JP2011017073A - Copper alloy material - Google Patents

Copper alloy material Download PDF

Info

Publication number
JP2011017073A
JP2011017073A JP2009164249A JP2009164249A JP2011017073A JP 2011017073 A JP2011017073 A JP 2011017073A JP 2009164249 A JP2009164249 A JP 2009164249A JP 2009164249 A JP2009164249 A JP 2009164249A JP 2011017073 A JP2011017073 A JP 2011017073A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
alloy material
ingot
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009164249A
Other languages
Japanese (ja)
Inventor
Chizuna Kamata
千綱 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009164249A priority Critical patent/JP2011017073A/en
Publication of JP2011017073A publication Critical patent/JP2011017073A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy material which can obtain desired strength, electric conductivity, stress relaxation properties or the like in accordance with the components which have been added such as Ni and Si by subjecting an ingot in which the size of crystallized products and dendrite secondary arm spacing is prescribed to rolling and heat treatment, thus evading the remaining of coarse crystallized products in the final strip product.SOLUTION: The copper alloy material is obtained by subjecting a copper alloy ingot comprising, by mass, 1.0 to 5.0% Ni, 0.2 to 1.1% Si, and the balance Cu with inevitable impurities, and in which the size of crystallized products is 0.5 to 10 μm, and dendrite secondary arm spacing is 10 to 50 μm to rolling and heat treatment.

Description

本発明は銅合金材に係り、特に、強度と導電性に優れ、電子電気機器部品の小型化に十分対応し得る端子、コネクタ、スイッチ、リレーなどの電子電気機器部品用銅合金板材または条材(以下、総称して銅合金材という)に関する。   The present invention relates to a copper alloy material, and in particular, a copper alloy plate material or strip material for electronic and electrical equipment parts such as terminals, connectors, switches, and relays, which is excellent in strength and conductivity and can sufficiently cope with downsizing of electronic and electrical equipment parts. (Hereinafter collectively referred to as copper alloy materials).

従来より電子電気機器部品には、Cu−Zn系合金、Cu−Fe系合金、Cu−Sn系合金などの銅合金が使用され、特に強度と導電率の両立が求められる電子電気機器部品にはCu−Ni−Si系合金(例えば、特許文献1参照)が使用されている。
しかし、近年、電子電気機器部品の小型化、高密度化に伴い、高強度でかつ導電性に優れる銅合金が求められている。さらに、その他の特性も重要視されている。例えば、箱型端子などではオス端子のタブ幅が2mm(090端子)から、約1mm(040端子)へといわゆるバネ部の断面積が減少する傾向にある。しかしながら、バネ部に要求される接触圧力は従来と同じであり、断面積の減少に伴い、バネの変位を大きく取ることで対処しており、材料への負荷応力が従来にも増して高くなり、より応力緩和が生じ易い状況になっている。Mgを添加して耐応力緩和特性を改善した銅合金(例えば、特許文献2参照)が提案されている。
Conventionally, copper-alloys such as Cu-Zn alloys, Cu-Fe alloys, Cu-Sn alloys, etc. have been used for electronic and electrical equipment parts, especially for electronic and electrical equipment parts that require both strength and electrical conductivity. A Cu—Ni—Si based alloy (for example, see Patent Document 1) is used.
However, in recent years, with the downsizing and increasing the density of electronic and electrical equipment components, a copper alloy having high strength and excellent conductivity has been demanded. In addition, other characteristics are also emphasized. For example, in the case of a box-type terminal or the like, the tab width of the male terminal tends to decrease from 2 mm (090 terminal) to about 1 mm (040 terminal), so-called the cross-sectional area of the spring portion. However, the contact pressure required for the spring part is the same as before, and as the cross-sectional area decreases, it is dealt with by taking a large displacement of the spring, and the stress applied to the material becomes higher than before. Thus, stress relaxation is more likely to occur. A copper alloy (for example, see Patent Document 2) in which the stress relaxation resistance is improved by adding Mg has been proposed.

また、プレス加工や曲げ加工についても同様であり、小型化に伴い曲げ半径が小さくなるなど、より厳しい曲げ加工が増えてきている。
Cu−Ni−Si−Zn系合金で、プレス性を改善するものとして、Ni−Si化合物の晶出物の大小サイズおよびその数の比を規定するものがあるが、これは鋳造する際の溶銅温度、保持時間および凝固に至るまでの温度での冷却速度を考慮したものである(例えば、特許文献3参照)。しかし、鋳造における冷却中において次の(A)〜(C)の熱履歴を経て鋳塊がえられる。すなわち、(A)液相のみ存在する温度帯(液相線温度以上の領域)、(B)母相のデンドライトが成長する温度帯(液相線、固相線温度の中間領域)、(C)デンドライト間隙の部位が凝固し、凝固が完了する領域(固相線温度以下の領域)である。鋳塊中の晶出物は(C)の固相線温度以下において生成されるものなので、鋳塊に所望のサイズの晶出物を得るためには固相線以下の冷却速度を考慮するのが重要である。
The same applies to press work and bending work, and more severe bending work is increasing, for example, the bend radius is reduced with downsizing.
There are Cu-Ni-Si-Zn alloys that improve the pressability, and specify the size of Ni-Si compound crystals and the ratio of the numbers. It takes into consideration the copper temperature, the holding time, and the cooling rate at the temperature until solidification (for example, see Patent Document 3). However, an ingot is obtained through the following thermal history (A) to (C) during cooling in casting. That is, (A) a temperature zone where only the liquid phase exists (region above the liquidus temperature), (B) a temperature zone where the parent phase dendrite grows (intermediate region between the liquidus and solidus temperature), (C ) The region where the dendrite gap is solidified and solidification is completed (region below the solidus temperature). Since the crystallized material in the ingot is generated below the solidus temperature of (C), in order to obtain a crystallized material of a desired size in the ingot, the cooling rate below the solidus is considered. is important.

また、曲げ加工性を安定的に改善、向上させるものとして、Cu−Ni−Si系にMg等を添加した合金おいて、鋳造時のシール手段や凝固位置の制御によって、金属組織のMg系介在物のサイズ、存在密度を規定するもの(例えば、特許文献4参照)がある。
その他、Cu−Ni−Si−Zn系合金で、安定した強度を確保することができるものとして、晶・析出物の粒径とその体積割合を定めたもの(例えば、特許文献5)、Cu−Ni−Si系合金で、NiSi析出物の粒径とその間隔を規定し、引張強さ、導電率を定めたもの(例えば、特許文献6)およびCu−Ni−Si−Mg系合金で、Ni−Si化合物粒子のサイズとその存在密度を規定するもの(例えば、特許文献7)等の銅合金がある。
しかし、これ等の銅合金は、鋳造後に得られる鋳塊を種々の条件で圧延、熱処理することで変化する析出物のサイズ等を規定しているものであり、鋳塊中の晶出物のサイズを規定するものではない。
In addition, in order to stably improve and improve the bending workability, in the alloy in which Mg or the like is added to the Cu-Ni-Si system, the Mg structure intervenes in the metal structure by controlling the sealing means and the solidification position during casting. There is one that defines the size and density of objects (see, for example, Patent Document 4).
In addition, as a Cu-Ni-Si-Zn-based alloy that can ensure stable strength, a crystal / precipitate particle size and volume ratio are determined (for example, Patent Document 5), Cu- Ni-Si based alloys that define the grain size and spacing of Ni 2 Si precipitates, and have determined tensile strength and electrical conductivity (for example, Patent Document 6) and Cu-Ni-Si-Mg based alloys There are copper alloys such as those that define the size of Ni—Si compound particles and their density (for example, Patent Document 7).
However, these copper alloys regulate the size of precipitates that change by rolling and heat-treating the ingot obtained after casting under various conditions. It does not prescribe size.

特開昭61−127842号公報JP-A 61-127842 特開平5−59468号公報JP-A-5-59468 特開平10−219374号公報JP-A-10-219374 特開2006−233314号公報JP 2006-233314 A 特開2004−156115号公報JP 2004-156115 A 特開2005−89843号公報JP 2005-89843 A 特開2005−298920号公報JP 2005-298920 A

このように、Cu−Ni−Si系合金においては、鋳塊(スラブ)を高温で加熱保持して熱間圧延を実施し、冷間圧延と熱処理(溶体化、時効工程など)を繰り返し、優れた強度などの性能を得ている。
しかし、鋳塊には鋳塊作成中に晶出物(おもにNiSi)が生成され、あまりにそのサイズが粗大であると熱間圧延前に加熱保持しても固溶状態がえられない。したがって、熱間圧延前にすでに存在している粗大な晶出物は最終の銅合金材製品の状態となっても残存する場合が多く、これら粗大な晶出物は強度等の性能改善に寄与しないため、Ni、Siなど規定された成分範囲の鋳塊を得ても所望の強度が得られないという問題があった。
そこで本発明は、鋳塊中の晶出物サイズ、デンドライト2次アームスペーシングを規定した鋳塊に圧延、熱処理を施すことによって、最終の銅合金材製品においての粗大な晶出物の残存を回避し、Ni、Siなど添加された成分に応じて所望の強度、導電性、応力緩和性等を得ることができる銅合金材を提供することを目的とする。
Thus, in a Cu-Ni-Si-based alloy, the ingot (slab) is heated and held at a high temperature to perform hot rolling, and cold rolling and heat treatment (solution treatment, aging process, etc.) are repeated, and thus excellent. Has obtained performance such as strength.
However, a crystallized product (mainly Ni 2 Si) is generated in the ingot, and if the size is too large, a solid solution state cannot be obtained even if heated and held before hot rolling. Therefore, coarse crystals that already exist before hot rolling often remain in the final copper alloy product state, and these coarse crystals can contribute to improving performance such as strength. Therefore, there is a problem that a desired strength cannot be obtained even if an ingot having a prescribed component range such as Ni and Si is obtained.
Therefore, the present invention avoids the presence of coarse crystals in the final copper alloy product by rolling and heat-treating the ingots that specify the size of crystals in the ingot and the dendrite secondary arm spacing. And it aims at providing the copper alloy material which can obtain desired intensity | strength, electroconductivity, stress relaxation property, etc. according to added components, such as Ni and Si.

発明者は、上記課題に鑑み鋭意研究し、鋳塊中の晶出物サイズ、デンドライト2次アームスペーシングを規定した鋳塊に圧延、熱処理を施すことによって、最終の銅合金材製品においての粗大な晶出物の残存を容易に回避し得ることを見出した。
すなわち本発明は、
(1)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が10μm以下であることを特徴とする銅合金材、
(2)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が0.5〜10μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する(1)記載の銅合金材、
(3)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%含有し、残部がCuおよび不可避不純物からなり、デンドライト2次アームスペーシング(DAS)が10〜50μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する(1)または(2)記載の銅合金材、
(4)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が10μm以下であることを特徴とする銅合金材、
(5)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が0.5〜10μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する(4)記載の銅合金材、
(6)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、残部がCuおよび不可避不純物からなり、デンドライト2次アームスペーシングが10〜50μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する(4)または(5)記載の銅合金材、
(7)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、さらにAg、CoおよびCrの1種以上を0.005〜2.0質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が10μm以下であることを特徴とする銅合金材、
(8)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、さらにAg、CoおよびCrの1種以上を0.005〜2.0質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が0.5〜10μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する(7)記載の銅合金材、および、
(9)Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、さらにAg、CoおよびCrの1種以上を0.005〜2.0質量%含有し、残部がCuおよび不可避不純物からなり、デンドライト2次アームスペーシングが10〜50μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する(7)または(8)記載の銅合金材、
を提供するものである。
The inventor has intensively studied in view of the above problems, and by rolling and heat-treating the ingot defining the crystallized material size in the ingot and the dendrite secondary arm spacing, the coarseness in the final copper alloy material product It has been found that the remaining crystallized product can be easily avoided.
That is, the present invention
(1) 1.0 to 5.0 mass% of Ni, 0.2 to 1.1 mass% of Si, the balance is made of Cu and inevitable impurities, and the crystallized product diameter is 10 μm or less. Copper alloy material,
(2) Ni is contained in an amount of 1.0 to 5.0% by mass, Si is contained in an amount of 0.2 to 1.1% by mass, the balance is made of Cu and inevitable impurities, and the crystallized product diameter is 0.5 to 10 μm. The copper alloy material according to (1), wherein the copper alloy ingot is subjected to rolling and heat treatment,
(3) Ni is contained in an amount of 1.0 to 5.0% by mass, Si is contained in an amount of 0.2 to 1.1% by mass, the balance is made of Cu and inevitable impurities, and a dendrite secondary arm spacing (DAS) is 10 to 50 μm. The copper alloy ingot according to (1) or (2), wherein the copper alloy ingot is subjected to rolling and heat treatment,
(4) Ni is 1.0 to 5.0 mass%, Si is 0.2 to 1.1 mass%, Mg is 0.01 to 0.2 mass%, and Sn is 0.05 to 1.5 mass%. A copper alloy material characterized by containing Zn in an amount of 0.2 to 1.5% by mass, the balance being Cu and inevitable impurities, and a crystallized product diameter of 10 μm or less,
(5) Ni is 1.0 to 5.0 mass%, Si is 0.2 to 1.1 mass%, Mg is 0.01 to 0.2 mass%, and Sn is 0.05 to 1.5 mass%. The copper alloy ingot containing 0.2 to 1.5% by mass of Zn, the balance being Cu and inevitable impurities, and the crystallized product diameter being 0.5 to 10 μm was subjected to rolling and heat treatment. The copper alloy material according to (4),
(6) Ni is 1.0 to 5.0 mass%, Si is 0.2 to 1.1 mass%, Mg is 0.01 to 0.2 mass%, and Sn is 0.05 to 1.5 mass%. The copper alloy ingot containing 0.2 to 1.5% by mass of Zn, the balance being Cu and inevitable impurities, and the dendrite secondary arm spacing being 10 to 50 μm was subjected to rolling and heat treatment. The copper alloy material according to (4) or (5),
(7) Ni is 1.0 to 5.0 mass%, Si is 0.2 to 1.1 mass%, Mg is 0.01 to 0.2 mass%, and Sn is 0.05 to 1.5 mass%. , Zn is contained in an amount of 0.2 to 1.5% by mass, and further one or more of Ag, Co, and Cr is contained in an amount of 0.005 to 2.0% by mass with the balance being Cu and inevitable impurities. A copper alloy material having a diameter of 10 μm or less,
(8) Ni is 1.0 to 5.0 mass%, Si is 0.2 to 1.1 mass%, Mg is 0.01 to 0.2 mass%, and Sn is 0.05 to 1.5 mass%. , Zn is contained in an amount of 0.2 to 1.5% by mass, and further one or more of Ag, Co, and Cr is contained in an amount of 0.005 to 2.0% by mass with the balance being Cu and inevitable impurities. The copper alloy material according to (7), wherein the copper alloy ingot having a diameter of 0.5 to 10 μm is subjected to rolling and heat treatment, and
(9) Ni is 1.0 to 5.0 mass%, Si is 0.2 to 1.1 mass%, Mg is 0.01 to 0.2 mass%, and Sn is 0.05 to 1.5 mass%. , Zn is contained in an amount of 0.2 to 1.5% by mass, and further one or more of Ag, Co, and Cr is contained in an amount of 0.005 to 2.0% by mass with the balance being Cu and inevitable impurities. The copper alloy material according to (7) or (8), wherein the copper alloy ingot having an arm spacing of 10 to 50 μm is subjected to rolling and heat treatment,
Is to provide.

本発明は、銅合金鋳塊中に存在する晶出物のサイズ、またはデンドライト2次アームスペーシングを規定することにより、熱間圧延前の加熱保持時に晶出物が固溶し、得られる銅合金材製品での粗大な晶出物の残存がないためNi、Siなど添加した成分量にしたがって所望の強度を得ることができる。従って、この合金材は、端子、コネクタ、スイッチ、リレーなどの電子電気機器部品の小型化、高密度化に十分対応できる材料として好適である。   The present invention provides a copper alloy obtained by solidifying a crystallized substance during heating and holding before hot rolling by defining the size of a crystallized substance existing in a copper alloy ingot or a dendrite secondary arm spacing. Since there is no coarse crystallized material remaining in the material product, a desired strength can be obtained according to the amount of added components such as Ni and Si. Therefore, this alloy material is suitable as a material that can sufficiently cope with downsizing and high density of electronic and electrical equipment parts such as terminals, connectors, switches, and relays.

デンドライト2次アームスペーシングを説明する平面図(a)と断面図(b)である。It is the top view (a) and sectional drawing (b) explaining a dendrite secondary arm spacing. 実施例における、デンドライト2次アームスペーシングの測定方法を示す図である。It is a figure which shows the measuring method of a dendrite secondary arm spacing in an Example.

まず、本発明の銅合金材の合金組成について好ましい実施の形態を、以下に詳細に説明する。
本発明の銅合金材の第1の実施形態における組成は、Ni1.0〜5.0質量%、Si0.2〜1.1質量%を含有し、残部がCuおよび不可避不純物からなる。
本発明において、Niの含有量を1.0〜5.0質量%、Siの含有量を0.2〜1.1質量%に規定する理由は、いずれが下限値未満でも、強度、応力緩和特性、導電率をバランスよく向上あるいは維持できるという本発明の効果が十分に得られず、いずれが上限値を超えても熱間加工性および曲げ加工性が低下するためである。特に望ましい含有量はNi1.7〜3.0質量%、Si0.4〜0.7質量%である。
First, a preferred embodiment of the alloy composition of the copper alloy material of the present invention will be described in detail below.
The composition in 1st Embodiment of the copper alloy material of this invention contains Ni1.0-5.0 mass%, Si0.2-1.1 mass%, and remainder consists of Cu and an unavoidable impurity.
In the present invention, the reason for prescribing the Ni content to 1.0 to 5.0 mass% and the Si content to 0.2 to 1.1 mass% is that the strength and the stress relaxation are all less than the lower limit. This is because the effects of the present invention that the characteristics and conductivity can be improved or maintained in a well-balanced manner cannot be sufficiently obtained, and hot workability and bending workability are deteriorated regardless of which exceeds the upper limit. Particularly desirable contents are 1.7 to 3.0% by mass of Ni and 0.4 to 0.7% by mass of Si.

本発明の銅合金材の第2の実施形態における組成は、前記Ni、Siに加えて、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有するものである。
Mgは応力緩和特性を大幅に改善する作用効果を有し、その含有量を0.01〜0.2質量%に規定する理由は、0.01質量%未満ではその効果が十分に得られず、0.2質量%を超えると曲げ加工性が低下するためである。
The composition of the copper alloy material according to the second embodiment of the present invention includes 0.01 to 0.2% by mass of Mg, 0.05 to 1.5% by mass of Sn, and Zn in addition to Ni and Si. It contains 0.2 to 1.5 mass%.
Mg has the effect of greatly improving the stress relaxation characteristics, and the reason for defining the content to be 0.01 to 0.2% by mass is that the effect cannot be sufficiently obtained when the content is less than 0.01% by mass. If it exceeds 0.2 mass%, the bending workability is lowered.

SnはMgと相互に関係し合って応力緩和特性をより一層向上させる。その含有量を0.05〜1.5質量%に規定する理由は、0.05質量%未満ではその効果が十分に得られず、1.5質量%を超えると導電率が低下するためである。   Sn interacts with Mg to further improve the stress relaxation characteristics. The reason for prescribing the content to 0.05 to 1.5% by mass is that the effect is not sufficiently obtained if it is less than 0.05% by mass, and the conductivity decreases if it exceeds 1.5% by mass. is there.

ZnはMgを含有させることによる曲げ加工性の低下を緩和する。また錫めっき層や半田めっき層の耐熱剥離性、耐マイグレーション特性を改善する。Znの含有量を0.2〜1.5質量%に規定する理由は、0.2質量%未満ではその効果が十分に得られず、1.5質量%を超えると導電率が低下するためである。   Zn alleviates a decrease in bending workability due to the inclusion of Mg. It also improves the heat release resistance and migration resistance of the tin plating layer and solder plating layer. The reason why the Zn content is specified to be 0.2 to 1.5% by mass is that the effect cannot be sufficiently obtained when the content is less than 0.2% by mass, and the electrical conductivity decreases when the content exceeds 1.5% by mass. It is.

本発明の銅合金材の第3の実施形態における組成は、前記Ni、Si、Mg、Sn、Znに加えて、さらにAg、CoおよびCrの群から選ばれる1種または2種以上を0.005〜2.0質量%含有するものである。
前記Ag、Co、Crは強度向上に寄与する作用を有する。前記Ag、Co、Crの合計の含有量を0.005〜2.0質量%に規定する理由は、0.005質量%未満ではその効果が十分に得られず、2.0質量%を超えると、高価なAgはコスト高を招き、CoおよびCrは鋳造時および熱間加工時に粗大な化合物を晶出(析出)して含有量に見合う強度が得られなくなり、また熱間加工性および曲げ加工性が低下するためである。
The composition of the third embodiment of the copper alloy material of the present invention is such that, in addition to Ni, Si, Mg, Sn, Zn, one or more selected from the group of Ag, Co, and Cr is 0.00. 005-2.0 mass% is contained.
Ag, Co, and Cr have an effect of contributing to strength improvement. The reason for prescribing the total content of Ag, Co, and Cr to 0.005 to 2.0% by mass is that the effect cannot be sufficiently obtained when the content is less than 0.005% by mass and exceeds 2.0% by mass. However, expensive Ag incurs high costs, and Co and Cr crystallize (precipitate) coarse compounds at the time of casting and hot working, and the strength corresponding to the content cannot be obtained, and hot workability and bending This is because workability is lowered.

Coは、高価であるがCo−Si化合物は析出硬化能が高いため応力緩和特性も改善される。従って、電気伝導性が重視される部材などにはNiの一部をCoで代替するのが有効である。   Co is expensive, but the Co—Si compound has high precipitation hardening ability, so that the stress relaxation property is also improved. Therefore, it is effective to substitute a part of Ni with Co for members where electrical conductivity is important.

Crは銅中に微細に析出して強度向上に寄与する。Crは曲げ加工性を低下させるため
0.2質量%以下に規定するのが望ましい。Agは高価なので0.3質量%以下が望ましい。
Cr precipitates finely in copper and contributes to strength improvement. In order to reduce bending workability, Cr is preferably regulated to 0.2% by mass or less. Since Ag is expensive, 0.3 mass% or less is desirable.

前述の組成をもつ銅合金は、鋳造により合金鋳塊中に晶出物および樹枝状に発達した結晶であるデンドライトを生じる。
その晶出物は、主にNiSiであり、その他に第1の実施形態における組成では、不純物による酸化物、硫化物などがあり、第2の実施形態における組成ではMg系の酸化物、硫化物のほかMg−Sn系、Mg−Ni−Si系など成分元素で構成される化合物が含まれ、第3の実施形態における組成ではさらに、Cr−Si系、Ni−Si−Cr系、Co−Si系化合物などがある。デンドライトは構成成分が銅に固溶した状態で形成される。
The copper alloy having the above-mentioned composition produces dendrites which are crystallized substances and dendritic crystals in the ingot of the alloy by casting.
The crystallized product is mainly Ni 2 Si. In addition, in the composition in the first embodiment, there are oxides and sulfides due to impurities, and in the composition in the second embodiment, Mg-based oxides, In addition to sulfides, compounds composed of component elements such as Mg—Sn and Mg—Ni—Si are included, and the composition in the third embodiment further includes Cr—Si, Ni—Si—Cr, Co -There are Si-based compounds. The dendrite is formed in a state where the constituent components are dissolved in copper.

本発明は、鋳塊中のこの晶出物およびデンドライトに着目したもので、本発明はその晶出物の径が、0.5〜10μmのものが好ましい。このような粒径サイズのものを対象とするのは、小さな粒径を得るためには冷却速度を大きくする必要があるが、0.5μm以下の晶出を得るために鋳塊を急冷すると、鋳塊中内に温度ムラが生じて鋳造ワレが生じ易くなる。また、そのサイズが大きすぎると、その後の熱処理で晶出物が固溶できずに、添加量にたいしての所望の強度が得られない。   The present invention focuses on this crystallized substance and dendrite in the ingot, and the present invention preferably has a crystallized diameter of 0.5 to 10 μm. In order to obtain such a particle size, it is necessary to increase the cooling rate in order to obtain a small particle size, but when the ingot is rapidly cooled to obtain a crystallization of 0.5 μm or less, Temperature unevenness occurs in the ingot and casting cracks are likely to occur. On the other hand, if the size is too large, the crystallized product cannot be dissolved in the subsequent heat treatment, and the desired strength for the added amount cannot be obtained.

また、本発明は、鋳塊中のデンドライト2次アームスペーシング(DAS)の大小がその後の熱処理、圧延処理による銅合金材の引張強度等の特性に影響することを見出した。
本発明は、その値が10〜50μmであるものが好ましく、15〜45μmであるものがさらに好ましい。
デンドライト2次アームスペーシングを小さくするためには冷却速度を大きくする必要があり、この値が下限値未満のものは急冷による温度ムラによって鋳造割れを生じる可能性があり、上限値を超えると鋳塊製出後の熱処理で固溶しきれないサイズの大きな晶出物が発生する。
ここで、デンドライト2次アームスペーシング(DAS)とは、図1に模式図で示すように、デンドライト組織の主軸(幹)1から伸びた2次アーム(枝)2と2次アーム(枝)2との距離である。
The present invention has also found that the size of dendrite secondary arm spacing (DAS) in the ingot affects the properties such as the tensile strength of the copper alloy material by the subsequent heat treatment and rolling treatment.
In the present invention, the value is preferably 10 to 50 μm, more preferably 15 to 45 μm.
In order to reduce the dendrite secondary arm spacing, it is necessary to increase the cooling rate. If this value is less than the lower limit, casting cracks may occur due to temperature unevenness due to rapid cooling. A large crystallization product is generated that cannot be completely dissolved by heat treatment after production.
Here, the dendrite secondary arm spacing (DAS) means a secondary arm (branch) 2 and a secondary arm (branch) 2 extending from the main axis (stem) 1 of the dendrite structure, as schematically shown in FIG. And the distance.

鋳塊製出中において、主要な脱熱方向と平行にデンドライトの主幹(軸)1が成長し、これと直角な方向に2次アーム2が成長する。測定面積とした100mm(10mm(厚み方向)×10mm(幅方向))の領域にあるデンドライト組織を100倍の倍率にて、エッチング処理後に光学顕微鏡で観察し、2次アームを横切る直線を引くことによって、直線長さと直線を横切ったアーム数からデンドライト2次アームスペーシング(DAS)を見積もることができる。
鋳塊の晶出物径の測定は、デンドライトアームスペーシングと同様の領域を観察面とし、走査型電子顕微鏡での観察により行う。
During ingot production, a dendrite trunk (shaft) 1 grows parallel to the main heat removal direction, and a secondary arm 2 grows in a direction perpendicular thereto. The dendritic structure in the area of 100 mm 2 (10 mm (thickness direction) × 10 mm (width direction)) as the measurement area is observed with an optical microscope after the etching process at a magnification of 100 times, and a straight line crossing the secondary arm is drawn. Thus, the dendrite secondary arm spacing (DAS) can be estimated from the straight line length and the number of arms crossing the straight line.
The crystallized product diameter of the ingot is measured by observing with a scanning electron microscope using the same area as the dendrite arm spacing as the observation surface.

本発明において、鋳塊中の晶出物径およびデンドライト2次アームスペーシングが上記のような範囲となる状態となるには、鋳造にあたって下記のような態様が好ましい。
デンドライト2次アームスペーシングをdとすると、dは固相線直下の冷却速度R(℃/秒)と次の関係がある。
In the present invention, the following aspects are preferred for casting so that the crystallized substance diameter in the ingot and the dendrite secondary arm spacing are in the above ranges.
When the dendrite secondary arm spacing is d, d has the following relationship with the cooling rate R (° C./sec) just below the solidus.

Figure 2011017073
Figure 2011017073

ここでbは鋳塊成分によって決まる定数であり、前述の合金成分では−0.2〜−0.5の値となる。   Here, b is a constant determined by the ingot component, and becomes a value of -0.2 to -0.5 in the above-described alloy component.

鋳造は、上述の組成をもつ合金原料を溶解した後、DC法、半連続鋳造または連続鋳造法により行うことができる。たとえば原料を1100℃以上で溶解し鉄製のモールドに鋳込むと鋳塊を製出することができるが、その際にモールドサイズを変化させることによって、種々の冷却速度が得られる。適切なモールドサイズを選択することによって、冷却速度にともなって変化する晶出物径、デンドライト2次アームスペーシングがそれぞれ0.5〜10μm、10〜50μmとなる鋳塊をえることができる。   Casting can be performed by the DC method, semi-continuous casting, or continuous casting method after melting the alloy raw material having the above composition. For example, when the raw material is melted at 1100 ° C. or higher and cast into an iron mold, an ingot can be produced, and various cooling rates can be obtained by changing the mold size. By selecting an appropriate mold size, it is possible to obtain an ingot having a crystallized material diameter that changes with the cooling rate and a dendrite secondary arm spacing of 0.5 to 10 μm and 10 to 50 μm, respectively.

本発明においては、前述の組成を有する銅合金材は、その金属組織中の晶出物径の最大値が10μm以下のものである。
鋳塊の晶出物径および/またはデンドライト2次アームスペーシングが前記した範囲のものであれば、一般に適用されている熱間圧延前の加熱保持にてすべての晶出物が固溶し、その後の熱処理(溶体化工程や時効工程)で得られる製品である合金材で粗大な晶出物の生成を防ぐことができる。
熱処理条件、加工条件の一例は以下の特開2007−246931号公報に示されるとおりである。すなわち、加熱温度と保持時間を900℃、1時間とした後の厚さ12mmまでの熱間圧延、厚さ0.20〜0.50mmまでの冷間圧延、温度750〜900℃の範囲での溶体化熱処理後に15℃/秒以上の冷却速度での冷却、10〜30%の加工率での冷間圧延、500℃、2時間の時効熱処理、最終的な板厚である0.25mmまでの冷間圧延、350℃、2時間での低温焼鈍処理が熱処理条件、加工条件の一例となる。
したがって、デンドライト2次アームスペーシングを10〜50μmとすることにより、ある閾値以上の冷却速度を確保し、鋳片中に生成された晶出物の粗大化および、製品での粗大な晶出物の残存を回避することができる。
In the present invention, the copper alloy material having the above-mentioned composition has a maximum crystallized material diameter of 10 μm or less in the metal structure.
If the crystallized material diameter of the ingot and / or the dendrite secondary arm spacing is in the above-mentioned range, all the crystallized material is dissolved in the heat holding before the hot rolling which is generally applied, and thereafter It is possible to prevent the formation of coarse crystallized material by the alloy material which is a product obtained by the heat treatment (solution treatment process or aging process).
An example of the heat treatment condition and the processing condition is as shown in the following JP-A-2007-246931. That is, hot rolling to a thickness of 12 mm after heating temperature and holding time of 900 ° C. for 1 hour, cold rolling to a thickness of 0.20 to 0.50 mm, temperature in the range of 750 to 900 ° C. Cooling at a cooling rate of 15 ° C./second or more after solution heat treatment, cold rolling at a processing rate of 10 to 30%, aging heat treatment at 500 ° C. for 2 hours, final plate thickness up to 0.25 mm Cold rolling, low temperature annealing treatment at 350 ° C. for 2 hours is an example of heat treatment conditions and processing conditions.
Therefore, by setting the dendrite secondary arm spacing to 10 to 50 μm, a cooling rate exceeding a certain threshold value is secured, and the crystallized product generated in the slab is coarsened, and the coarse crystallized product in the product is Remaining can be avoided.

そして、本発明の銅合金材は、どのような電気電子部品にも用いることができ、その部品は特に限定されるものではないが、例えば、コネクタ、端子材等、特に、高導電性が所望される高周波リレーやスイッチ、あるいは、自動車車載用などのコネクタや端子材およびリードフレーム等に好適に用いられる。   The copper alloy material of the present invention can be used for any electrical and electronic parts, and the parts are not particularly limited. For example, connectors, terminal materials, etc., particularly high conductivity is desired. It is suitably used for high frequency relays and switches, connectors for automobiles, terminal materials, lead frames and the like.

次に、本発明を実施例に基づいてさらに詳細に説明するが、例えば、試料およびその作製条件などは具体的一例にすぎず、本発明はこれに制限されるものではない。   Next, the present invention will be described in more detail based on examples. However, for example, the sample and the production conditions thereof are only specific examples, and the present invention is not limited thereto.

[実施例1]
表1に示す成分組成(残部はCu)の銅合金を高周波溶解炉にて約1200℃で溶解し、DC法により鋳片(スラブ)を得た。この際、鋳片サイズを種々変化(厚さ20〜40mm、幅100mm、長さ150mm)させることにより鋳片が受ける冷却速度を2〜100℃/秒の間で変化させて、デンドライト2次アームスペーシング(DAS)を制御し、表1に示すように鋳片中に種々のDASおよび晶出物サイズをもつ本発明例No.1〜7および比較例No.1〜9の鋳片を得た。
[Example 1]
A copper alloy having the component composition shown in Table 1 (the balance being Cu) was melted at about 1200 ° C. in a high-frequency melting furnace, and a slab was obtained by the DC method. At this time, by changing the slab size variously (thickness 20 to 40 mm, width 100 mm, length 150 mm), the cooling rate received by the slab is changed between 2 to 100 ° C./second, and dendrite secondary arms The pacing (DAS) was controlled, and as shown in Table 1, the present invention examples No. 1 having various DAS and crystallized sizes in the slab were obtained. 1-7 and Comparative Example No. 1 to 9 slabs were obtained.

鋳塊のデンドライト2次アームスペーシング(DAS)の測定は以下のとおりである。鋳塊製出後、図2に示されるとおり鋳塊を2等分し、切断面の中央部の10mm×10mmの部位(斜線部)を観察領域とした。図中の矢印は鋳塊製出中に熱が主に移動する方向となるが、この方向と平行にデンドライト主軸が成長し、これと直角な方向に2次アームが成長する。このデンドライト組織を100倍の倍率にて光学顕微鏡にて拡大した拡大図を観察し、2次アームを横切る直線を引くことによって、直線長さと直線を横切ったアーム数から見積もる。5箇所のDASを測定し、その平均値を表1に示した。
鋳塊の晶出物径の測定は、デンドライトアームスペーシングと同様の領域を観察面とし、エッチングして走査型電子顕微鏡で観察により行った。観察された晶出物の長径と短径を測定してその相乗平均を晶出物径とし、少なくとも100個の晶出物径の値を算出後、0.5μm未満、0.5〜10μm、10μmを超える粗大なものの3つのカテゴリーにクラス分けし、それぞれのカテゴリーの存在比率を表1に示した。
The measurement of dendrite secondary arm spacing (DAS) of the ingot is as follows. After producing the ingot, the ingot was divided into two equal parts as shown in FIG. 2, and a 10 mm × 10 mm portion (shaded portion) at the center of the cut surface was taken as the observation region. The arrows in the figure indicate the direction in which heat mainly moves during ingot production. The dendrite main axis grows parallel to this direction, and the secondary arm grows in a direction perpendicular thereto. An enlarged view of this dendrite structure magnified by an optical microscope at a magnification of 100 times is observed, and a straight line crossing the secondary arm is drawn to estimate from the straight line length and the number of arms crossing the straight line. Five locations of DAS were measured, and the average value is shown in Table 1.
The crystallized product diameter of the ingot was measured by observing with a scanning electron microscope after etching the region similar to the dendrite arm spacing. The major and minor diameters of the observed crystals were measured, and the geometric average was taken as the crystallite diameter. After calculating the value of at least 100 crystallite diameters, less than 0.5 μm, 0.5 to 10 μm, It was classified into three categories of coarse ones exceeding 10 μm, and the existence ratio of each category is shown in Table 1.

次に、これら各鋳片を900℃に加熱し、この温度に1時間保持後、厚さ12mmに熱間圧延し、速やかに冷却した。次いで、両面を各1.5mmずつ切削して酸化皮膜を除去したのち、冷間圧延により厚さ0.25〜0.50mmに加工した。この後、750〜900℃のそれぞれの条件で溶体化熱処理を行い、直ちに15℃/秒以上の冷却速度で室温まで冷却した。次いで10〜30%の加工率で冷間圧延を行った。次に、不活性ガス雰囲気中で、500℃で2hの時効熱処理を施し、その後、最終塑性加工である冷間圧延を行い、最終的な板厚を0.25mmに揃えた。最終塑性加工後、350℃で2時間の低温焼鈍処理を施し本発明例No.1〜7および比較例No.1〜9の各合金条を得た。   Next, each slab was heated to 900 ° C., held at this temperature for 1 hour, hot-rolled to a thickness of 12 mm, and quickly cooled. Next, both sides were cut 1.5 mm each to remove the oxide film, and then processed to a thickness of 0.25 to 0.50 mm by cold rolling. Thereafter, solution heat treatment was performed under each condition of 750 to 900 ° C., and immediately cooled to room temperature at a cooling rate of 15 ° C./second or more. Next, cold rolling was performed at a processing rate of 10 to 30%. Next, an aging heat treatment was performed at 500 ° C. for 2 hours in an inert gas atmosphere, and then cold rolling, which is the final plastic working, was performed to make the final plate thickness 0.25 mm. After the final plastic working, a low temperature annealing treatment was performed at 350 ° C. for 2 hours, and Example No. of the present invention. 1-7 and Comparative Example No. 1 to 9 alloy strips were obtained.

このようにして製造した本発明例No.1〜7および比較例No.1〜9の各々の銅合金条について下記の(1)引張強さ、(2)導電率、(3)応力緩和特性、(4)晶出物径を調べその結果を表1に併記した。各評価項目の測定方法は次の通りである。
(1)引張強さ
圧延平行方向から切り出したJIS Z 2201記載の5号試験片を用い、JIS Z 2241に準拠して3本測定しその平均値を求めた。
(2)導電率
JISH0505に準拠して、各試験片の2本について導電率を測定し、その平均値を求めた。
(3)応力緩和特性
日本伸銅協会の仮規格である、JCBA T309:2001の片持ち梁式(旧日本電子材料工業会標準規格 EMAS−3003の片持ちブロック式に相当)を採用し、表面最大応力が450N/mmになるように負荷応力を設定して150℃の恒温槽に1000時間保持して緩和率(S.R.R)を求めた。
(4)晶出物径
晶出物径の測定は、厚さ0.25mm板の圧延方向と平行な面をエッチングして観察面とし、走査型電子顕微鏡で観察により行った。測定面積は1mm(0.25mm(厚み方向)×4.0mm(圧延方向))とし、円相当直径を晶出物径として10μmを超える晶出物の有無をしらべた。
Invention Example No. manufactured in this way 1-7 and Comparative Example No. For each of the copper alloy strips 1 to 9, the following (1) tensile strength, (2) conductivity, (3) stress relaxation characteristics, and (4) crystallized product diameter were examined, and the results are also shown in Table 1. The measurement method for each evaluation item is as follows.
(1) Tensile strength Three test pieces described in JIS Z 2201 cut out from the rolling parallel direction were used to measure three in accordance with JIS Z 2241, and the average value was obtained.
(2) Conductivity In accordance with JISH0505, the conductivity was measured for two of each test piece, and the average value was obtained.
(3) Stress relaxation characteristics The JCBA T309: 2001 cantilever type (equivalent to the canonical block type of the former Japan Electronic Materials Industry Association Standard EMAS-3003), which is a temporary standard of the Japan Copper and Brass Association, is used. The load stress was set so that the maximum stress was 450 N / mm 2 , and the relaxation rate (SR) was obtained by holding it in a thermostatic bath at 150 ° C. for 1000 hours.
(4) Crystallized product diameter The crystallized product size was measured by observing with a scanning electron microscope by etching a surface parallel to the rolling direction of a 0.25 mm-thick plate into an observation surface. The measurement area was 1 mm 2 (0.25 mm (thickness direction) × 4.0 mm (rolling direction)), and the presence or absence of a crystallized substance exceeding 10 μm was investigated with the equivalent-circle diameter as the crystallized substance diameter.

Figure 2011017073
Figure 2011017073

Cu−Ni−Si系合金では、導電率、応力緩和特性はNi量およびSi量によって異なるが、表1から明らかなように、本発明の銅合金(本発明例1〜7)は従来のものと比べ遜色ないものである。そして、引張強度については成分が同じ場合に比較例1、3、4、6〜9の銅合金より30〜130MPa高くなっている(備考欄参照)。これはデンドライト2次アームスペーシングを10〜50μmに制御した結果、晶出物サイズが0.5〜10μmとなり、熱間圧延前の加熱保持で固溶し、最終条製品において10μmを超える晶出物の残存を回避していることによる。
また比較例No.2および5ではデンドライト2次アームスペーシング、または晶出物サイズを小さくし過ぎると強度向上が得られないか、冷却速度を上げた結果、鋳造ワレが生じ評価できなった。
In the Cu-Ni-Si alloy, the electrical conductivity and stress relaxation characteristics differ depending on the amount of Ni and the amount of Si. As is apparent from Table 1, the copper alloys of the present invention (Invention Examples 1 to 7) are conventional. Compared with. And about the tensile strength, when the component is the same, it is 30-130 Mpa higher than the copper alloys of Comparative Examples 1, 3, 4, 6-9 (see remarks column). As a result of controlling the dendrite secondary arm spacing to 10 to 50 μm, the crystallized size becomes 0.5 to 10 μm, and it dissolves by heating and holding before hot rolling, and the crystallized product exceeds 10 μm in the final product. This is due to avoidance of remaining.
Comparative Example No. In Nos. 2 and 5, the dendrite secondary arm spacing, or the crystallized material size, was too small to improve the strength, or as a result of increasing the cooling rate, casting cracks could not be evaluated.

1 主軸(幹)
2 2次アーム(枝)
1 Spindle (stem)
2 Secondary arm (branch)

Claims (9)

Niを1.0〜5.0質量%、Siを0.2〜1.1質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が10μm以下であることを特徴とする銅合金材。   A copper containing 1.0 to 5.0% by mass of Ni, 0.2 to 1.1% by mass of Si, the balance being made of Cu and inevitable impurities, and a crystallized product diameter of 10 μm or less Alloy material. Niを1.0〜5.0質量%、Siを0.2〜1.1質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が0.5〜10μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する請求項1記載の銅合金材。   A copper alloy casting containing 1.0 to 5.0% by mass of Ni, 0.2 to 1.1% by mass of Si, the balance being Cu and inevitable impurities, and a crystallized product diameter of 0.5 to 10 μm The copper alloy material according to claim 1, wherein the lump is subjected to rolling and heat treatment. Niを1.0〜5.0質量%、Siを0.2〜1.1質量%含有し、残部がCuおよび不可避不純物からなり、デンドライト2次アームスペーシングが10〜50μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する請求項1または2記載の銅合金材。   Copper alloy ingot containing 1.0 to 5.0% by mass of Ni, 0.2 to 1.1% by mass of Si, the balance being Cu and inevitable impurities, and dendrite secondary arm spacing of 10 to 50 μm The copper alloy material according to claim 1, wherein the copper alloy material is subjected to rolling and heat treatment. Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が10μm以下であることを特徴とする銅合金材。   Ni: 1.0-5.0 mass%, Si: 0.2-1.1 mass%, Mg: 0.01-0.2 mass%, Sn: 0.05-1.5 mass%, Zn: A copper alloy material containing 0.2 to 1.5% by mass, the balance being made of Cu and inevitable impurities, and a crystallized product diameter of 10 μm or less. Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が0.5〜10μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する請求項4記載の銅合金材。   Ni: 1.0-5.0 mass%, Si: 0.2-1.1 mass%, Mg: 0.01-0.2 mass%, Sn: 0.05-1.5 mass%, Zn: A copper alloy ingot containing 0.2 to 1.5% by mass, the balance being made of Cu and inevitable impurities, and having a crystallized diameter of 0.5 to 10 μm, has been subjected to rolling and heat treatment. The copper alloy material according to claim 4. Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、残部がCuおよび不可避不純物からなり、デンドライト2次アームスペーシングが10〜50μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する請求項4または5記載の銅合金材。   Ni: 1.0-5.0 mass%, Si: 0.2-1.1 mass%, Mg: 0.01-0.2 mass%, Sn: 0.05-1.5 mass%, Zn: A copper alloy ingot containing 0.2 to 1.5% by mass, the balance being made of Cu and inevitable impurities, and having a dendrite secondary arm spacing of 10 to 50 μm, has been subjected to rolling and heat treatment. Item 6. The copper alloy material according to Item 4 or 5. Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、さらにAg、CoおよびCrの1種以上を0.005〜2.0質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が10μm以下であることを特徴とする銅合金材。   Ni: 1.0-5.0 mass%, Si: 0.2-1.1 mass%, Mg: 0.01-0.2 mass%, Sn: 0.05-1.5 mass%, Zn: 0.2 to 1.5% by mass, further containing 0.005 to 2.0% by mass of one or more of Ag, Co, and Cr, the balance being made of Cu and inevitable impurities, and a crystallized product diameter of 10 μm A copper alloy material characterized by: Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、さらにAg、CoおよびCrの1種以上を0.005〜2.0質量%含有し、残部がCuおよび不可避不純物からなり、晶出物径が0.5〜10μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する請求項7記載の銅合金材。   Ni: 1.0-5.0 mass%, Si: 0.2-1.1 mass%, Mg: 0.01-0.2 mass%, Sn: 0.05-1.5 mass%, Zn: 0.2 to 1.5% by mass, further containing 0.005 to 2.0% by mass of one or more of Ag, Co, and Cr, the balance is made of Cu and inevitable impurities, and the crystallized product diameter is 0. The copper alloy material according to claim 7, wherein the copper alloy ingot having a thickness of 5 to 10 μm is subjected to rolling and heat treatment. Niを1.0〜5.0質量%、Siを0.2〜1.1質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含有し、さらにAg、CoおよびCrの1種以上を0.005〜2.0質量%含有し、残部がCuおよび不可避不純物からなり、デンドライト2次アームスペーシングが10〜50μmである銅合金鋳塊に圧延加工および熱処理が施されたことを特徴する請求項7または8記載の銅合金材。   Ni: 1.0-5.0 mass%, Si: 0.2-1.1 mass%, Mg: 0.01-0.2 mass%, Sn: 0.05-1.5 mass%, Zn: 0.2 to 1.5% by mass, further containing 0.005 to 2.0% by mass of one or more of Ag, Co, and Cr, the balance being made of Cu and inevitable impurities, and dendrite secondary arm spacing The copper alloy material according to claim 7 or 8, wherein the copper alloy ingot of 10 to 50 µm is subjected to rolling and heat treatment.
JP2009164249A 2009-07-10 2009-07-10 Copper alloy material Pending JP2011017073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164249A JP2011017073A (en) 2009-07-10 2009-07-10 Copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164249A JP2011017073A (en) 2009-07-10 2009-07-10 Copper alloy material

Publications (1)

Publication Number Publication Date
JP2011017073A true JP2011017073A (en) 2011-01-27

Family

ID=43595055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164249A Pending JP2011017073A (en) 2009-07-10 2009-07-10 Copper alloy material

Country Status (1)

Country Link
JP (1) JP2011017073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046812A (en) * 2010-08-30 2012-03-08 Furukawa Electric Co Ltd:The Copper alloy ingot and copper alloy material excellent in cutting workability, and copper alloy parts using the same
CN104451245A (en) * 2014-12-25 2015-03-25 春焱电子科技(苏州)有限公司 Copper alloy for electronic material with balanced properties
JP2015158009A (en) * 2014-01-27 2015-09-03 古河電気工業株式会社 Copper alloy material and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046812A (en) * 2010-08-30 2012-03-08 Furukawa Electric Co Ltd:The Copper alloy ingot and copper alloy material excellent in cutting workability, and copper alloy parts using the same
JP2015158009A (en) * 2014-01-27 2015-09-03 古河電気工業株式会社 Copper alloy material and production method thereof
CN104451245A (en) * 2014-12-25 2015-03-25 春焱电子科技(苏州)有限公司 Copper alloy for electronic material with balanced properties

Similar Documents

Publication Publication Date Title
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4708485B2 (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
WO2009104615A1 (en) Copper alloy material
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2014126047A1 (en) HIGH-STRENGTH Cu-Ni-Co-Si BASE COPPER ALLOY SHEET, PROCESS FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP2006283120A (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
JP5690979B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP5468798B2 (en) Copper alloy sheet
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
WO2014109211A1 (en) Copper alloy for electronic or electrical device, component for electronic or electrical device, and terminal
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
TWI527914B (en) Strength, heat resistance and bending workability of the Fe-P copper alloy plate
JP5957083B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
WO2014104130A1 (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
JP2011017073A (en) Copper alloy material
JP4664584B2 (en) High strength copper alloy plate and method for producing high strength copper alloy plate
JP4175920B2 (en) High strength copper alloy
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
JP5623960B2 (en) Cu-Ni-Si based copper alloy strip for electronic materials and method for producing the same