JP2000002526A - Inspection method for surface defect and inspection device thereof - Google Patents

Inspection method for surface defect and inspection device thereof

Info

Publication number
JP2000002526A
JP2000002526A JP16790598A JP16790598A JP2000002526A JP 2000002526 A JP2000002526 A JP 2000002526A JP 16790598 A JP16790598 A JP 16790598A JP 16790598 A JP16790598 A JP 16790598A JP 2000002526 A JP2000002526 A JP 2000002526A
Authority
JP
Japan
Prior art keywords
sample
pattern
defect
image
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16790598A
Other languages
Japanese (ja)
Other versions
JP3984367B2 (en
Inventor
Jun Hasegawa
潤 長谷川
Satoshi Shimizu
敏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP16790598A priority Critical patent/JP3984367B2/en
Publication of JP2000002526A publication Critical patent/JP2000002526A/en
Application granted granted Critical
Publication of JP3984367B2 publication Critical patent/JP3984367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method and an inspection device of a shadow mask with high detection sensitivity and easy workability. SOLUTION: This method is an inspection method inspecting a shape-defect of a pattern consisting of a hole part connected to a surface part of a sample 110 that has a periodic pattern placed by periodically repeating a pattern consisting of a hole part with a rough surface part that is connected to a surface of a base material and caved into an inside thereof, and image-processes image data of a shooting image after reflected-lighting a bright field by a diffusion light controlled within predetermined extended angle with relatively moving the sample to a shooting system and shooting a surface of the sample 110 by a imaging means 130 for a line-shape region to get the shooting image, and determines a fillet diameter and/or a projected area of each pattern of the sample 110 to judges with a part of which each value is not within a predetermined range as a defect part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粗な表面部を有
し、基材の孔開け加工等により基材の表面部につながり
内側に凹んだ形状の孔部を周期的に繰り返して設けた試
料の、該表面部につながる孔部の形状欠陥を検査する方
法と検査装置に関するもので、特に、カラーテレビに用
いられるシャドウマスクの表孔の縁が欠けた欠陥の検査
方法および検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is characterized in that a hole having a rough surface portion, which is connected to the surface portion of a base material by drilling or the like of the base material and which is inwardly recessed, is provided periodically. The present invention relates to a method and an inspection apparatus for inspecting a shape defect of a hole of a sample connected to the surface, and more particularly to an inspection method and an inspection apparatus for a defect in which the edge of a surface hole of a shadow mask used in a color television is chipped.

【0002】[0002]

【従来の技術】従来より、シャドウマスクの表孔の縁が
欠けた欠陥の検査方法として、照明光の試料への入射角
を制御せず単に反射照明して撮影し、シャドウマスクか
らの反射光を撮影して、これを画像処理することにより
表面欠陥を抽出する方法が知られている。しかし、この
方法の場合は、シャドウマスクの表面粗度が荒いため、
低い検出感度しか得られず問題となっていた。例えば、
シャドウマスクの基材表面は粗であるため、図9(a)
に示す箇所は、図9(b)に示すような撮影画像として
得られてしまい、欠陥の検出が正確に得られない。図9
(b)のように、擬似表孔部形状不良部119が、表孔
部形状不良部118とともに検出されてしまう。尚、図
9(a)は基材111の表面が粗であることを分かり易
く示したものである。また別に、検出感度を上げる為、
線状領域撮影手段と線光源を用い、シャドウマスク面に
対して所定の角度に線状領域撮影手段と光源を配置し、
シャドウマスク面の斜めから、シャドウマスクを透過し
た透過光を撮影する方法も行なわれている。しかし、こ
の方法の場合、最適撮影角度をシャドウマスクの品種毎
に合わせる必要があり、操作、制御が煩雑になるという
問題がある上、一度の検査においては、全ての方向の欠
陥を検出ができない為、すべての方向の欠陥を検出する
ためには、複数回方向を変えて検査することが必要で、
品質面、作業性の面からも問題となっていた。更に、シ
ャドウマスクの表孔の縁が欠けた欠陥の検査方法とし
て、試料を透過照明してエリアセンサとミラーを用いて
撮影し、得られた撮影画像データから欠陥部を検出する
方法(特願平9−139193号)が、すでに本出願の
発明者により提案されている。しかし、エリアセンサを
用いたこの方法では、検査精度を高めるための高解像度
化に適さず、結果的に検査時間を多く要し、検査時間の
短縮が求められている。このような中、近年、シャドウ
マスクにおいても、ますます、大型化とともに高精細化
が求められ、その品質管理が重要となってきており、高
い検出感度で、且つ、比較的簡単で作業性の良いシャド
ウマスクの検査方法が求められるようになってきた。
2. Description of the Related Art Heretofore, as a method for inspecting a defect in which the edge of a surface hole of a shadow mask is lacking, an image is taken by simply reflecting and illuminating without controlling the angle of incidence of illumination light on a sample, and reflecting light from the shadow mask. There is known a method of extracting a surface defect by photographing an image and processing the image. However, in this method, since the surface roughness of the shadow mask is rough,
The problem was that only low detection sensitivity was obtained. For example,
Since the substrate surface of the shadow mask is rough, FIG.
9 is obtained as a photographed image as shown in FIG. 9B, and a defect cannot be accurately detected. FIG.
As shown in (b), the pseudo-hole-hole shape defective portion 119 is detected together with the surface-hole-portion defective portion 118. Note that FIG. 9 (a) clearly shows that the surface of the substrate 111 is rough. Separately, to increase detection sensitivity,
Using a linear area photographing means and a line light source, the linear area photographing means and the light source are arranged at a predetermined angle with respect to the shadow mask surface,
There is also a method of photographing transmitted light transmitted through a shadow mask obliquely from the surface of the shadow mask. However, in the case of this method, it is necessary to adjust the optimum photographing angle for each type of shadow mask, and there is a problem that operation and control are complicated, and defects cannot be detected in all directions in a single inspection. Therefore, in order to detect defects in all directions, it is necessary to change the direction several times and inspect.
There were also problems in terms of quality and workability. Further, as a method of inspecting a defect in which the edge of a surface hole of a shadow mask is missing, a method of transmitting and illuminating a sample, photographing the image using an area sensor and a mirror, and detecting a defective portion from obtained photographed image data (Japanese Patent Application Hei 9-139193) has already been proposed by the inventor of the present application. However, this method using an area sensor is not suitable for increasing the resolution in order to increase the inspection accuracy, and as a result, requires a longer inspection time and requires a reduction in the inspection time. Under these circumstances, in recent years, shadow masks have been required to be more and more refined with increasing size, and quality control thereof has become important. A good shadow mask inspection method has been required.

【0003】[0003]

【発明が解決しようとする課題】上記のように、ますま
す、シャドウマスクの大型化とともに高精細化が求めら
れる中、シャドウマスクの表面検査方法においては、高
い検出感度で、且つ、作業性の簡単な表面検査方法およ
び検査装置が求められるようになってきた。本発明は、
このような状況のもと、高い検出感度で、且つ、作業性
の簡単なシャドウマスクの表面検査方法および検査装置
を提供しようとするものである。
As described above, as the size of the shadow mask is increased and higher definition is required, the method of inspecting the surface of the shadow mask requires higher detection sensitivity and higher workability. A simple surface inspection method and inspection apparatus have been required. The present invention
Under such circumstances, an object of the present invention is to provide a shadow mask surface inspection method and an inspection apparatus which have high detection sensitivity and simple workability.

【0004】[0004]

【課題を解決するための手段】本発明の表面欠陥の検査
方法は、粗な表面部を有し、基材の表面部につながり内
側に凹んだ形状の孔部からなるパターンを周期的に繰り
返して配設した周期パターンを有する試料の、前記表面
部につながる孔部からなるパターンの形状欠陥を検査す
る検査方法であって、試料を撮影系に対して相対的に移
動させながら、且つ、所定の広がり角度内に制御された
拡散光にて反射明視野照明し、線状領域撮像手段により
試料面を撮影して撮影画像を得た後、該撮影画像の画像
データを画像処理して、試料の周期性パターンの各パタ
ーンのフィレ径、およびまたは、投影面積を求め、それ
ぞれの値が所定の範囲内でない箇所を、欠陥箇所と判断
することを特徴とするものである。尚、ここで言う、所
定の広がり角度内に制御された拡散光とは、反射明視野
照明される各撮影領域の受光角度が、該反射明視野照明
の光軸を中心として所定の角度内に制御されている拡散
光のことである。勿論、撮影手段の光軸方向と試料面と
の交点と、反射明視野照明の光軸方向と試料面との交点
は一致するものであり、該交点(撮影領域である)に立
てた法線と撮影手段の光軸とのなす角度と、法線と反射
明視野照明の光軸とのなす角度は等しい。そして、上記
において、撮影画像の画像データの画像処理が、撮影画
像の画像データの各画素を所定のスライスレベルで、2
値化して2値化画像を作成し、該2値化画像から試料の
各パターンのフィレ径、およびまたは、各パターンの投
影面積を求め、それぞれの値が所定の範囲内でない箇所
を、欠陥箇所と判断するものであることを特徴とするも
のである。一般には、所定の方向に投影された図形の径
を、フィレ径としている。尚、ここで言う投影面積と
は、凹凸を含む立体的な構造である凹んだ孔部全体を、
所定の面に投影して得られる平面的な像の面積であり、
具体的には、撮影画像の画像データを2値化した場合
の、凹んだ孔部に相当する領域の値(0ないし1)の画
素数で表すことができる。そしてまた、上記において、
試料がシャドウマスクで、反射明視野照明の光軸上にあ
る試料の各撮影領域が、反射明視野照明されるその受光
角度を、照明光の光軸を中心として0°以上、30°以
下とすることを特徴とするものである。
According to the present invention, there is provided a method for inspecting a surface defect, comprising a step of periodically repeating a pattern having a rough surface portion and having a hole in a shape inwardly connected to the surface portion of a base material and concaved inward. An inspection method for inspecting a shape defect of a pattern formed of a hole portion connected to the surface portion of a sample having a periodic pattern disposed in a predetermined pattern while moving the sample relatively to an imaging system. After performing reflected bright field illumination with diffused light controlled within the spread angle of the sample and photographing the sample surface with the linear region imaging means to obtain a photographed image, the image data of the photographed image is subjected to image processing, The fillet diameter and / or projected area of each of the periodic patterns is determined, and a portion where each value is not within a predetermined range is determined as a defective portion. Here, the diffused light controlled within a predetermined spread angle means that the light receiving angle of each imaging region to be reflected and bright field illumination is within a predetermined angle around the optical axis of the reflected bright field illumination. It is the diffused light that is being controlled. Needless to say, the intersection between the optical axis direction of the photographing means and the sample surface and the intersection between the optical axis direction of the reflected bright field illumination and the sample surface coincide with each other, and the normal set at the intersection (the imaging region) And the angle between the normal and the optical axis of the reflected bright-field illumination are equal to each other. In the above, the image processing of the image data of the photographed image is performed by dividing each pixel of the image data of the photographed image at a predetermined slice level by two.
A binarized image is created by binarizing, and the fillet diameter of each pattern of the sample and / or the projected area of each pattern is obtained from the binarized image. It is characterized in that it is determined that: Generally, the diameter of a figure projected in a predetermined direction is defined as a fillet diameter. In addition, the projection area referred to here is the entire concave hole that is a three-dimensional structure including irregularities,
The area of a planar image obtained by projecting on a predetermined surface,
Specifically, when the image data of the captured image is binarized, it can be represented by the number of pixels of the value (0 to 1) of the area corresponding to the concave hole. And also in the above,
The sample is a shadow mask, and each imaging region of the sample on the optical axis of the reflected bright-field illumination has a light receiving angle of the reflected bright-field illumination of 0 ° or more and 30 ° or less about the optical axis of the illumination light. It is characterized by doing.

【0005】本発明の表面欠陥の検査装置は、粗な表面
部を有し、基材の表面部につながり内側に凹んだ形状の
孔部からなるパターンを周期的に繰り返して配設した周
期パターンを有する試料の、前記表面部につながる孔部
からなるパターンの形状欠陥を検査する検査装置であっ
て、試料を撮影系に対して相対的に移動させる搬送部
と、試料面を撮影する線状領域撮像手段と、撮影に際
し、試料面を所定の広がり角度の拡散光にて反射明視野
照明する線状照明手段と、撮影して、得られた撮影画像
データから、試料の周期性パターンの各パターンのフィ
レ径、およびまたは、投影面積を求め、それぞれの値が
所定の範囲内でない箇所を、欠陥箇所と判断する画像処
理部とを備えていることを特徴とするものである。そし
て、上記において、試料がシャドウマスクで、反射明視
野照明の光軸上にある試料の各領域が、反射明視野照明
されるその受光角度を、照明光の光軸を中心として0°
以上、30°以下としていることを特徴とするものであ
る。
[0005] A surface defect inspection apparatus according to the present invention has a periodic pattern in which a pattern consisting of a hole having a rough surface portion and connected to the surface portion of a base material and inwardly recessed is periodically arranged. An inspection device for inspecting a shape defect of a pattern comprising a hole portion connected to the surface portion of a sample having: a transport unit for moving the sample relative to an imaging system; and a linear unit for imaging the sample surface. Area imaging means, and linear illuminating means for reflecting and bright-field illumination of the sample surface with diffused light having a predetermined spread angle at the time of imaging, and a periodic pattern of the sample from the captured image data obtained. The image processing unit is characterized in that a fillet diameter and / or a projected area of the pattern is obtained, and a portion where each value is not within a predetermined range is determined as a defective portion. In the above, the sample is a shadow mask, and each region of the sample on the optical axis of the reflected bright-field illumination has a light receiving angle of 0 ° with respect to the optical axis of the illumination light.
As described above, the angle is set to 30 ° or less.

【0006】[0006]

【作用】本発明の表面欠陥の検査方法は、上記のように
構成することにより、粗な表面部を有し、基材の表面部
につながり内側に凹んだ形状の孔部からなるパターンを
周期的に繰り返して配設した周期パターンを有す試料の
表面部につながる孔部からなるパターンの形状欠陥を検
査する検査方法で、高い検出感度をもち、且つ、比較的
作業性も良い、欠陥検出方法の提供を可能としている。
特に、シャドウマスクの表孔の形状欠陥の検査に適用し
た場合、検出感度を上げる為に線状領域撮影手段と線光
源を用い、シャドウマスク面に対して所定の角度に線状
領域撮影手段と光源を配置し、シャドウマスク面の斜め
から、シャドウマスクを透過した透過光を撮影する検査
方法のように、品種毎に、照明光の最適制御角を調整し
たり、孔部の全方向に光を照射するような手間は必要と
せず、また、試料を透過照明してエリアセンサとミラー
を用いて撮影する検査方法のように、検査時間を多く必
要とせず、実用的なものと言える。具体的には、粗な表
面部を有し、基材の表面部につながり内側に凹んだ形状
の孔部からなるパターンを周期的に繰り返して配設した
周期パターンを有する試料の、前記表面部につながる孔
部からなるパターンの形状欠陥を検査する検査方法であ
って、試料を撮影系に対して相対的に移動させながら、
且つ、所定の広がり角度内に制御された拡散光にて反射
明視野照明し、線状領域撮像手段により試料面を撮影し
て撮影画像を得た後、該撮影画像の画像データを画像処
理して、試料の周期性パターンの各パターンのフィレ
径、およびまたは、投影面積を求め、それぞれの値が所
定の範囲内でない箇所を、欠陥箇所と判断することによ
り、これを達成している。即ち、所定の広がり角度内に
制御された拡散光にて反射明視野照明し、線状領域撮像
手段により試料面を撮影して撮影画像を得ることによ
り、試料面の表面部が粗であることに起因する、撮影画
像からの欠陥検出感度の低下をほぼ止めることができる
ものとしている。特に、試料シャドウマスクの場合に
は、反射明視野照明の光軸上にある試料の各撮影領域
が、反射明視野照明されるその受光角度を、0°以上、
30°以下となるように、反射明視野照明の拡散光を制
御しておくと有効である。撮影画像の画像データの画像
処理としては、撮影画像の画像データの画像処理が、撮
影画像の画像データの各画素を所定のスライスレベル
で、2値化して2値化画像を作成し、該2値化画像から
試料の各パターンのフィレ径、およびまたは、各パター
ンの投影面積を求め、それぞれの値が所定の範囲内でな
い箇所を、欠陥箇所を欠陥箇所と判断する処理が挙げら
れる。
According to the surface defect inspection method of the present invention, a pattern having a rough surface portion, which is connected to the surface portion of the base material, and has a hole indented inward is formed by the above method. Inspection method for inspecting the shape defect of a pattern consisting of holes connected to the surface of a sample having a periodic pattern arranged periodically and repeatedly, with high detection sensitivity and relatively good workability. It is possible to provide a method.
In particular, when the present invention is applied to inspection of a shape defect of a front hole of a shadow mask, a linear region photographing unit and a line light source are used to increase detection sensitivity, and the linear region photographing unit is formed at a predetermined angle with respect to the shadow mask surface. Adjust the optimum control angle of the illumination light for each product type, or adjust the light in all directions of the hole, as in the inspection method where the light source is placed and the transmitted light that has passed through the shadow mask is photographed from the oblique angle of the shadow mask surface. It does not require the trouble of irradiating the sample, and it does not require much inspection time as in an inspection method of transmitting and illuminating a sample and using an area sensor and a mirror, and is practical. Specifically, the surface portion of the sample having a rough surface portion and having a periodic pattern in which a pattern formed of holes having a concave shape inwardly connected to the surface portion of the base material is periodically arranged. Inspection method for inspecting the shape defect of the pattern consisting of the hole that leads to, while moving the sample relatively to the imaging system,
In addition, after performing reflected bright field illumination with diffused light controlled within a predetermined spread angle, photographing a sample surface by a linear region imaging means to obtain a photographed image, image data of the photographed image is subjected to image processing. This is achieved by obtaining the fillet diameter and / or the projected area of each pattern of the periodic pattern of the sample, and judging a portion where each value is not within a predetermined range as a defect portion. That is, the surface portion of the sample surface is rough by illuminating the sample in a reflected bright field with diffused light controlled within a predetermined spread angle and photographing the sample surface by the linear region imaging means to obtain a photographed image. Therefore, it is possible to substantially prevent a decrease in defect detection sensitivity from a captured image due to the above. In particular, in the case of the sample shadow mask, each imaging region of the sample on the optical axis of the reflected bright field illumination has a light receiving angle of the reflected bright field illumination of 0 ° or more,
It is effective to control the diffused light of the reflected bright-field illumination so as to be 30 ° or less. As the image processing of the image data of the captured image, the image processing of the image data of the captured image is performed by binarizing each pixel of the image data of the captured image at a predetermined slice level to generate a binary image. A process of determining the fillet diameter of each pattern of the sample and / or the projected area of each pattern from the digitized image, and judging a defective portion as a defective portion if the value is not within a predetermined range.

【0007】本発明の表面欠陥の検査装置は、上記のよ
うに構成することにより、高い検出感度をもち、且つ、
比較的作業性も良いシャドウマスクの表面検査装置の提
供を可能としている。
The surface defect inspection apparatus of the present invention has a high detection sensitivity and a high detection sensitivity by being configured as described above.
It is possible to provide a shadow mask surface inspection apparatus having relatively good workability.

【0008】[0008]

【発明の実施の形態】まず、本発明の表面欠陥の検査装
置の実施の形態の例を挙げて説明する。図1(a)は、
本発明の表面欠陥の検査装置の実施の形態の第1の例の
概略装置図で、図1(b)は第1の例の反射明視野照明
の拡散光による撮影系を説明するための図、図2は第1
の例の反射明視野照明の拡散光の制御を説明するための
図で、図3はシャドウマスクの表孔欠陥を示した図で、
図4は光ファイバーによる光の照射角度の制御を説明す
るための図で、図5は実施の形態の第2の例の装置概略
図である。尚、図2(a)は図1(a)と同じ方向の一
側面図で、図2(b)は図2(a)において、A1側か
らみた図で、図2(c)は図2(a)のA2−A3にお
ける遮光板(光制御板)の断面図である。図1〜図5
中、110は試料(シャドウマスク)、110Sは撮影
領域、111は基材、113は表孔部(パターン)、1
14は裏孔部、115は基材の表面部、118は表孔部
形状不良部、120は線状照明手段、121は照明光源
(線状光源)、125は遮光板(光制御板)、130は
線状領域撮影手段(CCDラインセンサカメラ)、13
5 はレンズ、140は画像処理部、160はステージ、
180はハーフミラー、190は光ファイバーである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an embodiment of a surface defect inspection apparatus according to the present invention will be described. FIG. 1 (a)
FIG. 1B is a schematic diagram of a first example of an embodiment of a surface defect inspection apparatus according to the present invention, and FIG. 1B is a diagram for explaining an imaging system using diffused light of reflected bright-field illumination of the first example. , FIG. 2 shows the first
FIG. 3 is a diagram for explaining control of diffused light of reflected bright field illumination in the example of FIG. 3, and FIG. 3 is a diagram showing surface hole defects of a shadow mask;
FIG. 4 is a diagram for explaining control of an irradiation angle of light by an optical fiber, and FIG. 5 is a schematic diagram of a device according to a second example of the embodiment. 2 (a) is a side view of the same direction as FIG. 1 (a), FIG. 2 (b) is a view from the A1 side in FIG. 2 (a), and FIG. 2 (c) is FIG. It is sectional drawing of the light-shielding plate (light control plate) in A2-A3 of (a). 1 to 5
Medium, 110 is a sample (shadow mask), 110S is a photographing area, 111 is a base material, 113 is a surface hole (pattern), 1
14 is a back hole portion, 115 is a surface portion of the base material, 118 is a surface hole portion defective portion, 120 is a linear illumination means, 121 is an illumination light source (linear light source), 125 is a light shielding plate (light control plate), 130 is a linear area photographing means (CCD line sensor camera), 13
5 is a lens, 140 is an image processing unit, 160 is a stage,
180 is a half mirror, and 190 is an optical fiber.

【0009】まず、実施の形態の第1の例の表面欠陥の
検査装置を説明する。本例の装置は、エッチング外形加
工されたシャドウマスクを試料として、基材(図3の1
11)の表面部(図3の115)につながり内側に凹ん
だ形状の表孔部(図3の113)からなるパターンを周
期的に繰り返して配設した周期パターンを有する試料
の、前記表面部につながる孔部からなるパターンの形状
欠陥を検査する検査装置で、図1(a)に示すように、
試料(シャドウマスク)110を載せて、撮影系に対し
て相対的に移動させるステージ160と、試料110の
一面を撮影するCCDラインセンサカメラからなる線状
領域撮像手段130と、撮影に際し、試料110の一面
を所定の広がり角度の拡散光にて反射明視野照明する線
状照明手段120と、撮影して、得られた撮影画像デー
タから、試料の周期性パターンの各パターンのフィレ
径、投影面積を求め、それぞれ、所定のパターンの所定
のフィレ径、および所定の投影面積と異なる箇所を欠陥
箇所と判断する画像処理部140とを備えている。本例
の装置では、図1(b)に示すように、線状領域撮像手
段130の光軸L1と、この光軸L1方向の試料110
の面の撮影領域において垂直に立てた法線とのなす角度
θ1とした場合、線状照明手段120の光軸L2と法線
とのなす角度もθ1とし、この光軸L2に対して、所定
の広がり角度θ0内に制御された拡散光にて反射明視野
照明するものである。即ち、撮影領域110Sへ照射さ
れる照明光の光束を、光軸L2に対して、所定の広がり
角度θ0内に制御して試料を撮影するものである。カラ
ーテレビのプラウン管に用いられるシャドウマスクは、
一般に、エッチング加工により孔開けが行われるが、そ
の一部平面を図3(a)に示し、その一部断面を図3
(b)に示すように、一方側に大きい孔部、他方側に小
さい孔部が形成されており、両孔部により貫通孔を形成
している。そして、カラーテレビはシャドウマスクの大
きい孔部側を人が観察する側として用いるため、大きい
孔部側の孔部を、通常、表孔部113、小さい孔部側の
孔部を裏孔部114と言っている。ここでは表孔部の形
状不良箇所を表孔部形状不良118と言っている。尚、
図3(b)は図3(a)のB1−B2における断面を示
した図である。シャドウマスクの場合、その表面の粗の
状態から、検出感度が良好なものは、一般には、θ0は
0°以上、30度以下である。
First, a description will be given of a surface defect inspection apparatus according to a first example of the embodiment. The apparatus of the present example uses a shadow mask having an etched outer shape as a sample and uses a substrate (1 in FIG. 3).
11) The surface portion of a sample having a periodic pattern in which a pattern consisting of a surface hole portion (113 in FIG. 3) connected to the surface portion (115 in FIG. 3) and recessed inward is periodically arranged. An inspection device for inspecting a shape defect of a pattern formed of a hole portion leading to a hole, as shown in FIG.
A stage 160 on which a sample (shadow mask) 110 is mounted and relatively moved with respect to an imaging system; a linear area imaging unit 130 including a CCD line sensor camera for imaging one surface of the sample 110; A linear illumination means 120 for reflecting and bright-field illuminating one surface with diffused light having a predetermined spread angle, and photographing and obtaining captured image data from the fillet diameter and projected area of each pattern of the periodic pattern of the sample. And an image processing unit 140 that determines a location different from a predetermined fillet diameter and a predetermined projection area of a predetermined pattern as a defect location. In the apparatus of the present example, as shown in FIG. 1B, the optical axis L1 of the linear region imaging means 130 and the sample 110 in the direction of the optical axis L1.
When an angle θ1 is formed between the normal and a vertical line in the photographing area of the surface, an angle formed between the optical axis L2 of the linear illumination means 120 and the normal is also θ1, and a predetermined angle is defined with respect to the optical axis L2. The reflected bright field illumination is performed by the diffused light controlled within the spread angle θ0 of. That is, the sample is photographed by controlling the luminous flux of the illumination light applied to the photographing region 110S within a predetermined spread angle θ0 with respect to the optical axis L2. Shadow masks used for color television plow tubes are
Generally, a hole is formed by etching, and a partial plane is shown in FIG. 3A, and a partial cross section is shown in FIG.
As shown in (b), a large hole is formed on one side and a small hole is formed on the other side, and a through hole is formed by both holes. Since the color television uses the large hole side of the shadow mask as a side for human observation, the large hole side is usually used as the front hole 113 and the small hole side is used as the back hole 114. they said. Here, the shape defect portion of the surface hole is referred to as a shape defect 118 of the surface hole. still,
FIG. 3B is a diagram showing a cross section taken along line B1-B2 in FIG. In the case of a shadow mask, θ0 is generally 0 ° or more and 30 ° or less in a case where the detection sensitivity is good due to the rough state of the surface.

【0010】本例においては、上記のように、所定の広
がり角度θ0内の拡散光にて反射明視野照明するが、図
2(a)や、図2(b)に示すように、照明光源121
からの光は遮光板(光制御板)125により、撮影領域
110Sへ入射する角度θ0の範囲を制御される。遮光
板125は図2(c)に示すように平面は格子状で、所
定の高さを持つもので、この部分に入射された光は反射
せずに吸収する部材で作製されており格子の間隔と、そ
の高さにより、遮光板125を通過する光の方向は制限
される。このため、試料110の撮影領域110Sと照
明光源(線状光源)121との間に、遮光板125を置
き、撮影領域110Sへ入射される照明光の角度θ0の
範囲を所定の角度内に制御することができる。尚、通
常、遮光板125は黒色である。シャドウマスクの表孔
部欠陥を検出する場合には、図2に示す遮光板125に
代え、図4に示すような光ファイバー190を用いて、
撮影領域110Sへ入射される照明光の角度θ0を制御
しても良い。図4に示すように光ファイバーは、複数本
で束ねられて使用されるが、各光ファイバーから放出さ
れる光の角度θ4(光軸L4からの広がり角度)は、そ
の材質によるため、適した角度のものを選択して使用す
る。こうして、撮影領域110Sへ入射される照明光の
角度θ0を20°以内に制御することができる。
In this embodiment, as described above, the reflected bright field illumination is performed by the diffused light within the predetermined spread angle θ0, but as shown in FIG. 2 (a) and FIG. 121
The range of the angle θ0 at which the light is incident on the imaging region 110S is controlled by the light shielding plate (light control plate) 125. As shown in FIG. 2C, the light-shielding plate 125 has a grid-like plane and a predetermined height, and is made of a member that absorbs light incident on this portion without reflecting it. The direction of the light passing through the light blocking plate 125 is restricted by the interval and the height. For this reason, a light-shielding plate 125 is placed between the imaging region 110S of the sample 110 and the illumination light source (linear light source) 121 to control the range of the angle θ0 of the illumination light incident on the imaging region 110S within a predetermined angle. can do. Incidentally, the light shielding plate 125 is usually black. In the case of detecting a surface hole defect of the shadow mask, an optical fiber 190 as shown in FIG. 4 is used instead of the light shielding plate 125 shown in FIG.
The angle θ0 of the illumination light incident on the imaging region 110S may be controlled. As shown in FIG. 4, a plurality of optical fibers are bundled and used, but the angle θ4 (spread angle from the optical axis L4) of the light emitted from each optical fiber depends on the material thereof. Select one to use. Thus, the angle θ0 of the illumination light incident on the imaging region 110S can be controlled within 20 °.

【0011】次いで、実施の形態の第2の例の表面欠陥
の検査装置を簡単に説明する。図5に示す、第2の例の
表面欠陥の検査装置は、照明光源121からの照明光
を、ハーフミラー180を介して、試料110の撮影領
域110Sにその光軸がほぼ試料110の面にほぼ垂直
になるようにして照射し、試料110の撮影領域110
Sからの反射光を、ハーフミラー180を介して、CC
Dラインセンサカメラからなる線状領域撮像手段130
へと入射させて、試料110の撮影領域110Sを撮影
するもので、図1に示す装置の場合と同様、撮影領域1
10Sへ入射される照明光の角度θ0を制御するため、
ハーフミラー180と照明光源121との間に、遮光板
(光制御板)125を配置している。
Next, a surface defect inspection apparatus according to a second example of the embodiment will be briefly described. The surface defect inspection apparatus of the second example shown in FIG. 5 applies the illumination light from the illumination light source 121 to the photographing area 110S of the sample 110 via the half mirror 180 so that the optical axis of the illumination light is almost on the surface of the sample 110. Irradiation is performed so as to be substantially vertical, and the imaging region 110 of the sample 110 is
The reflected light from S is transmitted through half mirror 180 to CC
Linear region imaging means 130 comprising a D line sensor camera
To capture an image of the imaging region 110S of the sample 110. As in the case of the apparatus shown in FIG.
In order to control the angle θ0 of the illumination light incident on the 10S,
A light shielding plate (light control plate) 125 is arranged between the half mirror 180 and the illumination light source 121.

【0012】次に、本発明の表面欠陥の検査方法の実施
の形態の1例を説明する。また、これを以て、図1に示
す検査装置の画像処理部の処理の説明に代える。本例
は、図1に示す第1の例の表面欠陥の検査装置を用い、
シャドウマスクの表孔部形状欠陥の検査を行うもので、
図1を参照にしながら、図6に基づいて簡単に説明す
る。尚、図6は本例の工程フロー図である。図6中、S
110〜S140は処理ステップを示すものである。先
ず、図1(a)に示すように、シャドウマスク(試料)
110を、検査する表孔部側を上にしてステージ160
上に載せた状態で、試料110をステージ160により
撮影系に対して相対的に移動させながら、且つ、所定の
広がり角度(図1(b)のθ0)内に制御された拡散光
にて反射明視野照明し、線状領域撮像手段130により
試料面の検査領域を撮影して撮影画像を得る。(S11
0) シャドウマスクの測定であるため、その表面の粗の状態
から、θ0を0°以上、30度以下として行うが、他の
試料についても、その表面の粗の状態に対応してθ0の
値を決めることが好ましい。試料110の検査領域と線
状領域撮像手段130が撮影する視野の関係より、適当
にステージ160の移動を決める。例えば、図7(a)
は、線状領域撮像手段130が撮影する視野130Sの
幅が、試料110の検査領域の幅よりも狭い場合の、線
状領域撮像手段130の撮影する視野の移動方向を矢印
で示したものとすることにより試料の所定の検査領域を
撮影できる。また、2台の線状領域撮像手段130に
て、1つの試料110の検査領域を撮影しても良く、図
7における線状領域撮像手段130を2台用いた場合
は、図7(b)に示すように、あわせて、1台の線状領
域撮像手段130のほぼ倍の撮影視野130Sとするこ
とができる。それぞれの線状領域撮像手段130の撮影
する視野の移動方向は矢印の方向として、試料の所定の
検査領域を撮影できる。
Next, an example of an embodiment of the surface defect inspection method of the present invention will be described. Further, the description of the processing of the image processing unit of the inspection apparatus shown in FIG. This example uses the surface defect inspection apparatus of the first example shown in FIG.
Inspection of surface defect of shadow mask
A brief description will be given based on FIG. 6 with reference to FIG. FIG. 6 is a process flowchart of this example. In FIG. 6, S
110 to S140 show processing steps. First, as shown in FIG. 1A, a shadow mask (sample)
110 is placed on the stage 160 with the surface to be inspected facing up.
While the sample 110 is placed on the top, the sample 110 is relatively moved with respect to the imaging system by the stage 160, and is reflected by diffused light controlled within a predetermined spread angle (θ0 in FIG. 1B). Bright field illumination is performed, and the inspection area on the sample surface is photographed by the linear region imaging means 130 to obtain a photographed image. (S11
0) Since the measurement is performed using a shadow mask, the measurement is performed with θ0 set to 0 ° or more and 30 ° or less from the rough state of the surface, but the value of θ0 is also determined for other samples in accordance with the rough state of the surface. Is preferably determined. The movement of the stage 160 is appropriately determined based on the relationship between the inspection area of the sample 110 and the visual field captured by the linear area imaging unit 130. For example, FIG.
The arrow indicates the moving direction of the visual field captured by the linear region imaging means 130 when the width of the visual field 130S captured by the linear region imaging means 130 is smaller than the width of the inspection area of the sample 110. By doing so, a predetermined inspection area of the sample can be imaged. Further, the inspection area of one sample 110 may be photographed by the two linear area imaging means 130. When two linear area imaging means 130 in FIG. 7 are used, FIG. As shown in (1), the field of view 130S can be almost twice as large as that of one linear area imaging means 130. The moving direction of the visual field to be imaged by each linear area imaging means 130 is the direction of the arrow, so that a predetermined inspection area of the sample can be imaged.

【0013】次に、得られた撮影画像の画像データを2
値化処理する。(S120) 例えば、シャドウマスクの一部を示す図8(b)のC1
−C2における画素列の各位置の画像データの値は、図
8(a)のようになる。この図8(a)の各画素の値を
所定の値のレベル(スライスレベルSL)と比較し、こ
れ以上の画素の1(勿論他の決められた値2や、3でも
良い)、所定の値のレベル以下の画素の値を0とするこ
とにより、各画素をその値により2領域に分けた2値化
画像データを得ることができる。図8(b)のC1−C
2箇所に対応する2値化画像データの画素列は、例え
ば、図8(c)のようになる。表孔形状不良(エグレ不
良とも言う)の箇所の0値の連続する画素列の数は、正
常な孔部(パターン)113に比べ多いことが分かる。
次いで、このようにして得られた、各画素が2値化され
た2値化画像データについて、所定の方向、図8(b)
のような孔部(パターン)に対しては、X方向、Y方向
への投影して、X方向、Y方向のフィレ径を得る。(S
130) あるいは、各画素が2値化された2値化画像データにつ
いて、図8(b)のような各孔部(パターン)に対して
は、2値化された画素のうち値が0の画素の数を数え
て、表孔部の投影面積を求める。(S130) 尚、一般には、所定の方向に投影された図形の径をフィ
レ径としている。次いで、得られた、各孔部(パター
ン)のX方向、Y方向のフィレ径、投影面積に対し、そ
れぞれの値が所定範囲内でない場合、その箇所を欠陥箇
所として抽出する。(S140)
Next, the image data of the obtained photographed image is
Perform value processing. (S120) For example, C1 of FIG. 8B showing a part of the shadow mask
The value of the image data at each position of the pixel column at −C2 is as shown in FIG. The value of each pixel in FIG. 8A is compared with the level of a predetermined value (slice level SL), and 1 (of course, another predetermined value 2 or 3) of a pixel higher than that is determined, and By setting the value of a pixel below the value level to 0, it is possible to obtain binarized image data in which each pixel is divided into two regions by that value. C1-C in FIG. 8 (b)
The pixel column of the binarized image data corresponding to the two locations is, for example, as shown in FIG. It can be seen that the number of continuous pixel rows of 0 values at the position of the surface hole shape defect (also referred to as an egret defect) is larger than that of the normal hole portion (pattern) 113.
Next, the binarized image data obtained by binarizing each pixel obtained as described above is processed in a predetermined direction, as shown in FIG.
Are projected in the X and Y directions to obtain fillet diameters in the X and Y directions. (S
130) Alternatively, with respect to the binarized image data in which each pixel is binarized, for each hole (pattern) as shown in FIG. The number of pixels is counted, and the projected area of the front hole is obtained. (S130) Generally, the diameter of a figure projected in a predetermined direction is defined as a fillet diameter. Next, when the obtained values of the fillet diameter and the projected area in the X direction and the Y direction of each hole (pattern) are not within a predetermined range, the portion is extracted as a defective portion. (S140)

【0014】このようにして、撮影画像からシャドウマ
スクの表孔部形状不良を検出するのであるが、本例の方
法の場合、所定の広がり角度(図1(b)のθ0)内に
制御された拡散光にて反射明視野照明し、線状領域撮像
手段130により試料面の検査領域を撮影した撮影画像
をもとに欠陥検出をすることにより、検出感度の高いも
のとしている。
In this manner, the defect of the shape of the surface of the shadow mask is detected from the photographed image. In the case of the method of this embodiment, the defect is controlled within a predetermined spread angle (θ0 in FIG. 1B). The reflected light is illuminated by the reflected light with the diffused light, and the linear area imaging means 130 detects a defect based on a captured image of the inspection area on the sample surface, thereby increasing the detection sensitivity.

【0015】[0015]

【発明の効果】本発明は、上記のように、粗な表面部を
有し、基材の表面部につながり内側に凹んだ形状の孔部
からなるパターンを周期的に繰り返して配設した周期パ
ターンを有す試料の表面部につながる孔部からなるパタ
ーンの形状欠陥を検査する検査方法で、高い検出感度を
もち、且つ、比較的作業性も良い、欠陥検出方法の提供
を可能とした。同時に、そのような検査方法を実施でき
る検査装置の提供を可能とした。結果、シャドウマスク
における、ますますの高品質化に対応できるものとし、
高品質製品の量産化にも対応できるものとした。
According to the present invention, as described above, a periodic pattern in which a pattern having holes having a rough surface and connected to the surface of a substrate and having an inwardly concave shape is periodically arranged is provided. An inspection method for inspecting a shape defect of a pattern formed of a hole portion connected to a surface portion of a sample having a pattern. The defect detection method having high detection sensitivity and relatively good workability can be provided. At the same time, it has become possible to provide an inspection apparatus capable of performing such an inspection method. As a result, it is possible to respond to increasingly higher quality in shadow masks,
The system can be used for mass production of high quality products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は、本発明の表面欠陥の検査装置の
実施の形態の第1の例の概略装置図で、図1(b)は第
1の例の反射明視野照明の拡散光による撮影系を説明す
るための図
FIG. 1A is a schematic diagram of a first example of an embodiment of a surface defect inspection apparatus according to the present invention, and FIG. 1B is a diagram of a first example of reflected bright field illumination. Diagram for explaining the imaging system using diffused light

【図2】本発明の表面欠陥の検査装置の実施の形態の第
1の例の反射明視野照明の拡散光の制御を説明するため
の図
FIG. 2 is a diagram for explaining control of diffused light of reflected bright-field illumination according to the first embodiment of the surface defect inspection apparatus according to the present invention;

【図3】シャドウマスクの表孔欠陥を示した図FIG. 3 is a view showing a surface hole defect of a shadow mask;

【図4】光ファイバーによる光の照射角度の制御を説明
するための図
FIG. 4 is a diagram for explaining control of a light irradiation angle by an optical fiber;

【図5】本発明の表面欠陥の検査装置の実施の形態の第
2の例の装置概略図
FIG. 5 is a schematic view of a second example of the surface defect inspection apparatus according to the embodiment of the present invention;

【図6】本発明の表面欠陥の検査方法の実施形態の1例
のフロー図
FIG. 6 is a flowchart of an example of an embodiment of the surface defect inspection method of the present invention.

【図7】線状領域撮影手段の視野の移動を説明するため
の図
FIG. 7 is a view for explaining a movement of a visual field of a linear area photographing means.

【図8】撮影画像データの2値化処理を説明するための
FIG. 8 is a diagram for explaining binarization processing of captured image data;

【図9】従来の検査方法を説明するための図FIG. 9 is a diagram for explaining a conventional inspection method.

【符号の説明】[Explanation of symbols]

110 試料(シャドウマスク) 110S 撮影領域 111 基材 113 表孔部(パターン) 114 裏孔部 115 基材の表面部 118 表孔部形状不良部 119 擬似表孔部形状不良部 120 線状照明手段 121 照明光源(線状光源) 125 遮光板(光制御板) 130 線状領域撮影手段(CCD
ラインセンサカメラ) 135 レンズ 140 画像処理部 160 ステージ 180 ハーフミラー 190 光ファイバー
Reference Signs List 110 Sample (shadow mask) 110S Imaging region 111 Base material 113 Surface hole (pattern) 114 Back hole 115 Surface of base material 118 Poor hole shape defect 119 Pseudo surface hole shape defect 120 Linear lighting means 121 Illumination light source (linear light source) 125 Light shielding plate (light control plate) 130 Linear area photographing means (CCD
Line sensor camera) 135 lens 140 image processing unit 160 stage 180 half mirror 190 optical fiber

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粗な表面部を有し、基材の表面部につな
がり内側に凹んだ形状の孔部からなるパターンを周期的
に繰り返して配設した周期パターンを有する試料の、前
記表面部につながる孔部からなるパターンの形状欠陥を
検査する検査方法であって、試料を撮影系に対して相対
的に移動させながら、且つ、所定の広がり角度内に制御
された拡散光にて反射明視野照明し、線状領域撮像手段
により試料面を撮影して撮影画像を得た後、該撮影画像
の画像データを画像処理して、試料の周期性パターンの
各パターンのフィレ径、およびまたは、投影面積を求
め、それぞれの値が所定の範囲内でない箇所を、欠陥箇
所と判断することを特徴とする表面欠陥の検査方法。
1. The surface portion of a sample having a rough surface portion and having a periodic pattern in which a pattern of holes formed in a concave shape inwardly connected to the surface portion of the base material is periodically repeated. An inspection method for inspecting a shape defect of a pattern formed of a hole portion leading to an object, wherein the sample is relatively moved with respect to an imaging system, and reflected by a diffused light controlled within a predetermined spread angle. After illuminating the field of view and obtaining a photographed image by photographing the sample surface by the linear region imaging means, image processing is performed on the image data of the photographed image, the fillet diameter of each pattern of the periodic pattern of the sample, and or A method for inspecting a surface defect, wherein a projection area is obtained, and a portion where each value is not within a predetermined range is determined as a defect portion.
【請求項2】 請求項1において、撮影画像の画像デー
タの画像処理が、撮影画像の画像データの各画素を所定
のスライスレベルで、2値化して2値化画像を作成し、
該2値化画像から試料の各パターンのフィレ径、および
または、各パターンの投影面積を求め、それぞれの値が
所定の範囲内でない箇所を、欠陥箇所と判断するもので
あることを特徴とする表面欠陥の検査方法。
2. The image processing device according to claim 1, wherein the image processing of the image data of the captured image is performed by binarizing each pixel of the image data of the captured image at a predetermined slice level to generate a binary image.
The fillet diameter of each pattern of the sample and / or the projected area of each pattern is obtained from the binarized image, and a portion where each value is not within a predetermined range is determined as a defective portion. Inspection method for surface defects.
【請求項3】 請求項1ないし2において、試料がシャ
ドウマスクで、反射明視野照明の光軸上にある試料の各
撮影領域が、反射明視野照明されるその受光角度を、照
明光の光軸を中心として0°以上、30°以下とするこ
とを特徴とする表面欠陥の検査方法。
3. The illumination light according to claim 1, wherein the sample is a shadow mask, and each imaging area of the sample on the optical axis of the reflected bright field illumination is subjected to reflected bright field illumination. A method for inspecting surface defects, wherein the angle is set to 0 ° or more and 30 ° or less about an axis.
【請求項4】 粗な表面部を有し、基材の表面部につな
がり内側に凹んだ形状の孔部からなるパターンを周期的
に繰り返して配設した周期パターンを有する試料の、前
記表面部につながる孔部からなるパターンの形状欠陥を
検査する検査装置であって、試料を撮影系に対して相対
的に移動させる搬送部と、試料面を撮影する線状領域撮
像手段と、撮影に際し、試料面を所定の広がり角度の拡
散光にて反射明視野照明する線状照明手段と、撮影し
て、得られた撮影画像データから、試料の周期性パター
ンの各パターンのフィレ径、およびまたは、投影面積を
求め、それぞれの値が所定の範囲内でない箇所を、欠陥
箇所と判断する画像処理部とを備えていることを特徴と
する表面欠陥の検査装置。
4. A sample having a periodic pattern having a rough surface portion and having a periodic pattern in which a pattern of holes formed in a concave shape inwardly connected to the surface portion of the base material is periodically repeated. An inspection apparatus for inspecting a shape defect of a pattern consisting of a hole portion connected to a transport unit that relatively moves a sample with respect to an imaging system, a linear region imaging unit that captures an image of a sample surface, A linear illumination means for reflecting and bright-field illuminating the sample surface with diffused light having a predetermined spread angle, and shooting, from the obtained captured image data, the fillet diameter of each pattern of the periodic pattern of the sample, and or An inspection apparatus for a surface defect, comprising: an image processing unit that determines a projection area and determines a location where each value is not within a predetermined range as a defect location.
【請求項5】 請求項4において、試料がシャドウマス
クで、反射明視野照明の光軸上にある試料の各撮影領域
が、反射明視野照明されるその受光角度を、照明光の光
軸を中心として0°以上、30°以下としていることを
特徴とする表面欠陥の検査装置。
5. The method according to claim 4, wherein the sample is a shadow mask, and each imaging region of the sample on the optical axis of the reflected bright field illumination has its light receiving angle for reflected bright field illumination determined by the optical axis of the illumination light. An apparatus for inspecting surface defects, wherein the center is set to 0 ° or more and 30 ° or less.
JP16790598A 1998-06-16 1998-06-16 Surface defect inspection method and inspection apparatus Expired - Fee Related JP3984367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16790598A JP3984367B2 (en) 1998-06-16 1998-06-16 Surface defect inspection method and inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16790598A JP3984367B2 (en) 1998-06-16 1998-06-16 Surface defect inspection method and inspection apparatus

Publications (2)

Publication Number Publication Date
JP2000002526A true JP2000002526A (en) 2000-01-07
JP3984367B2 JP3984367B2 (en) 2007-10-03

Family

ID=15858234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16790598A Expired - Fee Related JP3984367B2 (en) 1998-06-16 1998-06-16 Surface defect inspection method and inspection apparatus

Country Status (1)

Country Link
JP (1) JP3984367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032736A (en) * 2000-07-17 2002-01-31 Dainippon Printing Co Ltd Method and device for defect inspection
JP2009137563A (en) * 2007-12-07 2009-06-25 Becker Marine Systems Gmbh & Co Kg System and method for investigating and/or deciding condition or state of hull of ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032736A (en) * 2000-07-17 2002-01-31 Dainippon Printing Co Ltd Method and device for defect inspection
JP2009137563A (en) * 2007-12-07 2009-06-25 Becker Marine Systems Gmbh & Co Kg System and method for investigating and/or deciding condition or state of hull of ship

Also Published As

Publication number Publication date
JP3984367B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
EP0501683B1 (en) Technique for enhanced two-dimensional imaging
US6011620A (en) Method and apparatus for the automatic inspection of optically transmissive planar objects
JP3972749B2 (en) Inspection device and through hole inspection method
JP4550610B2 (en) Lens inspection device
JPH08128959A (en) Optical inspection method and optical inspection device
JP4633245B2 (en) Surface inspection apparatus and surface inspection method
JP2001266127A (en) Device for inspecting printed wiring board
JPH11271038A (en) Painting defect inspection device
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2012037425A (en) Method for inspecting polycrystal silicon wafer and device thereof
JP3185599B2 (en) Surface defect inspection equipment
JPH11211442A (en) Method and device for detecting defect of object surface
JP2001209798A (en) Method and device for inspecting outward appearance
JP2011075325A (en) Surface inspection device
JP2001124538A (en) Method and device for detecting defect in surface of object
JP3984367B2 (en) Surface defect inspection method and inspection apparatus
JP2007147376A (en) Inspection device
JPH11248643A (en) Detection device for foreign matter in transparent film
JP3202089B2 (en) Surface defect inspection method for periodic patterns
JPH10115514A (en) Method and apparatus for inspection of surface smoothness
JPS6221046A (en) Defect inspection for shadow mask
JP3827812B2 (en) Surface defect inspection apparatus and surface defect inspection method
JPH11281588A (en) Surface inspecting apparatus
JP2911619B2 (en) Surface defect inspection method and apparatus for periodic pattern
JP4564225B2 (en) Optical inspection apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees