JP2000017353A - Copper alloy excellent in hot workability - Google Patents

Copper alloy excellent in hot workability

Info

Publication number
JP2000017353A
JP2000017353A JP10179300A JP17930098A JP2000017353A JP 2000017353 A JP2000017353 A JP 2000017353A JP 10179300 A JP10179300 A JP 10179300A JP 17930098 A JP17930098 A JP 17930098A JP 2000017353 A JP2000017353 A JP 2000017353A
Authority
JP
Japan
Prior art keywords
weight
copper alloy
hot
kinds
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10179300A
Other languages
Japanese (ja)
Inventor
慶平 ▲冬▼
Kiyouhei Fuyu
Hajime Sasaki
元 佐々木
Noriyuki Nomoto
詞之 野本
Koichi Furutoku
浩一 古徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10179300A priority Critical patent/JP2000017353A/en
Publication of JP2000017353A publication Critical patent/JP2000017353A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of cracking of a copper alloy at the time of hot rolling and to improve its workability by allowing it to have a specified compsn. contg. Fe, P, Zn, Mg, Al and one or more kinds among Si, Mn and Ti, and the balance Cu. SOLUTION: This copper alloy contains, by weight, 1.5 to 2.4% Fe, 0.001 to 0.1% P, 0.01 to 0.5% Zn, 0.001 to 0.12% Mg, 0.001 to 0.1% Al, one or more kinds among Si, Mn and Ti by 0.001 to 0.1%, and the balance Cu. The copper alloy is composed of a Cu-Fe series alloy, in which each alloy element is added by a suitable amt. to suppress the precipitation of Fe into grain boundaries and to improve the medium-high temp. strength of the boundaries, by which its hot workability is improved. As for the contents of Si, Mn and Ti, preferably, they are set to, by weight %, Mn>Si>Ti in the case of the simultaneous incorporation of the three kinds and to Mn>Si, Si>Ti or Mn>Ti in the case of the incorporation of the two kinds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間加工性に優れ
た銅合金に関し、特に、熱間加工時に割れを発生させる
ことのないCu−Fe系銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy having excellent hot workability, and more particularly to a Cu--Fe based copper alloy which does not crack during hot working.

【0002】[0002]

【従来の技術】従来、半導体装置のリードフレーム、あ
るいは端子コネクター等に使用される銅合金として、た
とえば、Feを1.5〜3重量%、Pを0.01〜0.
15重量%、およびZnを0.03〜1重量%含有した
Cu−Fe系銅合金が知られている。
2. Description of the Related Art Conventionally, as a copper alloy used for a lead frame or a terminal connector of a semiconductor device, for example, 1.5 to 3% by weight of Fe and 0.01 to 0.
A Cu—Fe-based copper alloy containing 15% by weight and 0.03 to 1% by weight of Zn is known.

【0003】通常、この銅合金からリードフレーム等を
製造するには、次の手順を経る。まず、銅合金を加熱し
て溶湯とし、これを連続または半連続的に鋳造してイン
ゴットを作り、次に、これを800〜1050℃の温度
で熱間圧延し、水冷後、熱延板の両面を面削する。
[0003] Usually, the following procedure is performed to manufacture a lead frame or the like from this copper alloy. First, a copper alloy is heated to form a molten metal, which is continuously or semi-continuously cast to produce an ingot. Then, the ingot is hot-rolled at a temperature of 800 to 1050 ° C., and water-cooled. Shave both sides.

【0004】面削された板は、次いで、冷間圧延と時効
加熱処理と表面研磨を繰り返された後、最終圧延され、
歪みとり焼鈍を施されることによって、所定の銅合金条
とされる。
[0004] The surface-cut sheet is then subjected to cold rolling, aging heat treatment, and surface polishing, and then to final rolling.
By performing the strain relief annealing, a predetermined copper alloy strip is formed.

【0005】次に、この合金条は、金型でのプレス、打
ち抜き、曲げ加工などの諸加工を施された後、必要に応
じてメッキ処理をされ、所定のリードフレームあるいは
端子コネクターとされる。
[0005] Next, the alloy strip is subjected to various processes such as pressing, punching, bending and the like in a mold, and then, if necessary, is plated to obtain a predetermined lead frame or terminal connector. .

【0006】この銅合金は、Feを1.5〜3.0重量
%含有することによって特徴づけられており、優れた機
械的強度と導電性とを兼ね備えていることから、特に、
リードフレームの分野で広く活用されている。
[0006] This copper alloy is characterized by containing 1.5 to 3.0% by weight of Fe, and has excellent mechanical strength and electrical conductivity.
Widely used in the field of lead frames.

【0007】[0007]

【発明が解決しようとする課題】しかし、このCu−F
e系銅合金によると、熱間圧延の際に、熱延材の耳部に
エッジ割れを発生させやすい問題を有している。割れが
発生した熱延材は、内部に粒界割れを有するのが普通で
あり、このため、このような材料を使用してリードフレ
ームを製造すると、リード破損やメッキ膨れなどを多発
させることになる。
However, this Cu-F
According to the e-based copper alloy, there is a problem that edge cracks are apt to be generated at the edge of the hot-rolled material during hot rolling. The hot rolled material that has cracked usually has internal grain boundary cracks.Therefore, when a lead frame is manufactured using such a material, lead breakage and plating swelling often occur. Become.

【0008】従って、本発明の目的は、熱間圧延時に割
れを発生させることのない加工性に優れたCu−Fe系
銅合金を提供することにある。
Accordingly, an object of the present invention is to provide a Cu-Fe-based copper alloy which is excellent in workability without causing cracks during hot rolling.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、Feを1.5〜2.4重量%、Pを0.
001〜0.1重量%、Znを0.01〜0.5重量
%、Mgを0.001〜0.12重量%、Alを0.0
01〜0.1重量%、およびSi、Mn、Tiのうちの
1種以上を0.001〜0.1重量%含有し、残部がC
uから成ることを特徴とする熱間加工性に優れた銅合金
を提供するものである。
According to the present invention, 1.5 to 2.4% by weight of Fe and 0.
001-0.1% by weight, Zn 0.01-0.5% by weight, Mg 0.001-0.12% by weight, Al 0.0%
0.01 to 0.1% by weight, and 0.001 to 0.1% by weight of at least one of Si, Mn, and Ti, and the remainder is C
It is intended to provide a copper alloy excellent in hot workability characterized by being made of u.

【0010】一般に、銅合金等の連続または半連続鋳造
においては、鋳塊表層の数mmを除いた部分は徐々に冷
却される形で凝固する。このため、凝固後の冷却過程で
は、固溶限界を超えて固溶した合金元素が、結晶粒界お
よび結晶粒内に析出するようになる。
Generally, in continuous or semi-continuous casting of a copper alloy or the like, a portion of the surface layer of the ingot other than a few mm is solidified while being gradually cooled. For this reason, in the cooling process after solidification, the alloy element that has dissolved beyond the solid solution limit precipitates in the crystal grain boundaries and crystal grains.

【0011】一方、Cu−Fe系合金における550℃
以下でのCu中へのFeの固溶は、0.15%が限界で
あり、このため、0.15%を超える部分のFeは、結
晶粒界と結晶粒内に析出することになるが、結晶粒内に
多量のFeが析出すると、高温下での粒界すべりが起こ
りにくくなることから、粒界の強度が低下するようにな
り、結果として、熱間圧延時に割れが発生するようにな
る。
On the other hand, 550 ° C. in a Cu—Fe alloy
The limit of the solid solution of Fe in Cu below is 0.15%, and therefore, the portion of Fe exceeding 0.15% precipitates in the crystal grain boundaries and crystal grains. When a large amount of Fe precipitates in the crystal grains, the grain boundary slip at high temperatures is unlikely to occur, so that the strength of the grain boundaries decreases, and as a result, cracks occur during hot rolling. Become.

【0012】本発明は、特定の合金元素を添加すること
により、結晶粒界へのFeの析出を抑制して粒界の中高
温強度を改善し、これにより熱間加工性を向上させよう
とするものであるが、これにはFeの含有量も重要な要
素として関与してくることになる。
The present invention is intended to suppress the precipitation of Fe at the crystal grain boundaries by adding a specific alloying element to improve the medium to high temperature strength of the grain boundaries, thereby improving the hot workability. However, the content of Fe also plays an important factor in this.

【0013】上記したFeの含有上限値2.4重量%
は、以上の効果を得るための不可欠の要件であり、これ
を超えての含有は、熱間加工時の割れ発生につながるこ
とから避ける必要がある。
The upper limit of the content of Fe is 2.4% by weight.
Is an indispensable requirement for obtaining the above-mentioned effects, and a content exceeding this is necessary to avoid cracks during hot working, and thus must be avoided.

【0014】Feの含有下限値を1.5重量%に設定す
る理由は、Cu中にFeを析出させることによって得ら
れる強度および耐熱性向上の効果を確保するためであ
り、もし、Feの含有量がこれを下廻るときには、充分
な強度と耐熱性とが得られなくなる。
The reason for setting the lower limit of Fe content to 1.5% by weight is to secure the effect of improving the strength and heat resistance obtained by precipitating Fe in Cu. If the amount is less than this, sufficient strength and heat resistance cannot be obtained.

【0015】本発明におけるMgは、結晶粒界へのFe
の析出を防止すると同時に、原料や炉材、あるいは雰囲
気等から不可避的に混入するSをトラップし、これを安
定なMg化合物の形にして母相中に固定し、これによっ
て熱間加工性を向上させるために混入されるものである
が、この目的のためには、含有量を0.001〜0.1
2重量%に設定する必要がある。
[0015] In the present invention, Mg represents Fe
At the same time as trapping S that is inevitably mixed in from the raw material, furnace material, atmosphere, etc., and fixing it in the form of a stable Mg compound in the mother phase, thereby improving hot workability. It is added to improve the content. For this purpose, the content is 0.001 to 0.1.
It must be set to 2% by weight.

【0016】Mgの含有量が0.001重量%未満にな
ると、Sが結晶粒界中を移動して粒界割れを助長するよ
うになり、熱間加工性の向上効果が不充分なものとな
る。一方、逆に、Mgが0.12重量%を超過する場合
には、導電性の低下を招くばかりか、溶湯が酸化して湯
流れが悪くなり、鋳造困難な状態を招くようになる。
If the Mg content is less than 0.001% by weight, S moves in the crystal grain boundaries to promote grain boundary cracking, and the effect of improving hot workability is insufficient. Become. On the other hand, when Mg exceeds 0.12% by weight, not only the conductivity is lowered, but also the molten metal is oxidized and the flow of the molten metal is deteriorated, so that the casting becomes difficult.

【0017】Alの含有量を0.001〜0.1重量%
に限定する理由は、熱間加工性の向上と導電性確保のた
めである。0.001重量%未満では、Mgと共存して
の結晶粒界へのFe析出防止効果と、それによる熱間加
工性改善が不充分なものとなり、逆に、0.1重量%を
超えると、熱間加工性の改善効果が飽和するようになる
とともに、導電性が低下するようになる。
The content of Al is 0.001 to 0.1% by weight.
The reason for limiting to is to improve hot workability and ensure conductivity. If the content is less than 0.001% by weight, the effect of preventing Fe precipitation at the crystal grain boundaries in the presence of Mg and the improvement in hot workability thereby become insufficient. In addition, the effect of improving hot workability is saturated, and the conductivity is reduced.

【0018】Znの添加は、脱酸および脱ガス効果を得
るためであり、これらの効果に充分なものを得るために
は、含有量を0.01〜0.5重量%とする必要があ
る。含有量を0.01重量%未満に設定すると、脱酸、
脱ガス効果に充分な結果が得られず、逆に、0.5重量
%を超えると、導電性の低下をもたらすことになるの
で、避ける必要がある。
The addition of Zn is for obtaining deoxidizing and degassing effects, and in order to obtain sufficient effects for these effects, the content needs to be 0.01 to 0.5% by weight. . When the content is set to less than 0.01% by weight, deoxidation,
Sufficient results cannot be obtained for the degassing effect. Conversely, if the content exceeds 0.5% by weight, a decrease in conductivity will be caused, and thus it is necessary to avoid such a problem.

【0019】Pは、溶湯を鋳造するときの脱酸のために
不可欠であり、その含有量は0.001〜0.1重量%
の範囲に設定される。0.001重量%未満では充分な
脱酸効果が得られず、また、0.1重量%を超過しても
脱酸効果のさらなる向上はなく、むしろ、かえって導電
性の低下と加工性の悪化を招くようになることから、避
ける必要がある。
P is indispensable for deoxidation when casting a molten metal, and its content is 0.001 to 0.1% by weight.
Is set in the range. If the amount is less than 0.001% by weight, a sufficient deoxidizing effect cannot be obtained. If the amount exceeds 0.1% by weight, the deoxidizing effect is not further improved. Need to be avoided.

【0020】本発明においては、Si、Mn、Tiのう
ちの1種以上が0.001〜0.1重量%の範囲内で添
加されるが、これを添加する理由は、やはり熱間加工性
を向上させるためであり、その量が設定値未満になる
と、熱間圧延時の割れ防止に充分な結果が得られない。
また、これらの含有量が0.1重量%を超えるときに
は、溶湯が酸化しやすくなり、良質の鋳塊が得られなく
なる。
In the present invention, one or more of Si, Mn, and Ti are added in a range of 0.001 to 0.1% by weight. When the amount is less than the set value, a sufficient result for preventing cracking during hot rolling cannot be obtained.
On the other hand, when the content exceeds 0.1% by weight, the molten metal is easily oxidized, and a high quality ingot cannot be obtained.

【0021】これら3種成分の含有量としては、3種同
時含有のときは、重量%においてMn>Si>Tiとな
るように設定することが望ましく、また、2種含有時に
は、同じく重量%においてMn>Si、Si>Ti、あ
るいはMn>Tiとなるように設定することが望まし
い。
The content of these three components is desirably set so that Mn>Si> Ti in wt% when the three components are simultaneously contained, and in the case of two components, the content is also the same in wt%. It is desirable to set so that Mn> Si, Si> Ti, or Mn> Ti.

【0022】以上、各成分の添加理由と含有量設定理由
について説明したが、Fe 2.0〜2.3重量%、P
0.015〜0.05重量%、Zn 0.05〜0.
15重量%、Mg 0.005〜0.08重量%、Al
0.005〜0.05重量%、Si、Mn、Tiの1
種以上を0.001〜0.1重量%、および残部銅から
成る組成を、本発明の目的を達成するためのより好まし
く、より限定された組成として推奨することができる。
The reason for adding each component and the reason for setting the content have been described above.
0.015-0.05% by weight, Zn 0.05-0.
15% by weight, Mg 0.005 to 0.08% by weight, Al
0.005 to 0.05% by weight, 1 of Si, Mn, Ti
Compositions comprising at least 0.001 to 0.1% by weight of the seed and the balance copper can be recommended as more preferred and more limited compositions to achieve the objects of the present invention.

【0023】なお、本発明による銅合金の中には、不可
避的に混入する不純物は当然含まれ、また、発明の目的
を阻害しないかぎり、他の成分の添加は可能である。
The copper alloy according to the present invention naturally contains impurities unavoidably mixed therein, and other components can be added as long as the object of the present invention is not impaired.

【0024】[0024]

【発明の実施の形態】次に、本発明による銅合金の実施
の形態について説明する。
Next, an embodiment of a copper alloy according to the present invention will be described.

【実施例】電気銅を木炭で被覆することにより大気から
遮断し、低周波誘導溶解炉を使用して溶解した溶湯に、
表1に示された種類と量の元素成分を添加して各実施例
および比較例毎の溶湯を調合した。
[Examples] Electrolytic copper is covered with charcoal to block it from the atmosphere, and is melted using a low-frequency induction melting furnace.
The types and amounts of elemental components shown in Table 1 were added to prepare molten metals for each of the examples and comparative examples.

【0025】[0025]

【表1】 [Table 1]

【0026】次いで、これらの溶湯をそれぞれ鋳型に鋳
造し、厚さ150mm、幅450mm、長さ3500m
mの銅合金インゴットを製造した後、これを950℃の
温度下で熱間圧延することにより、厚さ11mmの熱延
板を製造した。この間の熱間圧延作業は、1パス毎の圧
下率を約21%、圧延最終温度が650℃以下となるよ
うに条件を設定して行われた。
Next, each of these melts is cast into a mold, and has a thickness of 150 mm, a width of 450 mm, and a length of 3500 m.
After manufacturing a copper alloy ingot having a thickness of 11 mm, a hot-rolled sheet having a thickness of 11 mm was manufactured by hot rolling at a temperature of 950 ° C. During this hot rolling, the conditions were set such that the rolling reduction per pass was about 21% and the final rolling temperature was 650 ° C. or less.

【0027】次に、このようにして得られた熱延板の上
下面を面削することにより厚さ11mmの板とし、さら
に、これを冷間圧延することによって厚さ2mmに圧延
し、600℃で1時間の時効熱処理を施した。
Next, the upper and lower surfaces of the hot-rolled sheet thus obtained were chamfered into a sheet having a thickness of 11 mm, and the sheet was cold-rolled to be rolled to a thickness of 2 mm. An aging heat treatment at 1 ° C. for 1 hour was performed.

【0028】次に、熱処理した板の表面から酸化膜を除
去し、2次冷間圧延を行って厚さ0.8mmのシート材
とした後、圧下率75%で最終圧延を行い、0.2mm
厚さのCu−Fe系銅合金薄帯を完成した。
Next, the oxide film was removed from the surface of the heat-treated sheet, and the sheet was subjected to secondary cold rolling to form a sheet material having a thickness of 0.8 mm. Then, final rolling was performed at a rolling reduction of 75%. 2mm
A Cu—Fe-based copper alloy ribbon having a thickness was completed.

【0029】表1に、以上のようにして遂行された実施
例と比較例の熱間圧延における割れ発生についての観察
結果を示した。観察は圧延パス毎に行い、何回目のパス
のときに割れが発生したかを表示した。参考のため、表
2には、鋳造時の割れの有無と完成品(薄帯)における
表面欠陥の有無についても示す。
Table 1 shows the results of observations on the occurrence of cracks in hot rolling of the examples and comparative examples performed as described above. The observation was performed for each rolling pass, and the number of passes in which the crack occurred was displayed. For reference, Table 2 also shows the presence or absence of cracks during casting and the presence or absence of surface defects in the finished product (ribbon).

【0030】[0030]

【表2】 [Table 2]

【0031】この観察結果によれば、実施例1〜4の場
合が熱間圧延時に全く割れを発生させていないのに比
べ、比較例はいずれも耳部エッジに割れを発生させてお
り、特に、比較例4の場合には3回目で表面が割れ、5
回目には崩壊にまで至っている。
According to the results of the observation, in the case of Examples 1 to 4, no cracks were generated at the time of hot rolling, whereas in the comparative examples, cracks were generated at the edge of the ear. In the case of Comparative Example 4, the surface cracked at the third
The second time has led to collapse.

【0032】また、鋳造割れや完成品の表面欠陥の面で
も、実施例が全く問題がないのに比べ、比較例の場合に
は4例中2例に鋳造割れを発生させ、さらに、4例中4
例に完成品の表面欠陥を発生させており、実施例と比較
例の間には明確な差が認められる。
In the case of casting cracks and surface defects of the finished product, there is no problem in the embodiment, but in the case of the comparative example, casting cracks occurred in two out of four cases. Medium 4
In the examples, surface defects of the finished product were generated, and a clear difference was observed between the examples and the comparative examples.

【0033】[0033]

【発明の効果】以上のように、本発明によれば、Fe、
P、Zn、Mg、Alのそれぞれと、Si、Mn、Ti
のうちの1種以上とをCuに添加し、さらに、これら成
分の含有量をそれぞれ特定の範囲内に設定することによ
って、熱間圧延時に割れが発生しない熱間加工性に優れ
たCu−Fe系銅合金を提供するものであり、この種銅
合金の有用性を高めるうえにおいて、効果大である。
As described above, according to the present invention, Fe,
P, Zn, Mg, Al and Si, Mn, Ti
By adding one or more of these to Cu, and further setting the content of each of these components in a specific range, Cu-Fe excellent in hot workability that does not generate cracks during hot rolling. The present invention provides a copper based alloy and is highly effective in enhancing the usefulness of this type of copper alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野本 詞之 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内 (72)発明者 古徳 浩一 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yukiyuki Nomoto 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Within Hitachi Cable System Materials Laboratory (72) Inventor Koichi Kotoku 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Inside the System Materials Laboratory Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Feを1.5〜2.4重量%、Pを0.0
01〜0.1重量%、Znを0.01〜0.5重量%、
Mgを0.001〜0.12重量%、Alを0.001
〜0.1重量%、およびSi、Mn、Tiのうちの1種
以上を0.001〜0.1重量%含有し、残部がCuか
ら成ることを特徴とする熱間加工性に優れた銅合金。
(1) 1.5 to 2.4% by weight of Fe and 0.0% of P
01-0.1% by weight, Zn 0.01-0.5% by weight,
0.001 to 0.12% by weight of Mg, 0.001% of Al
Copper having excellent hot workability, characterized in that the copper content is 0.001 to 0.1% by weight, and at least one of Si, Mn and Ti is 0.001 to 0.1% by weight, and the balance is Cu. alloy.
【請求項2】Si、MnおよびTiは、重量%において
Mn>Si>Tiの割合で3種とも含有されることを特
徴とする請求項第1項記載の熱間加工性に優れた銅合
金。
2. The copper alloy excellent in hot workability according to claim 1, wherein Si, Mn and Ti are contained in a proportion of Mn>Si> Ti in weight%. .
【請求項3】Si、MnおよびTiは、重量%において
Mn>Si、Si>Ti、あるいはMn>Tiの割合で
2種以上含有されることを特徴とする請求項第1項記載
の熱間加工性に優れた銅合金。
3. The hot working method according to claim 1, wherein two or more kinds of Si, Mn and Ti are contained in a ratio of Mn> Si, Si> Ti or Mn> Ti in% by weight. Copper alloy with excellent workability.
JP10179300A 1998-06-25 1998-06-25 Copper alloy excellent in hot workability Pending JP2000017353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10179300A JP2000017353A (en) 1998-06-25 1998-06-25 Copper alloy excellent in hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10179300A JP2000017353A (en) 1998-06-25 1998-06-25 Copper alloy excellent in hot workability

Publications (1)

Publication Number Publication Date
JP2000017353A true JP2000017353A (en) 2000-01-18

Family

ID=16063425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10179300A Pending JP2000017353A (en) 1998-06-25 1998-06-25 Copper alloy excellent in hot workability

Country Status (1)

Country Link
JP (1) JP2000017353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632300B2 (en) * 2000-06-26 2003-10-14 Olin Corporation Copper alloy having improved stress relaxation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632300B2 (en) * 2000-06-26 2003-10-14 Olin Corporation Copper alloy having improved stress relaxation resistance

Similar Documents

Publication Publication Date Title
JP4708485B2 (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP2004225093A (en) Copper-base alloy and manufacturing method therefor
WO2017043577A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5910790B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP6187629B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
WO2017043556A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP2017179490A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP2017179493A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP6187630B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP2012072470A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007126739A (en) Copper alloy for electronic material
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP2002348625A (en) Aluminum alloy sheet with superior warm formability, and manufacturing method therefor
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JP2000104131A (en) High strength and high conductivity copper alloy and its production
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JPH07242965A (en) Copper alloy excellent in plating property and electrical conductivity and thin sheet or strip constituted of the same copper alloy
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JP3941308B2 (en) Copper alloy with excellent hot workability
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP2000017353A (en) Copper alloy excellent in hot workability
JP2011017073A (en) Copper alloy material