IN2014CN03490A - - Google Patents

Download PDF

Info

Publication number
IN2014CN03490A
IN2014CN03490A IN3490CHN2014A IN2014CN03490A IN 2014CN03490 A IN2014CN03490 A IN 2014CN03490A IN 3490CHN2014 A IN3490CHN2014 A IN 3490CHN2014A IN 2014CN03490 A IN2014CN03490 A IN 2014CN03490A
Authority
IN
India
Prior art keywords
infiltration
strontium titanate
doped strontium
cgo
backbone
Prior art date
Application number
Inventor
Mohammed Hussain Abdul Jabbar
Jens Høgh
Nikolaos Bonanos
Original Assignee
Univ Denmark Tech Dtu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Denmark Tech Dtu filed Critical Univ Denmark Tech Dtu
Publication of IN2014CN03490A publication Critical patent/IN2014CN03490A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

A high performance anode (fuel electrode) for use in a solid oxide electrochemical cell is obtained by a process comprising the steps of (a) providing a suitably doped stabilized zirconium oxide electrolyte such as YSZ ScYSZ with an anode side having a coating of electronically conductive perovskite oxides selected from the group consisting of niobium doped strontium titanate vanadium doped strontium titanate tantalum doped strontium titanate and mixtures thereof thereby obtaining a porous anode backbone (b) sintering the coated electrolyte at a high temperature such as 1200°C in a reducing atmosphere for a sufficient period of time (c) effecting a precursor infiltration of a mixed catalyst into the backbone said catalyst comprising a combination of noble metals Pd or Pt or Pd or Ru and Ni with rare earth metals such as Ce or Gd said infiltration consisting of (1) infiltration of Pd Ru and CGO containing chloride/nitrate precursors and (2) infiltration of Ni and CGO containing nitrate precursors and (d) subjecting the resulting structure of step (c) to heat treatments including heat treatments in several steps with infiltration.
IN3490CHN2014 2011-10-24 2012-10-23 IN2014CN03490A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201100811 2011-10-24
PCT/EP2012/070951 WO2013060671A1 (en) 2011-10-24 2012-10-23 High performance fuel electrode for a solid oxide electrochemical cell

Publications (1)

Publication Number Publication Date
IN2014CN03490A true IN2014CN03490A (en) 2015-10-09

Family

ID=47046630

Family Applications (1)

Application Number Title Priority Date Filing Date
IN3490CHN2014 IN2014CN03490A (en) 2011-10-24 2012-10-23

Country Status (10)

Country Link
US (1) US20140287342A1 (en)
EP (1) EP2771932A1 (en)
JP (1) JP2015501515A (en)
KR (1) KR20140096310A (en)
CN (1) CN104025352A (en)
AU (1) AU2012327278A1 (en)
CA (1) CA2853169A1 (en)
EA (1) EA201490860A1 (en)
IN (1) IN2014CN03490A (en)
WO (1) WO2013060671A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181148B2 (en) * 2013-05-22 2015-11-10 Saudi Arabian Oil Company Ni/CGO and Ni-Ru/CGO based pre-reforming catalysts formulation for methane rich gas production from diesel processing for fuel cell applications
US9469908B2 (en) * 2014-05-12 2016-10-18 The Trustees Of The University Of Pennsylvania Synergistic oxygen evolving activity of non-stoichiometric surfaces
CN107210466B (en) * 2015-03-06 2020-10-20 株式会社Lg化学 Method for producing electrode, electrode structure, fuel cell or metal-air secondary cell, cell module, and composition
EP3340349A1 (en) * 2016-12-21 2018-06-27 sunfire GmbH Sulfur tolerant catalyst for solid oxide fuel cell and production method
CN108390086B (en) * 2017-01-03 2020-03-20 清华大学 Hydrogen-containing transition metal oxide, preparation method thereof and solid fuel cell
US11283084B2 (en) 2017-05-03 2022-03-22 The Regents Of The University Of California Fabrication processes for solid state electrochemical devices
JP7076788B2 (en) * 2017-08-01 2022-05-30 国立研究開発法人物質・材料研究機構 Anodic material for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
CN108360010B (en) * 2018-01-26 2019-09-06 济南大学 A kind of preparation method of solid oxide electrolysis cell electrode catalyst coating
CN109802148A (en) * 2019-02-01 2019-05-24 上海亮仓能源科技有限公司 A kind of preparation method of on-vehicle fuel load type platinum rare earth metal cathod catalyst
CN109852988B (en) * 2019-04-12 2021-05-25 清华大学 Micro-nano tree-shaped solid oxide electrolytic cell anode and preparation method thereof
WO2021162975A1 (en) * 2020-02-11 2021-08-19 Phillips 66 Company Solid oxide fuel cell cathode materials
US20210288332A1 (en) * 2020-03-10 2021-09-16 Taiyo Yuden Co., Ltd. Solid oxide fuel cell and manufacturing method of the same
JP2023526279A (en) * 2020-05-14 2023-06-21 ブルーム エネルギー コーポレイション Electrolyte materials for solid oxide electrolytic cells
KR102369060B1 (en) * 2020-06-24 2022-03-02 한국과학기술원 Solid oxide fuel cell comprising anode alkaline-based promoter loaded
CN114190079A (en) * 2020-06-24 2022-03-15 韩国科学技术院 Solid oxide fuel cell comprising supported anode base promoter
CN112647089B (en) * 2020-12-15 2021-12-07 中国科学院大连化学物理研究所 Preparation method of ternary composite anode of solid oxide electrolytic cell
CN113151847A (en) * 2021-04-16 2021-07-23 上海大学 Preparation method and application of working electrode of solid oxide electrolytic cell

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548203B2 (en) 1995-11-16 2003-04-15 The Dow Chemical Company Cathode composition for solid oxide fuel cell
US6051329A (en) 1998-01-15 2000-04-18 International Business Machines Corporation Solid oxide fuel cell having a catalytic anode
US6841512B1 (en) 1999-04-12 2005-01-11 Ovonic Battery Company, Inc. Finely divided metal catalyst and method for making same
WO2003075383A2 (en) * 2002-02-28 2003-09-12 Us Nanocorp, Inc. Solid oxide fuel cell components and method of manufacture thereof
WO2003094268A2 (en) * 2002-05-03 2003-11-13 Battelle Memorial Institute Cerium-modified doped strontium titanate composition for solid oxide fuel cell anodes and electrodes for other electrochemical devices
CN101107740A (en) * 2003-12-02 2008-01-16 纳米动力公司 Anode-supported solid oxide fuel cells using a cermet electrolyte
JP4620572B2 (en) 2005-11-25 2011-01-26 日本電信電話株式会社 Solid oxide fuel cell and method for producing the same
CN1788841A (en) * 2005-12-21 2006-06-21 华东师范大学 Hydrogen production catalyst, preparation and its uses
EP2059965A4 (en) 2006-09-13 2012-03-28 Univ Akron Catalysts compositions for use in fuel cells
EP2254180A1 (en) * 2007-08-31 2010-11-24 Technical University of Denmark Ceria and strontium titanate based electrodes
ES2367885T3 (en) * 2007-08-31 2011-11-10 Technical University Of Denmark ELECTRODES BASED ON CERIOUS OXIDE AND A STAINLESS STEEL.
KR20100069492A (en) 2008-12-16 2010-06-24 삼성전자주식회사 Electrode catalyst for fuel cell and fuel cell including electrode comprising the electrode catalyst
TWI385851B (en) 2009-07-03 2013-02-11 Iner Aec Executive Yuan Solid oxide fuel cell and manufacture method thereof

Also Published As

Publication number Publication date
US20140287342A1 (en) 2014-09-25
CN104025352A (en) 2014-09-03
EA201490860A1 (en) 2014-09-30
WO2013060671A1 (en) 2013-05-02
JP2015501515A (en) 2015-01-15
CA2853169A1 (en) 2013-05-02
EP2771932A1 (en) 2014-09-03
AU2012327278A1 (en) 2014-05-15
KR20140096310A (en) 2014-08-05

Similar Documents

Publication Publication Date Title
IN2014CN03490A (en)
US9853295B2 (en) Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell
Rajendran et al. Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs)
Laguna-Bercero et al. High performance of microtubular solid oxide fuel cells using Nd 2 NiO 4+ δ-based composite cathodes
CN104779409B (en) A kind of solid oxide fuel cell and preparation method thereof
JP3317523B2 (en) Solid oxide fuel cell
dos Santos-Gómez et al. Novel microstructural strategies to enhance the electrochemical performance of La0. 8Sr0. 2MnO3− δ cathodes
Lee et al. Degradation analysis of anode-supported intermediate temperature-solid oxide fuel cells under various failure modes
EP3719815A1 (en) Proton conductor, proton-conducting cell structure, water vapor electrolysis cell, and method for producing hydrogen electrode-solid electrolyte layer complex
CN101521282B (en) Metal electrode catalyst and preparation method thereof
Park et al. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0. 2Sr0. 8Ti0. 9Ni0. 1O3− δ) anode of solid oxide fuel cell
Gorbova et al. Influence of Cu on the properties of gadolinium-doped barium cerate
Sun et al. Enhanced sinterability and electrical performance of Sm2O3 doped CeO2/BaCeO3 electrolytes for intermediate-temperature solid oxide fuel cells through Bi2O3 co-doping
Sun et al. Study of oxygen reduction mechanism on Ag modified Sm1. 8Ce0. 2CuO4 cathode for solid oxide fuel cell
Choi et al. High-performance ceramic composite electrodes for electrochemical hydrogen pump using protonic ceramics
JP4524791B2 (en) Solid oxide fuel cell
JP6625855B2 (en) Cell for steam electrolysis and method for producing the same
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
Werchmeister et al. Electrochemical reduction of oxygen and nitric oxide at low temperature on Ce1− xPrxO2− δ cathodes
Zhang et al. Layered GdBa0. 5Sr0. 5Co2O5+ δ as a cathode for proton-conducting solid oxide fuel cells with stable BaCe0. 5Zr0. 3Y0. 16Zn0. 04O3− δ electrolyte
KR101905953B1 (en) Triple Layer Perovskite for Air-Electrode Catalyst and Electrochemical Device having the same
JP6625856B2 (en) Steam electrolysis cell
JP2010118155A (en) Solid oxide fuel battery cell, and manufacturing method thereof
JP2010108697A (en) Solid oxide fuel battery cell and its manufacturing method
KR102267721B1 (en) A method for manufacturing ANODE for solid oxide fuel cell