crucible support and the crucible support is configured to be movable, the same effect as in the above two embodiments can be obtained. Is obtained.

【0031】また図3及び図4に示した第2実施例にお
いて、支持移動手段である移動ロッド9に軸芯方向のガ
ス通路12を図3、4の仮想線で示すように形成して、
該ガス通路12の出口をくびれ11にすることもでき
る。この場合、移動ロッド9はパイプ材とすることも可
能である。なお本発明の適用は上述のVB法及びVGF
法に限定されるものではない。温度勾配を設定して結晶
成長を行う他の方法にも適用可能である。例えば水平方
向に温度勾配を設定する方法であっても、原料収納容器
を支持する部材にくびれを設け、該くびれを水平方向に
移動させることによって、該原料収納容器が収められて
いる気密容器内の気密性をシール部材との接触により調
整することが可能である。
In the second embodiment shown in FIGS. 3 and 4, a gas passage 12 in the axial direction is formed in the moving rod 9 as the support moving means as shown by phantom lines in FIGS.
The outlet of the gas passage 12 may be a constriction 11. In this case, the moving rod 9 can be a pipe material. The application of the present invention is based on the above-described VB method and VGF
It is not limited to law. The present invention is also applicable to other methods for performing crystal growth by setting a temperature gradient. For example, even in a method of setting a temperature gradient in the horizontal direction, a constriction is provided in a member supporting the raw material storage container, and the constriction is moved in the horizontal direction, so that the inside of the airtight container in which the raw material storage container is stored. Can be adjusted by contact with the sealing member.

【0032】なお、本発明に係る化合物単結晶の成長装
置は、上述したものに限定されるものではない。本発明
の前述した第1、第2実施例では移動ロッド9にくびれ
を設けているが、例えば台座13の上部にくびれ11を
設け、移動ロッド9にシール部材10を設けてもよい。
図5はこの場合(第3実施例)における結晶成長装置の
気密チャンバー内の概略図である。図5(1)は移動ロ
ッド9に設けられたシール部材10がガス通路12を塞
いでいる状態で、図5(2)は移動ロッド9を移動させ
て開口部14を形成し、ガス通路12をチャンバーの内
外へ連通させた状態である。
The apparatus for growing a compound single crystal according to the present invention is not limited to the above-described apparatus. In the above-described first and second embodiments of the present invention, the constriction is provided on the moving rod 9. However, for example, a constriction 11 may be provided on the upper part of the pedestal 13 and the sealing member 10 may be provided on the moving rod 9.
FIG. 5 is a schematic view of the inside of the airtight chamber of the crystal growth apparatus in this case (third embodiment). FIG. 5A shows a state in which the seal member 10 provided on the moving rod 9 blocks the gas passage 12, and FIG. 5B shows the state in which the moving rod 9 is moved to form the opening 14, and the gas passage 12 is formed. Is connected to the inside and outside of the chamber.

【0033】また図6に示す第4実施例のように、台座
13の胴部に均圧通路19の一つ又は複数を形成し、一
方、下蓋3に通路20を形成してもよい。これらの通路
を形成すれば、気密チャンバー内へのガス送気(図6の
実線で示す)と気密チャンバー外へのガス排出(図6の
点線で示す)の効率がよくなり、短時間でガス交換や真
空引きを行うことが可能である。
Further, as in the fourth embodiment shown in FIG. 6, one or more of the pressure equalizing passages 19 may be formed in the body of the pedestal 13, while the passage 20 may be formed in the lower lid 3. By forming these passages, the efficiency of gas supply into the airtight chamber (shown by a solid line in FIG. 6) and discharge of gas out of the airtight chamber (shown by a dotted line in FIG. 6) can be improved, and gas can be removed in a short time. Exchange and evacuation are possible.

【0034】[0034]

【発明の効果】本発明の化合物単結晶の成長装置及び成
長方法によれば、高品質な半導体材料を得るために必要
な操作、すなわち不純物の濃度を抑えるための真空引き
やガス置換等の初期操作が効率的に行える。
According to the apparatus and method for growing a compound single crystal of the present invention, operations necessary for obtaining a high-quality semiconductor material, that is, initial steps such as evacuation and gas replacement for suppressing the concentration of impurities are performed. Operation can be performed efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例にかかる装置の断面図であ
る。
FIG. 1 is a sectional view of an apparatus according to a first embodiment of the present invention.

【図2】第1実施例の初期操作時における装置の断面図
である。
FIG. 2 is a cross-sectional view of the device during an initial operation of the first embodiment.

【図3】本発明の第2実施例にかかる装置の断面図であ
る。
FIG. 3 is a sectional view of an apparatus according to a second embodiment of the present invention.

【図4】第2実施例の初期操作時における装置の断面図
である。
FIG. 4 is a cross-sectional view of the device during an initial operation of the second embodiment.

【図5】本発明の第3実施例の要部動作を示し、(1)
はガス通路を塞いだ状態、(2)は該通路を開放した状
態を示したものである。
FIG. 5 shows an operation of a main part of the third embodiment of the present invention, and (1)
Indicates a state in which the gas passage is closed, and (2) indicates a state in which the passage is opened.

【図6】本発明の第4実施例にかかる第4実施例の断面
図である。
FIG. 6 is a sectional view of a fourth embodiment according to the fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 下蓋 4 断熱材 5 加熱装置 5a〜5d 加熱装置 6 気密チャンバー 7 ルツボ 8 リザーバ 9 移動ロッド 10 シール部材 11 くびれ 12 ガス通路 13 台座 14 開口部 19 均圧通路 20 通路 Reference Signs List 3 lower lid 4 heat insulator 5 heating device 5a to 5d heating device 6 airtight chamber 7 crucible 8 reservoir 9 moving rod 10 seal member 11 constriction 12 gas passage 13 pedestal 14 opening 19 equalizing passage 20 passage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/368 H01L 21/368 Z Fターム(参考) 4G050 DB04 DB08 DB21 4G077 AA02 BE46 CD02 CD04 EG21 5F053 AA07 AA08 AA09 AA11 AA12 AA33 AA48 BB15 BB60 DD03 DD14 DD20 FF04 GG01 KK07 RR01 RR03 RR05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/368 H01L 21/368 Z F-term (Reference) 4G050 DB04 DB08 DB21 4G077 AA02 BE46 CD02 CD04 EG21 5F053 AA07 AA08 AA09 AA11 AA12 AA33 AA48 BB15 BB60 DD03 DD14 DD20 FF04 GG01 KK07 RR01 RR03 RR05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 化合物単結晶原料を収納するルツボを気
密チャンバーで覆い、該気密チャンバー内の蒸気が該気
密チャンバーの外部に漏洩しないためのシール部材が設
けられ、前記ルツボ内の融液を冷却固化して単結晶を成
長させる化合物単結晶成長装置において、前記ルツボを
支える支持移動手段を備え、該支持移動手段は前記気密
チャンバーの軸芯方向に移動自在であり、前記気密チャ
ンバーの内外に連通するガス通路を前記支持移動手段の
移動によって前記シール部材を介して開閉自在としたこ
とを特徴とする化合物単結晶成長装置。
1. A crucible for accommodating a compound single crystal raw material is covered with an airtight chamber, a seal member is provided to prevent vapor in the airtight chamber from leaking out of the airtight chamber, and a melt in the crucible is cooled. A compound single crystal growth apparatus for solidifying and growing a single crystal, comprising a supporting and moving means for supporting the crucible, wherein the supporting and moving means is movable in the axial direction of the hermetic chamber and communicates with the inside and outside of the hermetic chamber. Wherein the gas passage to be opened and closed can be opened and closed via the seal member by the movement of the support moving means.
【請求項2】 前記支持移動手段は移動ロッドまたは支
持台であり、該支持移動手段にはくびれが形成されてお
り、該支持移動手段の移動によって該くびれが前記シー
ル部材に対して接離することにより前記ガス通路の開閉
を自在としたことを特徴とする請求項1に記載の化合物
単結晶成長装置。
2. The support moving means is a moving rod or a support base, and the support moving means is formed with a constriction, and the constriction is moved toward and away from the seal member by the movement of the support moving means. 2. The compound single crystal growing apparatus according to claim 1, wherein the gas passage can be freely opened and closed.
【請求項3】 初期操作時の前記ルツボの位置が前記気
密チャンバー内上方の場合は、前記くびれが前記支持移
動手段の中途または下方部分に設けられて前記シール部
材に非接触とされており、一方初期操作時の前記ルツボ
の位置が気密チャンバー内下方の場合は、前記くびれが
前記支持移動手段の上方部分に設けられて前記シール部
材と非接触とされていることを特徴とする請求項1また
は2に記載の化合物単結晶成長装置。
3. When the position of the crucible at the time of the initial operation is above the airtight chamber, the constriction is provided in the middle or lower part of the support moving means so as not to contact the seal member. On the other hand, when the position of the crucible at the time of the initial operation is below the inside of the airtight chamber, the constriction is provided in an upper portion of the support moving means so as not to contact the seal member. Or the compound single crystal growing apparatus according to 2.
【請求項4】 前記気密チャンバーの内部に高温から低
温に推移する温度分布を形成し、前記ルツボを前記支持
移動手段によって前記温度分布に沿って移動可能とした
ことを特徴とする請求項1〜3のいずれか一つに記載の
化合物単結晶成長装置。
4. A temperature distribution from a high temperature to a low temperature is formed inside the airtight chamber, and the crucible can be moved along the temperature distribution by the support moving means. 3. The compound single crystal growing apparatus according to any one of 3.
【請求項5】 化合物単結晶原料を収納するルツボを気
密チャンバーで覆い、該気密チャンバー内の蒸気が該気
密チャンバーの外部に漏洩しないためのシール部材が設
けられ、前記ルツボ内の融液を冷却固化して単結晶を成
長させる化合物単結晶成長方法において、前記ルツボを
支える支持移動手段の周囲または該手段にガス通路を設
け、該ガス通路により初期操作を行うことを特徴とする
化合物単結晶成長方法。
5. A crucible containing a compound single crystal raw material is covered with an airtight chamber, a seal member is provided to prevent vapor in the airtight chamber from leaking out of the airtight chamber, and a melt in the crucible is cooled. A compound single crystal growth method for solidifying and growing a single crystal, wherein a gas passage is provided around or around the supporting and moving means supporting the crucible, and an initial operation is performed by the gas passage. Method.
【請求項6】 前記支持移動手段にはくびれが形成され
ていて、該支持移動手段の移動によって該くびれが前記
シール部材に対して接離することにより前記ガス通路の
開閉を自在としたことを特徴とする請求項5に記載の化
合物単結晶成長方法。
6. A constriction is formed in said support moving means, and said gas passage is freely opened and closed by moving said support convey means so that said constriction comes into contact with and separates from said seal member. The method for growing a compound single crystal according to claim 5.
JP19455398A 1998-07-09 1998-07-09 Compound single crystal growth apparatus and method Expired - Fee Related JP3725700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19455398A JP3725700B2 (en) 1998-07-09 1998-07-09 Compound single crystal growth apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19455398A JP3725700B2 (en) 1998-07-09 1998-07-09 Compound single crystal growth apparatus and method

Publications (2)

Publication Number Publication Date
JP2000026190A true JP2000026190A (en) 2000-01-25
JP3725700B2 JP3725700B2 (en) 2005-12-14

Family

ID=16326452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19455398A Expired - Fee Related JP3725700B2 (en) 1998-07-09 1998-07-09 Compound single crystal growth apparatus and method

Country Status (1)

Country Link
JP (1) JP3725700B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091698B2 (en) 2002-05-14 2006-08-15 Sony Corporation Battery capacity calculating method
US7677341B2 (en) 2005-06-01 2010-03-16 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of hybrid vehicle
CN102140686A (en) * 2010-02-03 2011-08-03 中国科学院福建物质结构研究所 Novel polycrystalline silicon smelting furnace
CN112195518A (en) * 2020-09-25 2021-01-08 威科赛乐微电子股份有限公司 Single crystal furnace for VB-method InP single crystal growth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091698B2 (en) 2002-05-14 2006-08-15 Sony Corporation Battery capacity calculating method
US7677341B2 (en) 2005-06-01 2010-03-16 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of hybrid vehicle
CN102140686A (en) * 2010-02-03 2011-08-03 中国科学院福建物质结构研究所 Novel polycrystalline silicon smelting furnace
CN112195518A (en) * 2020-09-25 2021-01-08 威科赛乐微电子股份有限公司 Single crystal furnace for VB-method InP single crystal growth

Also Published As

Publication number Publication date
JP3725700B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US3665888A (en) Horizontal liquid phase crystal growth apparatus
US6254677B1 (en) Semiconductor crystal, and method and apparatus of production thereof
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
JP4416040B2 (en) Compound semiconductor crystal
JP2008239480A5 (en)
JP2000026190A (en) Equipment for growing compound single crystal and method for growing compound single crystal, using the same
JP2004256392A (en) Method of manufacturing compound semiconductor crystal and compound semiconductor crystal
JP3881052B2 (en) Single crystal manufacturing equipment
JP3254329B2 (en) Method and apparatus for producing compound single crystal
JP2000203981A (en) Multiple single crystal producing device
US3648654A (en) Vertical liquid phase crystal growth apparatus
JP3697341B2 (en) Compound single crystal production equipment and / or heat treatment equipment
JPH092890A (en) Single crystal growth of compound semiconductor and apparatus therefor
JP3492820B2 (en) Compound semiconductor single crystal manufacturing equipment
JP4399631B2 (en) Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same
JPH08119784A (en) Production of compound single crystal and production device therefor
JP2010030868A (en) Production method of semiconductor single crystal
JPH10185455A (en) Heat treating apparatus
US10815586B2 (en) Gallium-arsenide-based compound semiconductor crystal and wafer group
KR100416736B1 (en) Method for fabricating single crystal using vpe growth method
JP3391598B2 (en) Compound semiconductor single crystal manufacturing apparatus and manufacturing method using the same
JP3445046B2 (en) Method and apparatus for producing compound crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH0959090A (en) Production of chemical single crystal and apparatus therefor
JP2005200279A (en) Method for manufacturing silicon ingot and solar battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees