JP2000010024A - 硬性鏡光学系 - Google Patents

硬性鏡光学系

Info

Publication number
JP2000010024A
JP2000010024A JP10186995A JP18699598A JP2000010024A JP 2000010024 A JP2000010024 A JP 2000010024A JP 10186995 A JP10186995 A JP 10186995A JP 18699598 A JP18699598 A JP 18699598A JP 2000010024 A JP2000010024 A JP 2000010024A
Authority
JP
Japan
Prior art keywords
optical system
image
field stop
eyepiece
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10186995A
Other languages
English (en)
Other versions
JP2000010024A5 (ja
Inventor
Naoki Hasegawa
直樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10186995A priority Critical patent/JP2000010024A/ja
Publication of JP2000010024A publication Critical patent/JP2000010024A/ja
Publication of JP2000010024A5 publication Critical patent/JP2000010024A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)

Abstract

(57)【要約】 【課題】 狭い視野角で直径が4mm程度以下、長さ
が300mm程度以上の細長い挿入部を有する硬性鏡光
学系で周辺画質を良好にする。 【解決手段】 対物光学系と、像伝送光学系と、視野
絞りと、接眼光学系よりなり、視野絞りを像伝送光学系
の最大外径の70%の有効画像範囲より小さい範囲の画
像を観察するようにし、視野絞りと接眼光学系とを一体
に配置した。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、主として泌尿器の
分野で用いられる挿入部が細く視野角の比較的狭い硬性
鏡光学系に関するものである。
【0002】
【従来の技術】硬性鏡光学系は、像伝送手段として複数
のリレーレンズを有し、リレーレンズで発生する負の像
面湾曲を対物光学系で補正するようにしている。
【0003】泌尿器分野で用いられる硬性鏡は、直径が
4mm程度と細く長さが300mm程度と長い挿入部を有し
ている。このように細くて長い硬性鏡はリレーレンズに
より通常5回程度の像伝送が行われる。
【0004】図7は、このような硬性鏡の従来例を示す
もので、前立腺処置等に用いられる泌尿器硬性鏡は、手
術中に電極を視野中心で拡大観察する必要から斜視角θ
が10°〜20°の斜視が用いられる。
【0005】また、先端シースでの視野のけられを防ぐ
ためにこの硬性鏡の視野角2ωは50°〜60°程度の
比較的狭い角度である。
【0006】また、ファイバースコープの斜視光学系の
従来例としては、図8に示すような特開昭51−218
35号公報に開示されたものがある。この光学系は、対
物レンズの像面に対してイメージファイバーIFを偏芯
させることにより斜視を実現するようにしている。
【0007】
【発明が解決しようとする課題】硬性鏡が用いられる医
療の分野においては、低侵襲手段の普及により硬性鏡の
挿入部の一層の細径化が要求されている。
【0008】硬性鏡において、挿入部の細径化は、リレ
ー光学系のリレー回数を例えば5回から7回と多くする
ことになる。その第1の理由は、1回当りのリレー長を
短くして挿入部の曲げ応力によるリレー光学系に用いら
れるロッドガラス等の破壊を回避するためである。又第
2の理由は、NAを大にすることにより、実用上必要な
レベルの明るさが得られるようにするためである。
【0009】硬性鏡による画像観察は、主としてテレビ
カメラを利用してモニター上で行なわれることが多く、
テレビカメラのCCDは高解像、コンパクト化の傾向に
あるため画素サイズは縮小傾向にある。
【0010】硬性鏡の挿入部の細径化による明るさの減
少は、回路処理技術の向上によるテレビカメラの明るさ
(感度)の向上や光源技術の進歩により改善し得る。一
方CCD画素の縮小は焦点深度の縮小を招く。そのた
め、片ぼけ等による周辺画質に対するテレビカメラの検
出感度が高くなるため、設計時に十分に補正しておく必
要がある。
【0011】しかし、視野角が狭い場合、リレー光学系
によるリレー回数が多くなるにしたがって像面湾曲が強
くなり、これを対物光学系の弱い像面湾曲で補正するこ
とは困難である。
【0012】この像面湾曲を物体側の光線高を高くしな
いで補正するには、凹レンズのパワーを強くすることが
必要であるが、その場合レンズの加工が困難になり特に
球欠部分の加工能力には限度がある。
【0013】前記従来例(特開昭51−21835号公
報)は、対物光学系の像面で偏芯をさせているが、硬性
鏡は、挿入部の物体側で偏芯させることは外径等の制約
のためむづかしく、組立時に調整固定する作業が高精度
になり実施が困難である。
【0014】本発明は、特に狭い視野角で直径が4mm程
度以下で長さが300mm程度以上の細長い挿入部で、周
辺画質が良好な硬性鏡光学系を提供するものである。
【0015】又、本発明は画質が良好な弱斜視硬性鏡光
学系(斜視角が比較的小である硬性鏡光学系)を提供す
るものである。
【0016】
【課題を解決するための手段】本発明の硬性鏡光学系
は、物体側より順に、対物光学系と、像伝送光学系と、
視野絞りと、接眼光学系とよりなり、視野絞りが像伝送
光学系の最大外径の70%の有効面像範囲よりも小さい
範囲の画像を観察するためのもので、視野絞りと接眼光
学系とを一体に配置したことを特徴としている。
【0017】本発明の硬性鏡光学系は、利用する像範囲
よりも大きな像範囲を予め広角な設計にして像面湾曲を
十分補正して、これを必要とする狭い角度の像範囲を切
り出して拡大して利用するようにしている。
【0018】この場合、有効画像範囲の径をB、利用す
る像範囲の径をAとする時、次の条件(1)を満足する
ことが望ましい。 (1) 0.4<A/B<0.6
【0019】条件(1)の下限の0.4を超えて有効画
像範囲に対する観察画像として利用する像範囲の割合で
あるA/Bが小さくなりすぎると実用上明るさに支障を
きたす。又条件(1)の上限の0.6を超えて、A/B
が大きくなりすぎると像面湾曲を十分良好に補正し得な
くなる。
【0020】硬性鏡において利用し得る画像範囲は、像
伝送系の外径に依存する。この像伝送系としてリレー光
学系を用いる場合、瞳径と像の大きさとの双方に影響す
るため同じ画像サイズなら明るさは外径の4乗に比例す
る。そのため、リレー光学系の外径に対して有効画像範
囲を大きくとることが一般に行なわれているが、この範
囲は、スペーサーの厚みや像伝送系のパワー配置(開口
効率)によって若干異なるが、概リレー光学系の外径の
70%から80%の範囲内である。そのため本発明で
は、リレー光学系の外径の70%を有効画像範囲とし
た。
【0021】又、本発明の硬性鏡光学系は、前記のよう
に、物体側から順に、対物光学系と、像伝送光学系と、
視野絞りと、接眼光学系とよりなり、視野絞りと接眼光
学系とを一体に光軸に対して垂直方向に偏芯させて斜視
用とし、この斜視方向と同一方向に接眼光学系を偏芯さ
せた状態で調整し、固定したことを特徴とする。
【0022】このように、弱斜視硬性鏡つまり前述のよ
うに斜視角が比較的小さい硬性鏡にするために、利用す
る像範囲を偏芯させる場合、斜視角に対する偏芯量を次
の条件(2)を満足する範囲内にすることが望ましい。 (2) 0.25<2×C/B<0.7 ただし、Cは有効画面範囲に対する利用観察画像中心の
偏芯量である。
【0023】条件(2)において下限の0.25を超え
てC/Bが小さくなりすぎると、十分な斜視角が得られ
ない。又上限の0.7を超えてC/Bが大きくなりすぎ
ると周辺画質の劣化やけられにより周辺光量が低下す
る。
【0024】次に、本発明の硬性鏡光学系において、対
物光学系にクサビを用いて斜視を得る場合について述べ
る。
【0025】本発明の硬性鏡光学系は、斜視用とするた
めに対物光学系の先端つまり最も物体側に偏角楔を用い
て5°〜20°の弱斜視硬性鏡光学系としている。
【0026】つまり、本発明では図7に示されている斜
視方向の対物光学系の光軸に対する角θが下記条件
(A)の範囲内の弱斜視硬性鏡光学系である。 (A) 5°<θ<20°
【0027】このような弱斜視硬性鏡光学系において用
いる偏角楔は下記条件(3)、(4)を満足することが
望ましい。 (3) nd >1.65 (4) νd >60 ただし、nd は偏角楔のd線に対する屈折率、νd は偏
角楔のアッベ数である。
【0028】nd の値が条件(3)の下限の1.65を
超えて小さくなると像面傾きが大きくなり画像の周辺で
の結像性能が劣化する。又、νd の値が条件(4)の下
限の60を超えて小になると色収差の発生が大になり好
ましくない。
【0029】この偏角楔の、表面に接する面は、楔をA
23 単結晶、Al23 焼結体、Mg O単結晶のい
ずれかを含む材料にて構成すれば、高温多湿の環境下で
も劣化せず又、硬性鏡の消毒方法であるオートクレーブ
で滅菌を行なっても劣化しないようにし得る。
【0030】又、従来楔の前面を湿度から保護するため
にサファイアのカバーガラスが配置されていた。そのた
め、光線高が高くなり光学系先端の外径が大になる欠点
を有していたが、前述の光学系のように耐湿性を有する
楔を用いることによりカバーガラスを省略し楔を最も物
体側に配置し得るので、先端の径が大になることなく必
要な画像の範囲を得ることが出来る。
【0031】又、本発明の硬性鏡光学系において、偏角
楔により10°〜20°の弱斜視用とする場合は、つま
り、斜視角θが下記条件(A−1)を満足する場合は、
前記条件(3)、(4)の代りに下記条件(3−1)、
(4−1)を満足することが望ましい。 (A−1) 10°<θ<20° (3−1) nd >1.7 (4−1) νd >65
【0032】対物光学系で発生する像面湾曲を補正する
ためには、基本的には凹レンズのパワーを強くすればよ
い。凹レンズのパワーを強くする手段としてレンズ面の
曲率半径を小にすることが考えられる。しかし硬性鏡の
対物光学系は、直径が極めて小であるために、レンズ面
の曲率半径を極端に小にするとレンズの加工が困難であ
り、加工可能な曲率半径は0.45mm程度である。この
ような加工可能な曲率半径の凹レンズを用いて像面湾曲
を一層良好に補正するためには、凹レンズの屈折率を高
くする必要があり、下記条件(5)を満足することが望
ましい。 (5) nd (N)>1.8 ただし、nd (N)は凹レンズのd線に対する屈折率で
ある。
【0033】又、硬性鏡の挿入部の先端径を小さくする
ためには、最も物体側に配置され、且つ対物光学系の光
軸に対して傾いた面を凹レンズ側に持つカバーガラス
(楔を含む)とこのカバーガラスの像側に配置された凹
レンズの外径とがいずれも下記条件(6)を満足するこ
とが望ましい。 (6) 0.6<D/E<0.75 ただし、Dは凹レンズの外径、Eはカバーガラスの外径
である。
【0034】この条件(6)において、下限の0.6を
超えてD/Eの値が小になると、凹レンズを通過すべき
光線のすべてを通過させるのに十分な凹レンズの外径が
得られず、周辺光束がけられる。また、上限の0.75
を超えると、カバーガラスと凹レンズの間隔が広くな
り、カバーガラスにより周辺光束がけられる。
【0035】又、カバーガラスに入射する光線の高さを
低く抑えかつ必要な視野角を得るためには、下記条件
(7)を満足することが望ましい。 (7) 0.5<Enp/f<1.5 ただし、Enpは対物光学系の入射瞳位置、fは対物光学
系の焦点距離である。
【0036】条件(7)において、下限の0.5を超え
ると凹レンズの曲率半径が小になり加工が困難になり、
上限の1.5を超えると光線が高くなり対物光学系の直
径を小さくすることができなくなる。
【0037】
【発明の実施の形態】次に、本発明の硬性鏡対物光学系
の実施の形態を、下記実施例をもとに述べる。
【0038】 実施例1 斜視角=11.7°(空中)、画角=53°、視野絞り径=1.28mm 、f=1 r1 =∞ d1 =0.3067 n1 =1.76820 ν1 =71.70 r2 =∞ d2 =0.2800 r3 =∞ d3 =0.1500 n2 =1.84666 ν2 =23.78 r4 =0.4910 d4 =0.2500 r5 =∞ d5 =6.13 n3 =1.83481 ν3 =42.72 r6 =-2.6650 d6 =0.4000 r7 =1.9610 d7 =0.7000 n4 =1.72916 ν4 =54.68 r8 =-3.3640 d8 =0.8300 n5 =1.78472 ν5 =25.68 r9 =3.3640 d9 =1.1400 r10=-0.7580 d10=0.6800 n6 =1.84666 ν6 =23.78 r11=6.3130 d11=0.9800 n7 =1.83481 ν7 =42.72 r12=-1.5220 d12=5.4408 r13=5.7020 d13=14.8500 n8 =1.58913 ν8 =61.18 r14=∞ d14=1.5220 r15=5.3552 d15=0.8300 n9 =1.61272 ν9 =58.75 r16=-3.3640 d16=2.3500 n10=1.78800 ν10=47.38 r17=3.3640 d17=0.8300 n11=1.61272 ν11=58.75 r18=-5.3552 d18=1.5220 r19=∞ d19=14.8500 n12=1.58913 ν12=61.18 r20=-7.2040 d20=6.9190 r21=7.2040 d21=14.8500 n13=1.58913 ν13=61.18 r22=∞ d22=1.5220 r23=5.3552 d23=0.8300 n14=1.61272 ν14=58.75 r24=-3.3640 d24=2.35 n15=1.78800 ν15=47.38 r25=3.3640 d25=0.8300 n16=1.61272 ν16=58.75 r26=-5.3552 d26=1.5220 r27=∞ d27=14.8500 n17=1.58913 ν17=61.18 r28=-7.2040 d28=6.9190 r29=7.2040 d29=14.8500 n18=1.58913 ν18=61.18 r30=∞ d30=1.5220 r31=5.3552 d31=0.8300 n19=1.61272 ν19=58.75 r32=-3.3640 d32=2.35 n20=1.78800 ν20=47.38 r33=3.3640 d33=0.8300 n21=1.61272 ν21=58.75 r34=-5.3552 d34=1.5220 r35=∞ d35=14.8500 n22=1.58913 ν22=61.18 r36=-7.2040 d36=6.9190 r37=7.2040 d37=14.8500 n23=1.58913 ν23=61.18 r38=∞ d38=1.5220 r39=5.3552 d39=0.8300 n24=1.61272 ν24=58.75 r40=-3.3640 d40=2.35 n25=1.78800 ν25=47.38 r41=3.3640 d41=0.8300 n26=1.61272 ν26=58.75 r42=-5.3552 d42=1.5220 r43=∞ d43=14.8500 n27=1.58913 ν27=61.18 r44=-7.2040 d44=6.9190 r45=7.2040 d45=14.8500 n28=1.58913 ν28=61.18 r46=∞ d46=1.5220 r47=5.3552 d47=0.8300 n29=1.61272 ν29=58.75 r48=-3.3640 d48=2.35 n30=1.78800 ν30=47.38 r49=3.3640 d49=0.8300 n31=1.61272 ν31=58.75 r50=-5.3552 d50=1.5220 r51=∞ d51=14.8500 n32=1.58913 ν32=61.18 r52=-7.2040 d52=6.9190 r53=7.2040 d53=14.8500 n33=1.58913 ν33=61.18 r54=∞ d54=1.5220 r55=5.3552 d55=0.8300 n34=1.61272 ν34=58.75 r56=-3.3640 d56=2.35 n35=1.78800 ν35=47.38 r57=3.3640 d57=0.8300 n36=1.61272 ν36=58.75 r58=-5.3552 d58=1.5220 r59=∞ d59=14.8500 n37=1.58913 ν37=61.18 r60=-7.2040 d60=6.9190 r61=7.2040 d61=14.8500 n38=1.58913 ν38=61.18 r62=∞ d62=1.5220 r63=5.3552 d63=0.8300 n39=1.61272 ν39=58.75 r64=-3.3640 d64=2.35 n40=1.78800 ν40=47.38 r65=3.3640 d65=0.8300 n41=1.61272 ν41=58.75 r66=-5.3552 d66=1.5220 r67=∞ d67=14.8500 n42=1.58913 ν42=61.18 r68=∞ d68=4.8329 r69=∞(像) d69=0.0077 r70=∞(視野絞り) d70=6.8190 r71=9.3300 d71=0.3200 n43=1.84666 ν43=23.78 r72=3.6370 d72=1.44 n44=1.58267 ν44=46.39 r73=-5.1350 d73=10.841 r74=∞(瞳) A/B=0.47 、2×C/B=0.32 、D/E=0.67 Enp=0.95 、Enp/f=0.95
【0039】 実施例2 斜視角=16.6°(空中)、画角=55°、視野絞り径=1.56mm 、f=1.278 r1 =∞ d1 =0.5600 n1 =1.76820 ν1 =71.70 r2 =∞ d2 =0.3200 r3 =∞ d3 =0.1500 n2 =1.88300 ν2 =40.78 r4 =0.4910 d4 =0.2500 r5 =∞ d5 =5.0700 n3 =1.83481 ν3 =42.72 r6 =-2.6340 d6 =0.7000 r7 =2.3850 d7 =1.3300 n4 =1.77250 ν4 =49.60 r8 =-1.2180 d8 =0.6200 n5 =1.78472 ν5 =25.68 r9 =4.8010 d9 =1.5000 r10=-0.6750 d10=0.4000 n6 =1.83481 ν6 =42.72 r11=∞ d11=0.9700 n7 =1.78590 ν7 =44.19 r12=-1.2980 d12=5.1430 r13=5.7020 d13=14.8500 n8 =1.58913 ν8 =61.18 r14=∞ d14=1.5220 r15=5.3552 d15=0.8300 n9 =1.61272 ν9 =58.75 r16=-3.3640 d16=2.3500 n10=1.78800 ν10=47.38 r17=3.3640 d17=0.8300 n11=1.61272 ν11=58.75 r18=-5.3552 d18=1.5220 r19=∞ d19=14.8500 n12=1.58913 ν12=61.18 r20=-7.2040 d20=6.9190 r21=7.2040 d21=14.8500 n13=1.58913 ν13=61.18 r22=∞ d22=1.5220 r23=5.3552 d23=0.8300 n14=1.61272 ν14=58.75 r24=-3.3640 d24=2.3500 n15=1.78800 ν15=47.38 r25=3.3640 d25=0.8300 n16=1.61272 ν16=58.75 r26=-5.3552 d26=1.5220 r27=∞ d27=14.8500 n17=1.58913 ν17=61.18 r28=-7.2040 d28=6.9190 r29=7.2040 d29=14.8500 n18=1.58913 ν18=61.18 r30=∞ d30=1.5220 r31=5.3552 d31=0.8300 n19=1.61272 ν19=58.75 r32=-3.3640 d32=2.3500 n20=1.78800 ν20=47.38 r33=3.3640 d33=0.8300 n21=1.61272 ν21=58.75 r34=-5.3552 d34=1.5220 r35=∞ d35=14.8500 n22=1.58913 ν22=61.18 r36=-7.2040 d36=6.9190 r37=7.2040 d37=14.8500 n23=1.58913 ν23=61.18 r38=∞ d38=1.5220 r39=5.3552 d39=0.8300 n24=1.61272 ν24=58.75 r40=-3.3640 d40=2.3500 n25=1.78800 ν25=47.38 r41=3.3640 d41=0.8300 n26=1.61272 ν26=58.75 r42=-5.3552 d42=1.5220 r43=∞ d43=14.8500 n27=1.58913 ν27=61.18 r44=-7.2040 d44=6.9190 r45=7.2040 d45=14.8500 n28=1.58913 ν28=61.18 r46=∞ d46=1.5220 r47=5.3552 d47=0.8300 n29=1.61272 ν29=58.75 r48=-3.3640 d48=2.3500 n30=1.78800 ν30=47.38 r49=3.3640 d49=0.8300 n31=1.61272 ν31=58.75 r50=-5.3552 d50=1.5220 r51=∞ d51=14.8500 n32=1.58913 ν32=61.18 r52=-7.2040 d52=6.9190 r53=7.2040 d53=14.8500 n33=1.58913 ν33=61.18 r54=∞ d54=1.5220 r55=5.3552 d55=0.8300 n34=1.61272 ν34=58.75 r56=-3.3640 d56=2.3500 n35=1.78800 ν35=47.38 r57=3.3640 d57=0.8300 n36=1.61272 ν36=58.75 r58=-5.3552 d58=1.5220 r59=∞ d59=14.8500 n37=1.58913 ν37=61.18 r60=-7.2040 d60=6.9190 r61=7.2040 d61=14.8500 n38=1.58913 ν38=61.18 r62=∞ d62=1.5220 r63=5.3552 d63=0.8300 n39=1.61272 ν39=58.75 r64=-3.3640 d64=2.3500 n40=1.78800 ν40=47.38 r65=3.3640 d65=0.8300 n41=1.61272 ν41=58.75 r66=-5.3552 d66=1.5220 r67=∞ d67=14.8500 n42=1.58913 ν42=61.18 r68=-19.0010 d68=4.226 r69=∞(像) d69=0.021 r70=∞(視野絞り) d70=8.223 r71=14.544 d71=0.6000 n43=1.80518 ν43=25.43 r72=4.3300 d72=1.7000 n44=1.62374 ν44=47.10 r73=-6.5830 d73=12.6400 r74=∞(瞳) D/E=0.63 、Enp=1.03 、Enp/f=0.806 ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズのd線に対する屈折率、ν
1 ,ν2 ,・・・ は各レンズのアッベ数である。
【0040】実施例1、2は夫々図1、図2に示す通り
の構成である。これら実施例は、物体側より順に、第1
実施例では平行平面板、第2実施例では偏角プリズムP
(r1 〜r2 )と、対物光学系O(r3 〜r12)と、像
伝達光学系RL(r13〜r68)と、視野絞りFS
(r70)、接眼光学系E(r71〜r73)よりなる。又r
67は像位置I、r73は射出瞳位置EPである。尚、焦点
距離等の長さの単位はmmである。
【0041】又、像伝達光学系は、同じ構成の第1リレ
ーレンズ系RL1(r13〜r20),第2リレーレンズ系
RL2(r21〜r28),第3リレーレンズ系RL3(r
29〜r36),第4リレーレンズ系RL4(r37
44),第5リレーレンズ系RL5(r45〜r52),第
6リレーレンズ系RL6(r53〜r60)、第7リレーレ
ンズ系RL7(r61〜r68)よりなる。
【0042】これら実施例のうち、実施例1は、対物光
学系の先端部に平行平面板(カバーガラス)が配置さ
れ、この平行平面板は観察光学系の光軸と直交してい
る。これにより水中での観察の際に視野方向の傾斜角が
小さくなるのを防いでいる。
【0043】この実施例1は、挿入部の径が3mmの細い
径であり、そのため像伝送光学系によるリレー回数を多
くしている。
【0044】この実施例1の平行平面板の径は1.8m
m、対物光学系の径は1.2mmである。
【0045】又この実施例1において像伝送光学系を構
成するリレーレンズ系のリレー距離(中間像から次の中
間像までの距離)を、挿入部の太い硬性鏡光学系と同じ
距離にすると、細径化によりレンズ外径が小さいために
リレーレンズ系の開口数が小さくなる。このように開口
数が小さくなると像の明るさが減少し好ましくない。
【0046】実施例1は、一つのリレー距離を短くする
ことによりリレーレンズ系の外径が小さくなってもリレ
ーレンズ系の開口数が小さくならないようにしている。
そして一つのリレー距離を短くしたためリレー回数を従
来の5回に対して7回にしてある。
【0047】この実施例1の像伝送光学系を構成する各
レンズの外径は1.9mmで、各レンズ間にはレンズの位
置決めと保持のためのスペーサーが配置されている。こ
のスぺーサーの厚みは0.05mmである。従来の硬性鏡
で用いられているスペーサーの厚みは0.1mmである
が、この実施例のように挿入部が細くなるとスペーサー
の厚みによる光量ロスが問題になる。例えば外径が2mm
のレンズに対して厚さ0.1mmのスペーサーを用いると
レンズの有効径は1.8mmになる。
【0048】一方、この実施例のように厚さ0.05mm
のスペーサーを用いるとレンズの有効径は1.9mmにな
り、約20%の光量ロスを防止できる。尚スペーサーと
接するレンズ面には0.05mmの面取りを施こしてい
る。
【0049】又、この実施例1は、対物光学系に最も近
い第1リレーレンズ系(r13〜r20)は、対物光学系に
より形成された像を拡大する拡大光学系になっている。
それは、第1リレーレンズ系に入射する光線の軸外主光
線は、第1リレーレンズ系の入射面(対物光学系側の
面)へ斜めに入射させることによって対物光学系の射出
面(対物光学系の最終面)での光線高を低くでき、その
結果、射出面で軸外光束の上側光線がスペーサーでけら
れることを防ぐことができる。
【0050】又、この実施例の像伝送光学系は、第2リ
レーレンズ系(r21〜r28)から第6リレーレンズ系
(r53〜r60)までは等倍光学系であり、第7リレーレ
ンズ系(r61〜r68)は約1.48倍の拡大光学系であ
る。
【0051】この実施例1のリレーレンズ系は、外径が
小さくなっているために、これによりリレーされる像も
小さい。このような小さい像を接眼光学系にて拡大観察
する場合、接眼光学系のみで所望の大きさに拡大しよう
とすると接眼光学系の焦点距離を短くせざるを得ず、射
出瞳位置(アイポイント)が接眼光学系に近づき、眼鏡
をかけた観察者の場合観察しにくく、又接眼光学系の収
差を良好に補正し得ない。第7リレーレンズ系を拡大倍
率にすることにより、接眼光学系による拡大倍率の負担
が軽減し、接眼光学系のアイポイントを適切な位置に保
ち得、又接眼光学系の収差補正が容易になる。
【0052】又、実施例1は、有効画像範囲の一部を実
際に観察する観察範囲として切り出すようにしており、
有効画像範囲内で予め像面湾曲を良好に補正してあるた
め、どこから切り出しても像面湾曲のない観察画像が得
られる。
【0053】有効画像範囲は、例えば第2リレーレンズ
系から第6リレーレンズ系で形成される中間像の大きさ
が直径1.28mmで、有効画像範囲の70%である直径
0.9mmの範囲を観察画像として利用している。これを
第7リレーレンズ系にて約1.48倍に拡大し、直径
1.89mmの最終画像になる。これを絞り径1.28mm
の視野絞りにて切り出し、有効画像範囲の約70%の範
囲が観察画像範囲になる。
【0054】又、実施例1は、接眼光学系枠を第7リレ
ーレンズ系の光軸に対して0.305mm偏芯させて、1
1.7°の斜視角になるようにしている。この時の有効
画像範囲B=1.89mmであるので2×C/B=2×
0.305/1.89=0.32となり条件(2)を満
足している。
【0055】又、図5に示すように画像の大きさを決め
る視野絞りFSは、接眼光学系Fを保持している枠3に
一体に保持されており、これにより接眼光学系Eを動か
してもこれと視野絞りFSとの関係は常に一定に保たれ
視野絞りFSを常にピントが合った状態にてみることが
できる。 接眼光学系枠3は、第7リレーレンズRL7
系に対して図5に示すねじ5を緩めることによって光軸
方向に移動させることができる。そのため、接眼光学系
Eのピントを第7リレーレンズ系RL7によって形成さ
れた最終像に合わせるためには、ねじ5を緩めて接眼光
学系枠を緩めて接眼光学系枠を光軸方向に前後させて調
整すればよい。
【0056】光軸と垂直な面内での移動は、接眼光学系
枠3を保持する保持部材4に対し3方向よりのねじ6が
設けられており、このねじ6によって行なわれる。した
がって視野絞り中心で所望の斜視角が得られるように斜
視方向と同一方向に視野絞りを調整固定すればよい。
【0057】また観察画像をテレビモニターにて表示し
て見るためには、接眼光学系の後方に撮像アダプターを
接続して行なう。この場合、接眼光学系と撮像アダプタ
ーとの間は、アフォーカル系になっており、接続部分が
瞳位置になっている。したがって撮像アダプターの光軸
を接眼光学系の光軸もしくは像伝達光学系の光軸のいず
れに合わせたとしても結像性能にはなんら悪影響を及ぼ
さない。そのため、像伝送光学系の光軸に合うように設
計されている従来の撮像アダプターを使用し得る。
【0058】接眼光学系がダブレットのみからなる少な
いレンズ枚数にて構成されている場合、接眼光学系にて
像面湾曲が発生する。この場合は、接眼光学系は、視野
中心にピントを合わせるようにして、視野中心に対して
接眼光学系の像面湾曲分だけ視野絞り位置を接眼光学系
側にずらして配置すればよい。
【0059】本発明の光学系の実施例2は、図2に示す
通りの構成で、物体側より順に、楔と対物光学系とリレ
ー光学系と接眼光学系とよりなる。リレー光学系は、第
1リレーレンズ系〜第7リレーレンズ系の7回リレーで
ある。実施例2も楔の径が1.9mm、対物光学系の径
が1.2mm、像伝送光学系の径が1.9mmである。
【0060】この実施例2は、最も物体側(対物光学系
の物体側)に、図6に示すような楔を配置することによ
り弱斜視の内視鏡光学系にしている。このように光学系
中に楔を配置して弱斜視にする場合、楔にて発生する色
収差および像面の倒れを抑える必要がある。又オートク
レーブで殺菌を行ない得るようにするためには、楔の外
表面は、高温、多湿な環境に十分耐え得るようにする必
要がある。
【0061】これら要求を満足するために、この実施例
2においては、楔の硝材として、高屈折率で低分散(n
d =1.76、νd =71.7)のサファイヤガラスを使用して
いる。又楔の頂角は21°である。
【0062】尚楔の表面に、高温、高湿に対し十分耐え
得る保護膜を設けることによって、高温、高湿に対する
耐性のない硝材を用いることも可能である。このような
保護膜としては例えばバルザー(Balzer)社のI
RALIN56(商品名)を使用すれば、合わせて反射
防止効果を得ることができる。
【0063】以上述べた本発明硬性鏡光学系にいて特許
請求の範囲に記載する光学系のほか、次の各項に記載す
る光学系も発明の目的を達成し得る。
【0064】(1)特許請求の範囲の請求項1又は2に
記載する光学系で、観察に利用する画角が下記条件
(1)を満足することを特徴とする硬性鏡光学系。 (1) 0.4<A/B<0.6
【0065】(2)特許請求の範囲の請求項1又は2あ
るいは前記の(1)の項に記載する光学系で、対物光学
系が下記条件(3)、(5)、(6)を満足することを
特徴とする硬性鏡光学系。 (5) nd (N)>1.8 (6) 0.6<D/E<0.75 (7) 0.5<Enp/F<1.5
【0066】(3)特許請求の範囲の請求項2に記載す
る光学系で、偏芯量が下記条件(2)を満足することを
特徴とする硬性鏡光学系。 (2) 0.25<2×C/B<0.7
【0067】(4)物体側より順に、対物光学系と、像
伝送光学系と、視野絞りと、接眼光学系とよりなり、前
記対物光学系の最も物体側にAl23単結晶、Al22
焼結晶体又はMg Oの単結晶のいずれかを含む材料より
なり、下記条件を満足する楔を配置したことを特徴とす
る硬性鏡光学系。 (A) 5°<θ<20° (3) nd >1.65 (4) νd >60
【0068】(5)前記の(4)の項に記載する光学系
で、前記条件の代りに下記各条件(3−1),(4−
1)を満足することを特徴とする硬性鏡光学系。 (A−1) 10°<θ<20° (3−1) nd >1.7 (4−1) νd >65
【0069】
【発明の効果】本発明の硬性鏡光学系は、狭い視野角
で、4mm程度以下の外径で、300mm程度以上の長さを
有する細長い挿入部を有し、周辺部を含め良好な画質が
得られ、又、良好な画質の弱斜視の光学系である。
【図面の簡単な説明】
【図1】本発明の実施例1の構成を示す図
【図2】本発明の実施例2の構成を示す図
【図3】本発明の実施例1の収差曲線図
【図4】本発明の実施例2の収差曲線図
【図5】本発明の光学系を組込んだ鏡筒の断面図
【図6】本発明の第2実施例の楔を示す図
【図7】従来の硬性鏡の構成を示す図
【図8】従来の斜視硬性鏡光学系のの構成を示す図

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】物体側より順に、対物光学系と像伝送光学
    系と接眼光学系とよりなり、前記像伝送光学系の最大外
    径の70%の有効画像範囲よりも小さい範囲の画像を観
    察するための視野絞りを前記像伝送光学系と前記接眼光
    学系との間に該接眼光学系と一体的に配置したことを特
    徴とする硬性鏡光学系。
  2. 【請求項2】前記視野絞りと前記接眼光学系とを一体的
    に光軸に対して垂直方向に偏芯させて斜視方向の観察を
    行なうようにした光学系で、前記斜視方向と同一方向に
    前記視野絞りと接眼光学系とを一体的に偏芯させた状態
    に調整し固定するようにしたことを特徴とする請求項1
    に記載の硬性鏡光学系。
JP10186995A 1998-06-18 1998-06-18 硬性鏡光学系 Pending JP2000010024A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10186995A JP2000010024A (ja) 1998-06-18 1998-06-18 硬性鏡光学系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10186995A JP2000010024A (ja) 1998-06-18 1998-06-18 硬性鏡光学系

Publications (2)

Publication Number Publication Date
JP2000010024A true JP2000010024A (ja) 2000-01-14
JP2000010024A5 JP2000010024A5 (ja) 2005-05-12

Family

ID=16198369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10186995A Pending JP2000010024A (ja) 1998-06-18 1998-06-18 硬性鏡光学系

Country Status (1)

Country Link
JP (1) JP2000010024A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328715B2 (en) 2007-02-27 2012-12-11 Olympus Medical Systems Corp. Adaptor optical system for endoscopes and endoscope
DE112017002595T5 (de) 2016-05-20 2019-05-02 Olympus Corporation Relaisoptiksystem und starres Endoskop, das dies verwendet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328715B2 (en) 2007-02-27 2012-12-11 Olympus Medical Systems Corp. Adaptor optical system for endoscopes and endoscope
DE112017002595T5 (de) 2016-05-20 2019-05-02 Olympus Corporation Relaisoptiksystem und starres Endoskop, das dies verwendet
US10859811B2 (en) 2016-05-20 2020-12-08 Olympus Corporation Relay optical system and rigid endoscope using the same

Similar Documents

Publication Publication Date Title
JP3765500B2 (ja) 内視鏡用対物レンズ
EP2090916B1 (en) Retrofocus objective using lenses exhibiting relative partial dispersion
JP2876252B2 (ja) 内視鏡対物レンズ
US20030043289A1 (en) Optical component and image pick-up device using the same
JP4909089B2 (ja) ズームレンズ及びそれを有する撮像装置
US20090109548A1 (en) Zoom lens and image-pickup apparatus
EP2579083A1 (en) Objective lens for endoscope, and endoscope
JP2008107391A (ja) 内視鏡対物光学系
JPH0910170A (ja) 内視鏡対物光学系
JP2007233036A (ja) 拡大内視鏡光学系
JP5587017B2 (ja) ファインダー用接眼レンズ
US10338342B2 (en) Zoom image pickup apparatus
JP2009163256A (ja) 光学系
JPH05323186A (ja) 内視鏡
JP3889849B2 (ja) 顕微鏡用対物レンズ及び単対物型双眼実体顕微鏡システム
JPH07101254B2 (ja) 内視鏡対物レンズ
JP3140841B2 (ja) 内視鏡用対物光学系
JP2582144B2 (ja) 撮影レンズ
JPH10115788A (ja) 硬性鏡光学系
JP4373749B2 (ja) 撮像光学系、内視鏡用撮像装置及び内視鏡システム
JPH07253536A (ja) テレビ画像撮影装置
JP2019128527A (ja) 観察装置
JP2000010024A (ja) 硬性鏡光学系
WO2021084835A1 (ja) 光学系及び光学機器
JP6754916B2 (ja) 内視鏡用変倍光学系及び内視鏡

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612