JP2000009968A - Photodetecting module - Google Patents

Photodetecting module

Info

Publication number
JP2000009968A
JP2000009968A JP10172956A JP17295698A JP2000009968A JP 2000009968 A JP2000009968 A JP 2000009968A JP 10172956 A JP10172956 A JP 10172956A JP 17295698 A JP17295698 A JP 17295698A JP 2000009968 A JP2000009968 A JP 2000009968A
Authority
JP
Japan
Prior art keywords
optical fiber
light receiving
light
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10172956A
Other languages
Japanese (ja)
Inventor
Koji Oura
浩二 大浦
Hiroo Uchiyama
博夫 内山
Hidehiko Negishi
英彦 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10172956A priority Critical patent/JP2000009968A/en
Publication of JP2000009968A publication Critical patent/JP2000009968A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photodetecting module which is an optical coupling structure of an optical fiber and a photodetector of high optical coupling efficiency in an optical signal receiver for executing opto-electrical conversion used in an optical communicate system, is less deteriorated with lapse of time and is excellent in productivity. SOLUTION: This photodetecting module has the optical coupling structure connected to make light 14 emitted by reflection from the optical fiber 11 polished diagonally at its front end incident on the photodetecting part of the photodetector 15 disposed on a substrate 16 via a refractive index matching adhesive 17 having the refractive index equal to the refractive index of an optical fiber clad. In such a case, the dispersion of the light emitted from the side of the optical fiber 11 by total reflection and the reflection of the light which occurs at the boundary surface between an air layer and the photodetecting surface of the photodetector 15 is suppressed by the refractive index matching adhesive 17 and, therefore, the high optical coupling efficiency is obtd. Since the front end of the optical fiber 11 and the photodetecting surface of the photodetector 15 are positioned and fixed by the refractive index matching adhesive 17, the photodetecting module which is less deteriorated in the characteristics by the deflection of the optical fiber 11 with lapse of time is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、入力した光信号を
電気信号に変換して出力する受光素子と光ファイバとを
光学的に結合してなる受光モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light receiving module which is formed by optically coupling a light receiving element for converting an inputted optical signal into an electric signal and outputting the electric signal and an optical fiber.

【0002】[0002]

【従来の技術】一般的な光通信システムの受信側では、
光伝送路(光ファイバ)を介して伝送されてきた光信号
をフォトダイオード等の受光素子により光−電気変換し
て電気信号を得て、この電気信号に基づいて情報の再生
を行うようにしている。このようなシステムにおいて使
用される受光モジュールは、受光素子と光ファイバとを
所定の位置関係で固定して構成される。また、光ファイ
バと微細化する方向にある受光素子を光結合するに際し
て、受信感度を高めるために、光学的な結合率が高いこ
とが要求される。
2. Description of the Related Art On the receiving side of a general optical communication system,
An optical signal transmitted through an optical transmission line (optical fiber) is converted from light to electricity by a light receiving element such as a photodiode to obtain an electric signal, and information is reproduced based on the electric signal. I have. The light receiving module used in such a system is configured by fixing a light receiving element and an optical fiber in a predetermined positional relationship. In addition, when optically coupling an optical fiber with a light receiving element in a direction of miniaturization, a high optical coupling rate is required to enhance reception sensitivity.

【0003】図7は従来の受光モジュールの構成を示す
図である。
FIG. 7 is a diagram showing a configuration of a conventional light receiving module.

【0004】光通信等に使用される光−電気変換部分を
含む受光モジュールは、高速応答特性、高周波特性、雑
音特性が良好で、光ファイバと受光素子との光結合効率
が高く小型なものが必要とされる。高速化、広帯域化の
ためには、受光素子の受光面と電気信号の流れる方向と
を同一にして、受光素子と電気回路との接続を直接実装
(フリップ・フロップ・ボンディング)すること、ま
た、小型化のためには、光ファイバの光軸の方向と電気
信号の流れる方向とが同一であるように光−電気変換部
分を光実装することが必要となる。
A light receiving module including an optical-electrical conversion portion used for optical communication and the like has a high-speed response characteristic, a high-frequency characteristic, and a good noise characteristic, and has a high optical coupling efficiency between an optical fiber and a light receiving element and is small. Needed. In order to increase the speed and the bandwidth, the light receiving surface of the light receiving element and the direction in which the electric signal flows are made the same, and the connection between the light receiving element and the electric circuit is directly mounted (flip-flop bonding). For miniaturization, it is necessary to optically mount the optical-electrical conversion part so that the direction of the optical axis of the optical fiber is the same as the direction in which an electric signal flows.

【0005】このため従来は、図7に示すように、コア
72を有する光ファイバ71の先端部を斜めに研磨して
全反射を起こさせるか、あるいはその傾斜研磨面73に
金等の反射特性が良好な物質を蒸着することにより、反
射を起こさせ、その傾斜研磨面73で反射して光ファイ
バ71の側方から出射した信号光74をセラミックス等
から基板76上面に実装されているアバランシェ・フォ
ト・ダイオード(APD)等の受光素子75に入射させ
るようにしていた。なお、図7には図示されていない
が、受光素子75等が外気の影響を受けないようにケー
スによって気密封止されている。
For this reason, conventionally, as shown in FIG. 7, the tip of an optical fiber 71 having a core 72 is polished obliquely to cause total reflection, or the inclined polished surface 73 has a reflection characteristic such as gold. A good material is vapor-deposited to cause reflection, and the signal light 74 reflected from the inclined polished surface 73 and emitted from the side of the optical fiber 71 is made of ceramics or the like. The light was incident on a light receiving element 75 such as a photodiode (APD). Although not shown in FIG. 7, the light receiving element 75 and the like are hermetically sealed by a case so as not to be affected by outside air.

【0006】上述した構成によれば、受光素子75の受
光面と電気信号の流れる方向が同一であるから、高速化
・広帯域化が可能になり、また、光ファイバ71の光軸
の方向と電気信号の流れる方向が同一であるから、装置
の小型化が可能になる。
According to the above-described configuration, since the light receiving surface of the light receiving element 75 and the direction of the flow of the electric signal are the same, the speed and the bandwidth can be increased, and the direction of the optical axis of the optical fiber 71 and the Since the signal flows in the same direction, the size of the device can be reduced.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の受光モジュールにおいては、以下に記す問題を
有している。
However, the above-mentioned conventional light receiving module has the following problems.

【0008】(イ)全反射して光ファイバ71の側方よ
り出射する信号光74は外部に発散されて損失となる。
(A) The signal light 74 which is totally reflected and emitted from the side of the optical fiber 71 is diverged to the outside and becomes a loss.

【0009】(ロ)光ファイバ71の側方より出射する
信号光74が、空気層を介してAPD等の受光面に入射
するとき、空気層とAPD受光面との境界面において反
射が起こり、光結合効率が低下する。
(B) When the signal light 74 emitted from the side of the optical fiber 71 enters the light receiving surface of an APD or the like via the air layer, reflection occurs on the boundary surface between the air layer and the APD light receiving surface. Optical coupling efficiency decreases.

【0010】(ハ)光ファイバ71の支持構造が、光フ
ァイバ71を固定する光ファイバブロック77から先端
までの長さが長く、片持ち構造であるために、製造時に
光結合効率が最大となるように調整されても、経時的に
光ファイバ71が撓み、適正な位置関係を維持すること
が難しい。
(C) Since the supporting structure of the optical fiber 71 has a long length from the optical fiber block 77 for fixing the optical fiber 71 to the tip and is cantilevered, the optical coupling efficiency is maximized during manufacturing. Even if adjusted as described above, the optical fiber 71 bends over time, and it is difficult to maintain an appropriate positional relationship.

【0011】(ニ)光ファイバ71中の信号光74が傾
斜研磨面73で全反射する場合、臨界全反射研磨角度は
光ファイバコア72の屈折率、信号光74の波長等によ
り定まるので、必ずしも光伝送方向に対して直角方向に
光を出射するような研磨角度(45°)を形成すること
はできない。そのため、受光素子75の受光面上の出射
ビームは楕円形となる。また、光ファイバ71側方より
信号光74が垂直出射される場合に比べ、光路長が長く
なるので損失となり、その結果、光結合効率が低下す
る。
(D) When the signal light 74 in the optical fiber 71 is totally reflected by the inclined polishing surface 73, the critical total reflection polishing angle is determined by the refractive index of the optical fiber core 72, the wavelength of the signal light 74, etc. A polishing angle (45 °) that emits light in a direction perpendicular to the light transmission direction cannot be formed. Therefore, the outgoing beam on the light receiving surface of the light receiving element 75 has an elliptical shape. Further, as compared with the case where the signal light 74 is vertically emitted from the side of the optical fiber 71, the optical path length becomes longer, resulting in a loss, and as a result, the optical coupling efficiency decreases.

【0012】(ホ)光ファイバ71中の信号光74が傾
斜研磨面73で全反射する場合、傾斜研磨面73に結露
が付着すると信号光74の反射角が変化し、光軸ずれが
起こる。従来、受光モジュールは、結露対策として光結
合部をケースによって気密封止されていたが、生産性が
悪くコスト高になる。
(E) When the signal light 74 in the optical fiber 71 is totally reflected by the inclined polished surface 73, if dew condensation adheres to the inclined polished surface 73, the reflection angle of the signal light 74 changes and an optical axis shift occurs. Conventionally, in a light receiving module, an optical coupling portion is hermetically sealed by a case as a countermeasure against dew condensation. However, productivity is low and cost is high.

【0013】(ヘ)光ファイバ71の先端部端面を斜め
研磨する際に、光ファイバ71のエッジが欠けるなど、
生産性が悪くコストの低減が困難である。
(F) When the end face of the tip of the optical fiber 71 is obliquely polished, the edge of the optical fiber 71 may be chipped.
It is difficult to reduce costs due to poor productivity.

【0014】本発明は、上記従来の問題点を解決するも
のであり、光結合効率が高い光ファイバと受光素子の光
結合構造であり、さらに経時劣化が少なく、小型で高密
度実装に適した受光モジュールを提供することを目的と
する。
The present invention is to solve the above-mentioned conventional problems, and is an optical coupling structure of an optical fiber and a light receiving element having high optical coupling efficiency. An object is to provide a light receiving module.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
の本発明は、端面を光ファイバ光軸に対して直角、かつ
平滑な切り口に切断した後、光ファイバコアを含む箇所
まで斜め研磨加工を施した光ファイバを、基板平面に対
して所定角度に傾け、光ファイバ先端の研磨面で反射し
て出射した光が、光ファイバクラッドの屈折率と等しい
屈折率整合接着剤を介して、基板上に設けられた受光素
子の受光部に垂直に入射するようにしたものである。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a method for cutting an end face into a smooth cut at a right angle to the optical axis of an optical fiber and then obliquely polishing the cut to a location including the optical fiber core. The optical fiber subjected to the above is tilted at a predetermined angle with respect to the plane of the substrate, and the light emitted from the polished surface at the tip of the optical fiber is reflected by the polished surface of the optical fiber. The light is vertically incident on the light receiving portion of the light receiving element provided above.

【0016】以上により、光ファイバコア部を含む箇所
のみ斜め研磨加工を施すので、研磨除差部が少なく、生
産性が良い受光モジュールを得ることができる。また、
屈折率整合接着剤により、光の発散、および空気層とA
PD受光面との境界面で起こる光の反射を抑制するた
め、高い光結合効率が得られるとともに、光ファイバ先
端部を屈折率整合接着剤により受光素子受光面に固定す
るので、特性の経時的劣化が少ない受光モジュールを得
ることができる。また、傾斜研磨面には発水性樹脂によ
る薄膜が形成されているので、傾斜研磨面に水分は付着
されず、結露による光軸のずれを防止することができ
る。
As described above, since the oblique polishing is performed only on the portion including the optical fiber core portion, a light receiving module having a small number of polishing difference portions and high productivity can be obtained. Also,
The index matching adhesive allows for light divergence and air layer and A
High light coupling efficiency is obtained to suppress the reflection of light that occurs at the boundary surface with the PD light receiving surface, and the optical fiber tip is fixed to the light receiving element light receiving surface with a refractive index matching adhesive, so that the characteristics over time A light receiving module with little deterioration can be obtained. Further, since a thin film made of a water-repellent resin is formed on the inclined polishing surface, moisture does not adhere to the inclined polishing surface, and the optical axis can be prevented from shifting due to dew condensation.

【0017】[0017]

【発明の実施の形態】本発明の請求項1記載の発明は、
光ファイバ光軸に対して斜めに研磨してなる傾斜研磨面
を先端に有する光ファイバから出射した光を、基板上に
設けられた受光素子の受光面に、光ファイバクラッドの
屈折率と等しい屈折率整合接着剤を介して入射させるよ
うに構成した受光モジュールであり、全反射して光ファ
イバの側方より出射する光の発散、および空気層とAP
D受光面との境界面で起こる光の反射を屈折率整合接着
剤によって抑制するので、高い光結合効率を得ることが
できるという作用を有する。また、光ファイバ先端と受
光素子受光面は該屈折率整合接着剤により位置固定され
るので、光ファイバの経時的撓みによる特性劣化が少な
い受光モジュールを得ることができるという作用を有す
る。
BEST MODE FOR CARRYING OUT THE INVENTION
The light emitted from the optical fiber having an inclined polished surface at the tip, which is polished obliquely with respect to the optical axis of the optical fiber, is refracted to the light receiving surface of the light receiving element provided on the substrate, the refractive index being equal to that of the optical fiber cladding. A light receiving module configured to be incident through a rate matching adhesive, the divergence of light totally reflected and emitted from the side of the optical fiber, and the air layer and the AP
Since the reflection of light occurring at the boundary surface with the D light receiving surface is suppressed by the refractive index matching adhesive, it has an effect that high optical coupling efficiency can be obtained. Further, since the tip of the optical fiber and the light receiving surface of the light receiving element are fixed in position by the refractive index matching adhesive, there is an effect that it is possible to obtain a light receiving module in which the characteristic deterioration due to the bending of the optical fiber with time is small.

【0018】また、請求項2記載の発明は、前記光ファ
イバ光軸を、基板平面に対して所定角度に傾け、前記傾
斜研磨面で反射した光が、前記受光素子の受光面に垂直
に入射するようにしたものであり、受光素子の受光面上
における出射ビームの形状は円形になるとともに、光フ
ァイバより出射された信号光の光路長は最短となるた
め、光結合効率が向上するという作用を有する。
Further, according to a second aspect of the present invention, the optical axis of the optical fiber is inclined at a predetermined angle with respect to the plane of the substrate, and the light reflected by the inclined polished surface is perpendicularly incident on the light receiving surface of the light receiving element. The shape of the emitted beam on the light receiving surface of the light receiving element is circular, and the optical path length of the signal light emitted from the optical fiber is the shortest, so that the optical coupling efficiency is improved. Having.

【0019】また、請求項3記載の発明は、前記傾斜研
磨面に、前記屈折率接着剤による薄膜を形成することに
より、屈折率整合接着剤と空気層との境界面で反射した
光を受光素子に入射させるようにしたものであり、傾斜
研磨面の面粗さによる信号光の反射損失、および研磨加
工条件による反射率のばらつきを防ぐという作用を有す
る。
According to a third aspect of the present invention, a light reflected at a boundary surface between the refractive index matching adhesive and the air layer is received by forming a thin film of the refractive index adhesive on the inclined polishing surface. It is designed to be incident on the element, and has an effect of preventing signal light reflection loss due to the surface roughness of the inclined polished surface and variation in reflectance due to polishing processing conditions.

【0020】また、請求項4記載の発明は、前記傾斜研
磨面に、発水性樹脂による薄膜を形成したものであり、
傾斜研磨面に水分は付着されず、結露による光軸位置ず
れを防ぐという作用を有する。
Further, according to a fourth aspect of the present invention, a thin film made of a water-repellent resin is formed on the inclined polishing surface,
Moisture does not adhere to the inclined polished surface, and has the effect of preventing the optical axis from shifting due to condensation.

【0021】また、請求項5記載の発明は、前記光ファ
イバの端面を、光ファイバコアを含む前記傾斜研磨面
と、前記傾斜研磨面の先端部に形成され、前記光ファイ
バ光軸に対して直角かつ平滑な切り口からなる直角研磨
面とから構成した受光モジュールであり、光ファイバコ
アを含む箇所のみ斜め研磨加工を施すので、研磨除差部
が少なく、生産性が良い受光モジュールを得ることがで
きるという作用を有する。
According to a fifth aspect of the present invention, an end face of the optical fiber is formed on the inclined polishing surface including an optical fiber core and a tip portion of the inclined polishing surface, and the optical fiber has an end face with respect to the optical fiber optical axis. This is a light receiving module composed of a right-angled polished surface consisting of a right-angled and smooth cut surface.Because only the portion including the optical fiber core is obliquely polished, it is possible to obtain a light-receiving module with less polishing difference and good productivity. Has the effect of being able to.

【0022】以下、本発明の実施の形態について、図1
から図6を用いて説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG.

【0023】(実施の形態1)図1は本発明の実施の形
態1の受光モジュールにおける光ファイバと受光素子と
光結合構造を示す側面断面図であり、11は光ファイ
バ、12はコア、13は光ファイバ11の先端を斜めに
研磨することにより形成された傾斜研磨面、14は信号
光、15は受光素子、16は基板、17は屈折率整合接
着剤である。光ファイバ11のコア12間を伝搬してき
た信号光14は、光ファイバ11の傾斜研磨面13によ
って全反射され、基板16上に直接実装(フリップ・チ
ップ・ボンディング)されているアバランシェ・フォト
・ダイオード(APD)等からなる受光素子15の受光
面に入射される。光ファイバ11の側方と受光素子15
との間には、光ファイバ11のクラッドと屈折率の等し
い屈折率整合接着剤17が充填されており、信号光14
の導波路が形成されている。
(Embodiment 1) FIG. 1 is a side sectional view showing an optical coupling structure between an optical fiber, a light receiving element, and an optical fiber in a light receiving module according to Embodiment 1 of the present invention. Is an inclined polished surface formed by obliquely polishing the tip of the optical fiber 11, 14 is a signal light, 15 is a light receiving element, 16 is a substrate, and 17 is a refractive index matching adhesive. The signal light 14 propagating between the cores 12 of the optical fiber 11 is totally reflected by the inclined polished surface 13 of the optical fiber 11 and is directly mounted on the substrate 16 (flip chip bonding). The light is incident on the light receiving surface of the light receiving element 15 made of (APD) or the like. Side of optical fiber 11 and light receiving element 15
Is filled with a refractive index matching adhesive 17 having the same refractive index as that of the cladding of the optical fiber 11, and the signal light 14.
Is formed.

【0024】以上のように構成された受光モジュールに
ついて、光結合構造の製造方法を説明する。まず、アバ
ランシェ・フォト・ダイオード(APD)等からなる受
光素子15については、例えば、フリップ・チップ・ボ
ンディングによりセラミック等からなる基板16上に固
定しておく。次に、受光素子15の受光面に、光ファイ
バ11のクラッドと屈折率の等しい屈折率整合接着剤1
7を塗布する。塗布後、光ファイバ11の先端を受光素
子15の受光面上に載置し、光ファイバ11の傾斜研磨
面13における反射光軸が受光素子15の受光面垂線と
一致するように光ファイバ11を回転調整する。回転調
整後、十分な光結合効率を得るために、光ファイバ11
と受光面を近接させ、受光素子15上に塗布された屈折
率整合接着剤17に光ファイバ11の先端部側面を浸
す。次に、前記反射光軸上に受光素子15の受光面が位
置するように、光ファイバ11を基板16上平面方向に
移動調整する。調整後、屈折率整合接着剤17を硬化さ
せる。屈折率整合接着剤17としては、例えば、紫外線
硬化型樹脂を使用する。そして、光軸調整後に、紫外線
硬化型樹脂に対して紫外線を照射することによって、短
時間に硬化作業を行うことができる。
A method of manufacturing an optical coupling structure for the light receiving module configured as described above will be described. First, the light receiving element 15 made of an avalanche photo diode (APD) or the like is fixed on a substrate 16 made of ceramic or the like by, for example, flip chip bonding. Next, the refractive index matching adhesive 1 having the same refractive index as the clad of the optical fiber 11 is provided on the light receiving surface of the light receiving element 15.
7 is applied. After the application, the tip of the optical fiber 11 is placed on the light receiving surface of the light receiving element 15, and the optical fiber 11 is placed such that the reflection optical axis of the inclined polished surface 13 of the optical fiber 11 coincides with the perpendicular to the light receiving surface of the light receiving element 15. Adjust rotation. After the rotation adjustment, in order to obtain a sufficient optical coupling efficiency, the optical fiber 11
And the light-receiving surface are brought close to each other, and the side surface of the tip of the optical fiber 11 is immersed in the refractive index matching adhesive 17 applied on the light-receiving element 15. Next, the optical fiber 11 is moved and adjusted in the plane direction on the substrate 16 so that the light receiving surface of the light receiving element 15 is located on the reflected optical axis. After the adjustment, the refractive index matching adhesive 17 is cured. As the refractive index matching adhesive 17, for example, an ultraviolet curable resin is used. By irradiating the ultraviolet curable resin with ultraviolet light after the optical axis adjustment, the curing operation can be performed in a short time.

【0025】受光モジュールの光結合構造において、光
ファイバ11による光の反射から受光素子15への入射
経路を、図2を用いてその動作を説明する。光ファイバ
21のコア22間を伝搬してきた信号光24は傾斜研磨
面23で全反射した後、光ファイバ21の側方より出射
する。光ファイバ21側方から出射された光ビームの強
度分布はガウス形状とみなすことができ、回折により出
射された光ビームは図2に示すように広がる。光ビーム
の1/e2となる光ビームの半径をωとし、光ファイバ
21側方から出射された信号光24が受光素子25の受
光面までに到達する光路長をZとすると、半径ωは(数
1)により表される。
The operation of the optical coupling structure of the light receiving module from the reflection of light by the optical fiber 11 to the light incident on the light receiving element 15 will be described with reference to FIG. The signal light 24 propagating between the cores 22 of the optical fiber 21 is totally reflected by the inclined polished surface 23 and then emitted from the side of the optical fiber 21. The intensity distribution of the light beam emitted from the side of the optical fiber 21 can be regarded as a Gaussian shape, and the light beam emitted by diffraction spreads as shown in FIG. Assuming that the radius of the light beam that is 1 / e 2 of the light beam is ω, and the optical path length of the signal light 24 emitted from the side of the optical fiber 21 to the light receiving surface of the light receiving element 25 is Z, the radius ω is It is represented by (Equation 1).

【0026】[0026]

【数1】ω2=ω0 2{1+(λZ/πω0 2n)2} ω0:光ファイバのコア径 λ :光の波長 n :媒質間の屈折率 屈折率整合接着剤17の屈折率nは1.46程度である
ため、屈折率整合接着剤17中を伝搬する信号光24は
空気層(n=1)中を伝搬する光に比べて、光の発散が
小さくなる。また、信号光24が光ファイバ21の側方
より射出する際、および受光素子25の受光面に入射す
る際には、光の反射が伴う。反射光強度は、媒質間の屈
折率差が大きくなるに伴い大きくなる。したがって、光
ファイバ21の側方と受光素子25との間に光ファイバ
21のクラッドと屈折率の等しい屈折率整合接着剤17
を充填すれば、空気層の場合に比べて媒質間の屈折率の
差が小さくなるので、反射光28による損失が小さくな
る。
Ω 2 = ω 0 2 {1+ (λZ / πω 0 2 n) 2 } ω 0 : core diameter of optical fiber λ: wavelength of light n: refractive index between media Refraction of refractive index matching adhesive 17 Since the rate n is about 1.46, the divergence of the signal light 24 propagating in the refractive index matching adhesive 17 becomes smaller than that of the light propagating in the air layer (n = 1). Further, when the signal light 24 is emitted from the side of the optical fiber 21 and is incident on the light receiving surface of the light receiving element 25, light is reflected. The reflected light intensity increases as the refractive index difference between the media increases. Therefore, between the side of the optical fiber 21 and the light receiving element 25, the refractive index matching adhesive 17 having the same refractive index as that of the clad of the optical fiber 21.
Is filled, the difference in the refractive index between the media becomes smaller than in the case of the air layer, so that the loss due to the reflected light 28 is reduced.

【0027】以上のように実施の形態1によれば、先端
が斜めに研磨された光ファイバより出射した光を、光フ
ァイバクラッドの屈折率と屈折率整合接着剤を介して、
基板上に設けられた受光素子の受光面に入射されるよう
にした光結合構造とすることにより、全反射して光ファ
イバの側方より出射する光の発散、および空気層とAP
D受光面との境界面で起こる光の反射を抑制するので、
高い光結合効率を得ることができる。
As described above, according to the first embodiment, the light emitted from the optical fiber whose tip is obliquely polished is transmitted through the refractive index matching adhesive with the refractive index of the optical fiber clad.
The light coupling structure is designed to be incident on the light receiving surface of the light receiving element provided on the substrate, so that the divergence of the light totally reflected and emitted from the side of the optical fiber and the air layer and the AP
Since it suppresses light reflection that occurs at the interface with the D light receiving surface,
High optical coupling efficiency can be obtained.

【0028】本発明の実施の形態1による受光モジュー
ルの特性と従来の受光モジュールの特性との比較を図8
に示した。
FIG. 8 shows a comparison between the characteristics of the light receiving module according to the first embodiment of the present invention and the characteristics of the conventional light receiving module.
It was shown to.

【0029】図8から明らかなように、実施の形態1に
よる受光モジュールは、光ファイバと受光素子15を光
結合するに際して光学的な結合率が高く、受信感度の点
で優れた効果が得られる。
As is apparent from FIG. 8, the light receiving module according to the first embodiment has a high optical coupling rate when optically coupling the optical fiber and the light receiving element 15, and an excellent effect in terms of receiving sensitivity can be obtained. .

【0030】以上のように実施の形態1によれば、光フ
ァイバ11の側方と受光素子15との間に、光ファイバ
11のクラッドと屈折率の等しい屈折率整合接着剤17
を充填することにより、高い光結合効率を得ることがで
きる。また、光ファイバ11の先端部を屈折率整合接着
剤17により受光素子15の受光面に固定するので、光
ファイバ11の経時的撓みによる特性劣化が少ない受光
モジュールを得ることができる。また、従来は受光素子
等が外気の影響を受けないようにケースによって気密封
止されていたが、実施の形態1によれば、屈折率整合接
着剤17により樹脂封止することによって受光素子15
は外気の影響を受けず、受光モジュール構造の簡素化、
および生産性が良い受光モジュールを得ることができ
る。
As described above, according to the first embodiment, the refractive index matching adhesive 17 having the same refractive index as the clad of the optical fiber 11 is provided between the side of the optical fiber 11 and the light receiving element 15.
By filling, high optical coupling efficiency can be obtained. In addition, since the distal end of the optical fiber 11 is fixed to the light receiving surface of the light receiving element 15 with the refractive index matching adhesive 17, a light receiving module with less characteristic deterioration due to the temporal bending of the optical fiber 11 can be obtained. Conventionally, the light receiving element and the like are hermetically sealed by a case so as not to be affected by the outside air. However, according to the first embodiment, the light receiving element 15 is sealed by resin with the refractive index matching adhesive 17.
Is not affected by outside air, simplifies the light receiving module structure,
Further, a light receiving module with good productivity can be obtained.

【0031】(実施の形態2)図3は本発明の実施の形
態2の光ファイバ先端部分における信号光の反射経路を
示す説明図である。光ファイバ31先端部の研磨角度を
θp,光ファイバ31のコア32内を伝搬する信号光3
4の伝搬角度をθc,コア32の屈折率をn1とすると、
信号光34が傾斜研磨面33で全反射する条件は、(数
2)となる。
(Embodiment 2) FIG. 3 is an explanatory diagram showing a reflection path of signal light at the tip of an optical fiber according to Embodiment 2 of the present invention. The polishing angle of the tip of the optical fiber 31 is θ p , and the signal light 3 propagating in the core 32 of the optical fiber 31 is
4 is θ c and the refractive index of the core 32 is n 1 .
The condition that the signal light 34 is totally reflected by the inclined polishing surface 33 is (Equation 2).

【0032】[0032]

【数2】θp≦90−θc−arcsin(1/n1) コア32の屈折率(n1)が1.45,信号光34の波長
(λ)が1.55μmの場合、臨界全反射角度(θp)は
44.4°となる。また、光ファイバ31からのビーム
中心の出射角度(θa)は、(数3)となる。
[Number 2] θ p ≦ 90-θ c -arcsin (1 / n 1) the refractive index of the core 32 (n 1) is 1.45, the wavelength of the signal light 34
When (λ) is 1.55 μm, the critical total reflection angle (θ p ) is 44.4 °. The emission angle (θ a ) of the beam center from the optical fiber 31 is (Equation 3).

【0033】[0033]

【数3】θa=arcsin[n2sin(90−2θp)] n2:クラッドの屈折率 製造精度を考慮して光ファイバ31の先端部の研磨角度
を40°とした場合、θaは15°になる。その結果、
光ファイバ31より出射された信号光34は受光素子の
受光面垂線に対し、傾いて入射されるため、受光面上の
出射ビームは楕円形となる。また、光ファイバ31側方
より信号光34が垂直出射される場合に比べ、光路長が
長くなるので損失となるとともに、受光面に斜めより光
が入射されるので反射損失が大きくなり、その結果、光
結合効率が低下する。
Θ a = arcsin [n 2 sin (90−2θ p )] n 2 : refractive index of clad When the polishing angle of the tip of the optical fiber 31 is set to 40 ° in consideration of manufacturing accuracy, θ a Becomes 15 °. as a result,
Since the signal light 34 emitted from the optical fiber 31 is obliquely incident on the perpendicular to the light receiving surface of the light receiving element, the emitted beam on the light receiving surface has an elliptical shape. Further, as compared with the case where the signal light 34 is vertically emitted from the side of the optical fiber 31, the optical path length becomes longer, resulting in a loss. In addition, since the light is obliquely incident on the light receiving surface, the reflection loss becomes larger. As a result, the optical coupling efficiency decreases.

【0034】実施の形態2は、実施の形態1のように構
成された受光モジュールにおいて、光ファイバ11の光
軸を基板平面に対して15°傾け、光ファイバ11の先
端の傾斜研磨面13で反射して出射した光が、受光素子
15の受光面に垂直に入射するようにしたものである
(図1)。ただし、受光素子15の受光面に垂直入射し
た信号光14は、受光面において反射することにより、
入射経路を逆進して光ファイバ11まで戻るおそれがあ
る。したがって、受光面表面には反射防止膜を施す必要
がある。
In the second embodiment, in the light receiving module constructed as in the first embodiment, the optical axis of the optical fiber 11 is inclined by 15 ° with respect to the plane of the substrate, and the inclined polishing surface 13 at the tip of the optical fiber 11 is used. The reflected and emitted light is perpendicularly incident on the light receiving surface of the light receiving element 15 (FIG. 1). However, the signal light 14 vertically incident on the light receiving surface of the light receiving element 15 is reflected by the light receiving surface,
There is a possibility that the light may return to the optical fiber 11 by reversing the incident path. Therefore, it is necessary to apply an antireflection film to the light receiving surface.

【0035】以上のように実施の形態2によれば、光フ
ァイバ31の光軸を基板平面に対して所定角度に傾け、
光ファイバ11先端の傾斜研磨面33で反射して出射し
た光を受光素子15の受光面に垂直に入射させることに
より、受光面上における出射ビームの形状は円形になる
とともに、光ファイバ31より出射された伝搬光の光路
長は最短となる。また、受光素子15の受光面に入射す
る光の反射損失が軽減するため、光結合効率を向上させ
ることができる。
As described above, according to the second embodiment, the optical axis of the optical fiber 31 is inclined at a predetermined angle with respect to the substrate plane.
By making the light reflected by the inclined polishing surface 33 at the tip of the optical fiber 11 and emitted perpendicularly to the light receiving surface of the light receiving element 15, the shape of the emitted beam on the light receiving surface becomes circular and the light emitted from the optical fiber 31 is emitted. The optical path length of the transmitted propagation light is the shortest. Further, since the reflection loss of the light incident on the light receiving surface of the light receiving element 15 is reduced, the optical coupling efficiency can be improved.

【0036】(実施の形態3)図4は本発明の実施の形
態3における光ファイバと受光素子の光結合構造の要部
拡大図であり、光ファイバ41先端部の傾斜研磨面43
の表面には光ファイバ41のクラッドと等しい屈折率を
有する屈折率整合接着剤47によって、薄膜48が形成
されている。なお、光ファイバ41のコアとクラッドの
屈折率の差はほとんどないので、光ファイバ41のコア
42内を伝搬してきた信号光44は、コア42と傾斜研
磨面43に薄膜48を形成している屈折率整合接着剤4
7との境界面で反射することなく、薄膜48内を透過す
る。薄膜48内を透過した信号光44は、屈折率整合接
着剤47の薄膜48と空気層との境界面で全反射し、光
ファイバ41の側方より出射する。
(Embodiment 3) FIG. 4 is an enlarged view of a main part of an optical coupling structure between an optical fiber and a light receiving element according to Embodiment 3 of the present invention.
Is formed with a refractive index matching adhesive 47 having a refractive index equal to that of the cladding of the optical fiber 41. Since there is almost no difference between the refractive index of the core of the optical fiber 41 and the refractive index of the clad, the signal light 44 propagating in the core 42 of the optical fiber 41 forms a thin film 48 on the core 42 and the inclined polished surface 43. Refractive index matching adhesive 4
The light is transmitted through the thin film 48 without being reflected at the boundary surface between the thin film 48. The signal light 44 transmitted through the thin film 48 is totally reflected at the interface between the thin film 48 of the refractive index matching adhesive 47 and the air layer, and is emitted from the side of the optical fiber 41.

【0037】以上のように構成された受光モジュールに
ついて、光結合構造の製造方法を説明する。基板46上
に直接実装された受光素子45の受光面に、光ファイバ
41のクラッドと屈折率の等しい屈折率整合接着剤47
を充填した後、光ファイバ41先端部を、受光面上を覆
う屈折率整合接着剤47に挿入する。次に、光ファイバ
41を受光面から上方に微小移動させると、光ファイバ
41先端部の傾斜研磨面43には、表面張力により屈折
率整合接着剤47の薄膜48が形成される。なお、屈折
率整合接着剤47の薄膜48と空気層との境界面は平面
と見なし、光ファイバ41光軸と前記境界面がなす角度
は、光ファイバ41の先端部の傾斜研磨面43の角度と
等しくなる。
A method of manufacturing the optical coupling structure of the light receiving module configured as described above will be described. A refractive index matching adhesive 47 having the same refractive index as the clad of the optical fiber 41 is provided on the light receiving surface of the light receiving element 45 directly mounted on the substrate 46.
After filling, the tip of the optical fiber 41 is inserted into the refractive index matching adhesive 47 covering the light receiving surface. Next, when the optical fiber 41 is slightly moved upward from the light receiving surface, a thin film 48 of the refractive index matching adhesive 47 is formed on the inclined polishing surface 43 at the tip of the optical fiber 41 by surface tension. The boundary surface between the thin film 48 of the refractive index matching adhesive 47 and the air layer is regarded as a plane, and the angle between the optical axis of the optical fiber 41 and the boundary surface is determined by the angle of the inclined polishing surface 43 at the tip of the optical fiber 41. Becomes equal to

【0038】次に、境界面における反射光軸と受光素子
45の受光面が位置するように、光ファイバ41を基板
46上平面方向に移動調整する。調整後、屈折率整合接
着剤47を硬化させる。従来は、光ファイバ41先端部
の傾斜研磨面43における面粗さにより、信号光44の
反射率にばらつきが生じていた。しかし、傾斜研磨面4
3に前記屈折率整合接着剤47による薄膜部48を形成
することにより、傾斜研磨面43の凹凸を屈折率整合接
着剤47により均一にし、また、薄膜部48と空気層と
の境界面は平坦になるので、高い光反射率を得るととも
に、研磨加工による反射率のばらつきを抑制することが
できる。また、実施の形態1による受光モジュールの光
結合構造では、傾斜研磨面に屈折整合接着剤を付着させ
ず製作するのは困難である。
Next, the optical fiber 41 is moved and adjusted in the plane direction on the substrate 46 so that the reflected optical axis at the boundary surface and the light receiving surface of the light receiving element 45 are located. After the adjustment, the refractive index matching adhesive 47 is cured. Conventionally, the reflectance of the signal light 44 varies due to the surface roughness of the inclined polishing surface 43 at the tip of the optical fiber 41. However, the inclined polishing surface 4
By forming the thin film portion 48 with the refractive index matching adhesive 47 on the surface 3, the unevenness of the inclined polishing surface 43 is made uniform by the refractive index matching adhesive 47, and the boundary surface between the thin film portion 48 and the air layer is flat. Therefore, a high light reflectance can be obtained, and variation in the reflectance due to polishing can be suppressed. Further, in the optical coupling structure of the light receiving module according to the first embodiment, it is difficult to manufacture the light receiving module without attaching the refractive matching adhesive to the inclined polished surface.

【0039】以上のように本発明の実施の形態3によれ
ば、光ファイバ先端の傾斜研磨面43表面に屈折率整合
接着剤47による薄膜を形成することにより、屈折率整
合接着剤47と空気層との境界面で反射した光を受光素
子45に入射させる。その結果、傾斜研磨面43の面精
度による伝搬光の反射損失、および傾斜研磨面43にお
ける反射率のばらつきを防ぎ、安定した品質の受光モジ
ュールを提供することができる。
As described above, according to the third embodiment of the present invention, by forming a thin film of the refractive index matching adhesive 47 on the surface of the inclined polishing surface 43 at the tip of the optical fiber, the refractive index matching adhesive 47 and the air The light reflected on the interface with the layer is incident on the light receiving element 45. As a result, it is possible to prevent the reflection loss of the propagation light due to the surface accuracy of the inclined polished surface 43 and the variation of the reflectance on the inclined polished surface 43, and to provide a light receiving module of stable quality.

【0040】(実施の形態4)図5は本発明の実施の形
態4における光ファイバと受光素子の光結合構造の要部
拡大図であり、光ファイバ51の先端部の傾斜研磨面5
3の表面には発水性樹脂による薄膜58が形成されてい
る。
(Embodiment 4) FIG. 5 is an enlarged view of a main part of an optical coupling structure between an optical fiber and a light receiving element according to Embodiment 4 of the present invention.
On the surface of No. 3, a thin film 58 made of a water-repellent resin is formed.

【0041】以上のように構成された受光モジュールに
ついて、図5を用いてその動作を説明する。先端が斜め
に研磨された光ファイバ51により反射して出射した信
号光54を、基板56上に設けられた受光素子55の受
光面に入射されるようにした実施の形態4における受光
モジュールでは、光ファイバ51のコア52内を伝搬す
る信号光54が傾斜研磨面53で全反射する条件を求め
るとき、傾斜研磨面53と空気層との境界面で全反射が
起こると想定している。したがって、傾斜研磨面53に
空気と屈折率の違う水分が結露等により付着すると、信
号光54の全反射する条件が変わり、その結果、信号光
54は傾斜研磨面53において全反射を起さず、受光モ
ジュールの光結合効率が低下するという問題がある。し
たがって、傾斜研磨面53に水分が付着しないように、
発水性樹脂による薄膜58を形成した。
The operation of the light receiving module configured as described above will be described with reference to FIG. In the light receiving module according to the fourth embodiment, the signal light 54 reflected and emitted by the optical fiber 51 whose tip is polished obliquely is incident on the light receiving surface of the light receiving element 55 provided on the substrate 56. When determining the condition that the signal light 54 propagating in the core 52 of the optical fiber 51 is totally reflected by the inclined polishing surface 53, it is assumed that total reflection occurs at the boundary surface between the inclined polishing surface 53 and the air layer. Therefore, when moisture having a different refractive index from air adheres to the inclined polishing surface 53 due to dew condensation or the like, the condition for totally reflecting the signal light 54 changes. As a result, the signal light 54 does not cause total reflection on the inclined polishing surface 53. In addition, there is a problem that the light coupling efficiency of the light receiving module is reduced. Therefore, to prevent moisture from adhering to the inclined polishing surface 53,
A thin film 58 of a water-repellent resin was formed.

【0042】以上のように実施の形態4によれば、光フ
ァイバ51先端の傾斜研磨面53表面に発水性樹脂によ
る薄膜58を形成することにより、結露による光軸位置
ずれを防ぐことができる。
As described above, according to the fourth embodiment, by forming the thin film 58 of the water-soluble resin on the surface of the inclined polishing surface 53 at the tip of the optical fiber 51, it is possible to prevent displacement of the optical axis due to dew condensation.

【0043】(実施の形態5)図6は本発明の実施の形
態5における光ファイバと受光素子の光結合構造の要部
拡大図であり、61は光ファイバを示す。この光ファイ
バ61は、光ファイバ端面を光ファイバ光軸に対して直
角、かつ平滑な切り口に切断した後、光ファイバ61の
コア62を含む箇所まで斜め研磨加工を施している。光
ファイバ61先端部の傾斜研磨面63と空気層との境界
面により信号光64を全反射させるには、光ファイバ6
1のコア62を含む面が傾斜研磨面63となれば良い。
(Embodiment 5) FIG. 6 is an enlarged view of a main part of an optical coupling structure between an optical fiber and a light receiving element according to Embodiment 5 of the present invention, and 61 indicates an optical fiber. The optical fiber 61 is obtained by cutting the end face of the optical fiber at a right angle to the optical fiber optical axis and into a smooth cut, and then performing an oblique polishing process up to a portion including the core 62 of the optical fiber 61. To totally reflect the signal light 64 at the boundary between the inclined polishing surface 63 at the tip of the optical fiber 61 and the air layer, the optical fiber 6
The surface including one core 62 may be the inclined polishing surface 63.

【0044】しかし、光ファイバ61先端部において、
信号光64の反射経路になるエッジ部分にだれ,欠けが
あると光損失になる。実施の形態5では、図6に示すよ
うに、基板66上に直接実装された受光素子65の受光
面に、光ファイバ61のクラッドと等しい屈折率整合接
着剤67を充填した後、コア62を含む面まで斜め研磨
加工を施した光ファイバ61の先端部を、受光素子65
の受光面上を覆う屈折率整合接着剤67中にコア62が
浸らないように挿入する。その結果、信号光64の反射
経路は、屈折率の等しい媒介中を進むので光損失がなく
なる。
However, at the end of the optical fiber 61,
If there is any chipping at the edge portion which is a reflection path of the signal light 64, light loss occurs. In the fifth embodiment, as shown in FIG. 6, after filling a light receiving surface of a light receiving element 65 directly mounted on a substrate 66 with a refractive index matching adhesive 67 equal to the cladding of the optical fiber 61, the core 62 is removed. The tip of the optical fiber 61, which has been subjected to oblique polishing to the surface including the
The core 62 is inserted into the refractive index matching adhesive 67 that covers the light receiving surface of the core 62 so as not to be immersed. As a result, since the reflection path of the signal light 64 travels through a medium having the same refractive index, there is no light loss.

【0045】以上のように実施の形態5によれば、実施
の形態1の受光モジュールに用いる光ファイバの斜め研
磨加工において、光ファイバ61端面を光ファイバ光軸
に対して直角、かつ平滑な切り口に切断した後、コア6
2を含む箇所のみ斜め研磨加工を施すので、研磨除差部
68が少なくなり、生産性が良い受光モジュールを得る
ことができる。
As described above, according to the fifth embodiment, in the oblique polishing of the optical fiber used in the light receiving module of the first embodiment, the end face of the optical fiber 61 is perpendicular to the optical fiber optical axis and has a smooth cut surface. After cutting the core 6
Since the oblique polishing is performed only on the portion including No. 2, the number of polishing difference portions 68 is reduced, and a light receiving module with good productivity can be obtained.

【0046】[0046]

【発明の効果】以上のように本発明は、受光モジュール
の光結合構造に関して、端面を光ファイバ光軸に対して
直角、かつ平坦な切り口に切断した後、光ファイバコア
を含む箇所まで斜め研磨加工を施した光ファイバを、基
板平面に対して所定角度に傾け、該光ファイバ先端の研
磨面で反射して射出した光が、光ファイバクラッドの屈
折率と等しい屈折率整合接着剤を介して、基板上に設け
られた受光素子の受光部に垂直に入射させることによ
り、高い光結合効率が得られるとともに、生産性が良
く、特性の経時的劣化が少ない受光モジュールを得られ
る。
As described above, according to the present invention, the optical coupling structure of the light receiving module is obtained by cutting the end face into a flat cut perpendicular to the optical axis of the optical fiber and then obliquely polishing the optical fiber core to a location including the optical fiber core. The processed optical fiber is tilted at a predetermined angle with respect to the plane of the substrate, and the light emitted from the polished surface at the tip of the optical fiber is reflected through a refractive index matching adhesive equal to the refractive index of the optical fiber clad. By vertically entering the light receiving portion of the light receiving element provided on the substrate, a high light coupling efficiency can be obtained, and a light receiving module with good productivity and little deterioration of characteristics over time can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1,2における光ファイバ
と受光素子の光結合構造を示す側面断面図
FIG. 1 is a side sectional view showing an optical coupling structure between an optical fiber and a light receiving element according to Embodiments 1 and 2 of the present invention.

【図2】本発明の実施の形態1との比較例を示す説明図FIG. 2 is an explanatory diagram showing a comparative example with the first embodiment of the present invention.

【図3】光ファイバ先端部分における信号光の反射経路
を示す図
FIG. 3 is a diagram showing a reflection path of a signal light at an end portion of an optical fiber.

【図4】本発明の実施の形態3における光ファイバと受
光素子の光結合構造の要部拡大図
FIG. 4 is an enlarged view of a main part of an optical coupling structure between an optical fiber and a light receiving element according to a third embodiment of the present invention.

【図5】本発明の実施の形態4における光ファイバと受
光素子の光結合構造の要部拡大図
FIG. 5 is an enlarged view of a main part of an optical coupling structure between an optical fiber and a light receiving element according to a fourth embodiment of the present invention.

【図6】本発明の実施の形態5における光ファイバ端末
の要部拡大図
FIG. 6 is an enlarged view of a main part of an optical fiber terminal according to a fifth embodiment of the present invention.

【図7】従来の光ファイバと受光素子の光結合構造を示
す側面断面拡大図
FIG. 7 is an enlarged side sectional view showing a conventional optical coupling structure between an optical fiber and a light receiving element.

【図8】実施の形態による受光モジュールの特性と従来
の受光モジュールの特性とを示すグラフ
FIG. 8 is a graph showing characteristics of the light receiving module according to the embodiment and characteristics of a conventional light receiving module.

【符号の説明】[Explanation of symbols]

11,21,31,41,51,61 光ファイバ 12,22,32,42,52,62 コア 13,23,33,43,53,63 傾斜研磨面 14,24,34,44,54,64 信号光 15,25,45,55,65 受光素子 16,26,46,56,66 基板 17,47,57,67 屈折率整合接着剤 27 出射ビーム 28 反射光 35 光ファイバクラッド 48 屈折率整合接着剤による薄膜 58 発水性樹脂による薄膜 68 研磨除差部 11, 21, 31, 41, 51, 61 Optical fiber 12, 22, 32, 42, 52, 62 Core 13, 23, 33, 43, 53, 63 Inclined polished surface 14, 24, 34, 44, 54, 64 Signal light 15, 25, 45, 55, 65 Light receiving element 16, 26, 46, 56, 66 Substrate 17, 47, 57, 67 Refractive index matching adhesive 27 Outgoing beam 28 Reflected light 35 Optical fiber clad 48 Refractive index matching adhesive Thin film made of chemicals 58 Thin film made of water-soluble resin 68 Polishing difference

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根岸 英彦 神奈川県横浜市港北区綱島東四丁目3番1 号 松下通信工業株式会社内 Fターム(参考) 2H037 AA01 BA11 CA00 CA10 DA04 DA06 DA17 5F088 AA01 BA10 BA11 BA13 BB01 JA14 LA01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hidehiko Negishi 4-3-1 Tsunashimahigashi, Kohoku-ku, Yokohama-shi, Kanagawa F-term (reference) in Matsushita Communication Industrial Co., Ltd. 2H037 AA01 BA11 CA00 CA10 DA04 DA06 DA17 5F088 AA01 BA10 BA11 BA13 BB01 JA14 LA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ光軸に対して斜めに研磨して
なる傾斜研磨面を先端に有する光ファイバから出射した
光を、基板上に設けられた受光素子の受光面に、光ファ
イバクラッドの屈折率と等しい屈折率整合接着剤を介し
て入射させるように構成したことを特徴とする受光モジ
ュール。
A light emitted from an optical fiber having an inclined polished surface formed by polishing at an end with respect to an optical axis of an optical fiber is applied to a light receiving surface of a light receiving element provided on a substrate by an optical fiber cladding. A light receiving module, wherein the light is incident through a refractive index matching adhesive having a refractive index equal to the refractive index.
【請求項2】 前記光ファイバ光軸を、基板平面に対し
て所定角度に傾け、前記傾斜研磨面で反射した光が、前
記受光素子の受光面に垂直に入射するように構成したこ
とを特徴とする請求項1記載の受光モジュール。
2. The optical fiber according to claim 1, wherein the optical axis of the optical fiber is inclined at a predetermined angle with respect to the plane of the substrate, so that light reflected by the inclined polishing surface is perpendicularly incident on a light receiving surface of the light receiving element. The light receiving module according to claim 1, wherein
【請求項3】 前記傾斜研磨面に、前記屈折率接着剤に
よる薄膜を形成することを特徴とする請求項1記載の受
光モジュール。
3. The light receiving module according to claim 1, wherein a thin film made of the refractive index adhesive is formed on the inclined polishing surface.
【請求項4】 前記傾斜研磨面に、発水性樹脂による薄
膜を形成したことを特徴とする請求項1記載の受光モジ
ュール。
4. The light receiving module according to claim 1, wherein a thin film made of a water-soluble resin is formed on the inclined polishing surface.
【請求項5】 前記光ファイバの端面を、光ファイバコ
アを含む前記傾斜研磨面と、前記傾斜研磨面の先端部に
形成され、前記光ファイバ光軸に対して直角かつ平滑な
切り口からなる直角研磨面とから構成したことを特徴と
する請求項1記載の受光モジュール。
5. The optical fiber according to claim 1, wherein an end face of the optical fiber is formed at the inclined polishing surface including an optical fiber core and at a right angle formed at a front end of the inclined polishing surface and formed at a right angle and a smooth cut end with respect to the optical fiber optical axis. 2. The light receiving module according to claim 1, wherein the light receiving module comprises a polished surface.
JP10172956A 1998-06-19 1998-06-19 Photodetecting module Pending JP2000009968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10172956A JP2000009968A (en) 1998-06-19 1998-06-19 Photodetecting module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10172956A JP2000009968A (en) 1998-06-19 1998-06-19 Photodetecting module

Publications (1)

Publication Number Publication Date
JP2000009968A true JP2000009968A (en) 2000-01-14

Family

ID=15951489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10172956A Pending JP2000009968A (en) 1998-06-19 1998-06-19 Photodetecting module

Country Status (1)

Country Link
JP (1) JP2000009968A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131591A (en) * 2000-10-27 2002-05-09 Fuji Xerox Co Ltd Optical signal transmitting device and light incident method into translucent medium
EP1225641A2 (en) * 2001-01-19 2002-07-24 Matsushita Electric Industrial Co., Ltd. Photo-semiconductor module and method for manufacturing the same
US6869229B2 (en) * 2001-03-16 2005-03-22 Peregrine Semiconductor Corporation Coupled optical and optoelectronic devices, and method of making the same
KR100536435B1 (en) * 2002-07-12 2005-12-16 김미화 Optical waveguide tap reducing the dependence of wavelength and polarization
JP2006043972A (en) * 2004-08-03 2006-02-16 Seiko Epson Corp Line head and image forming apparatus equipped with it
JP2007148107A (en) * 2005-11-29 2007-06-14 Omron Corp Optical cable module, its manufacturing method and electronic equipment having the same
WO2007080932A1 (en) * 2006-01-11 2007-07-19 Omron Corporation Optical cable module and apparatus employing it
JP2008046288A (en) * 2006-08-14 2008-02-28 Furukawa Electric Co Ltd:The Optical element array, and optical module and its manufacturing method
EP2128671A1 (en) * 2007-03-16 2009-12-02 Omron Corporation Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
US7657140B2 (en) 2006-04-07 2010-02-02 Omron Corporation Optical cable module
JP2010217322A (en) * 2009-03-13 2010-09-30 Fujikura Ltd Optical coupling structure and optical transmission and reception module
JP2010237641A (en) * 2009-03-13 2010-10-21 Fujikura Ltd Optical module and cable with module
WO2011087081A1 (en) * 2010-01-15 2011-07-21 アルプス電気株式会社 Optical element module
JP5265025B2 (en) * 2010-01-06 2013-08-14 株式会社フジクラ Optical coupling structure and optical transceiver module
US8696216B2 (en) 2006-04-14 2014-04-15 Omron Corporation Optical module, method of producing optical module, optical transmission module, and electronic apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131591A (en) * 2000-10-27 2002-05-09 Fuji Xerox Co Ltd Optical signal transmitting device and light incident method into translucent medium
EP1225641A3 (en) * 2001-01-19 2007-01-24 Matsushita Electric Industrial Co., Ltd. Photo-semiconductor module and method for manufacturing the same
EP1225641A2 (en) * 2001-01-19 2002-07-24 Matsushita Electric Industrial Co., Ltd. Photo-semiconductor module and method for manufacturing the same
US6869229B2 (en) * 2001-03-16 2005-03-22 Peregrine Semiconductor Corporation Coupled optical and optoelectronic devices, and method of making the same
KR100536435B1 (en) * 2002-07-12 2005-12-16 김미화 Optical waveguide tap reducing the dependence of wavelength and polarization
US7528854B2 (en) 2004-08-03 2009-05-05 Seiko Epson Corporation Device including light-emitting elements above a glass substrate
JP2006043972A (en) * 2004-08-03 2006-02-16 Seiko Epson Corp Line head and image forming apparatus equipped with it
JP2007148107A (en) * 2005-11-29 2007-06-14 Omron Corp Optical cable module, its manufacturing method and electronic equipment having the same
JP4631671B2 (en) * 2005-11-29 2011-02-16 オムロン株式会社 Optical cable module and electronic device including optical cable module
WO2007080932A1 (en) * 2006-01-11 2007-07-19 Omron Corporation Optical cable module and apparatus employing it
US8078022B2 (en) 2006-01-11 2011-12-13 Omron Corporation Optical cable module and apparatus using the same
JP4905359B2 (en) * 2006-01-11 2012-03-28 オムロン株式会社 Optical cable module and equipment using the same
US7657140B2 (en) 2006-04-07 2010-02-02 Omron Corporation Optical cable module
US8696216B2 (en) 2006-04-14 2014-04-15 Omron Corporation Optical module, method of producing optical module, optical transmission module, and electronic apparatus
JP2008046288A (en) * 2006-08-14 2008-02-28 Furukawa Electric Co Ltd:The Optical element array, and optical module and its manufacturing method
EP2128671A4 (en) * 2007-03-16 2012-11-07 Omron Tateisi Electronics Co Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
EP2128671A1 (en) * 2007-03-16 2009-12-02 Omron Corporation Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
US8792755B2 (en) 2007-03-16 2014-07-29 Omron Corporation Light transmission path package, light transmission module, electronic device and method for manufacturing light transmission module
JP2010237641A (en) * 2009-03-13 2010-10-21 Fujikura Ltd Optical module and cable with module
JP2010217322A (en) * 2009-03-13 2010-09-30 Fujikura Ltd Optical coupling structure and optical transmission and reception module
JP5265025B2 (en) * 2010-01-06 2013-08-14 株式会社フジクラ Optical coupling structure and optical transceiver module
US8909010B2 (en) 2010-01-06 2014-12-09 Fujikura Ltd. Optical coupling structure and optical transreceiver module
WO2011087081A1 (en) * 2010-01-15 2011-07-21 アルプス電気株式会社 Optical element module
JP5186048B2 (en) * 2010-01-15 2013-04-17 アルプス電気株式会社 Optical element module

Similar Documents

Publication Publication Date Title
US6406196B1 (en) Optical device and method for producing the same
US6264377B1 (en) Bidirectional optical semiconductor apparatus
US5499309A (en) Method of fabricating optical component including first and second optical waveguide chips having opposed inclined surfaces
US7106980B2 (en) Optical receiver
US6547451B1 (en) Optical communications module and method for mounting optical communications module
JP2000009968A (en) Photodetecting module
US7203390B2 (en) Planar lightwave circuit package
JPH10300961A (en) Optical path changing element, manufacture thereof and blade for manufacturing the optical path changing element
US10094989B2 (en) Optical device, optical processing device, and method of producing the optical device
JPH07104148A (en) Optical parts
US20040241897A1 (en) Edge-illuminated refracting-facet type light receiving device and method for manufacturing the same
US7050680B2 (en) Optical coupling device having silicon optical bench and optical fiber with angled end face
US20120114293A1 (en) Optical waveguide structure having angled mirror and lens
US20020118917A1 (en) Light receiving device
US20050238279A1 (en) Optical device
KR20040084494A (en) Optical device using vertical photo detector
WO2003060584A1 (en) Optical waveguide module
JP6728639B2 (en) Optical wiring connection structure and optical wiring connection method
JPH1184183A (en) Optical module
US20040190833A1 (en) Optical monitor module
JPH10170765A (en) Optical waveguide
US6868210B2 (en) Optical waveguide and their application of the optical communication system
JPH07234345A (en) Photodetecting structure of waveguide type optical device
JP2000131545A (en) Optical device and optical module having optical device
JP2000214345A (en) Optical communication device and bi-directional optical communication equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410