HRP20110152A2 - Combined ship power plant using wind and solar energy - Google Patents

Combined ship power plant using wind and solar energy Download PDF

Info

Publication number
HRP20110152A2
HRP20110152A2 HRP20110152AA HRP20110152A HRP20110152A2 HR P20110152 A2 HRP20110152 A2 HR P20110152A2 HR P20110152A A HRP20110152A A HR P20110152AA HR P20110152 A HRP20110152 A HR P20110152A HR P20110152 A2 HRP20110152 A2 HR P20110152A2
Authority
HR
Croatia
Prior art keywords
wind
nozzle
ship
combined
turbine
Prior art date
Application number
HRP20110152AA
Other languages
Croatian (hr)
Inventor
Ivan Vrsalović
Original Assignee
Ivan Vrsalović
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ivan Vrsalović filed Critical Ivan Vrsalović
Priority to HRP20110152AA priority Critical patent/HRP20110152A2/en
Publication of HRP20110152A2 publication Critical patent/HRP20110152A2/en

Links

Landscapes

  • Wind Motors (AREA)

Abstract

Uspješni i perspektivni brodski pogoni traže jeftinu, čistu i obnovljivu energiju. Takvu energiju i to iz dva obnovljiva izvora: sunca i vjetra mogu osigurati solarne ćelije (8), vjetroturbina (7) u kombiniranoj sapnici, zakretne brodske izvedbe na zajedničkoj konstrukciji ugrađenoj na širokoj palubi brzog i ekonomičnog trimarana. Kombinirana sapnica je sastavljena od aerodinamički profiliranog kratkog plašta (5) grla sapnice i donje ravne, kose kolektorske plohe (4), koja sakuplja zračnu masu.Na tu donju kosinu ugrađuju se još i nosive plohe za solarne ćelije (8) sa zakretnim mehanizmom po vertikali (9) radi optimalnog nagiba u svakom godišnjem dobu.Povećanje snage na turbini u sapnici raste po trećoj potenciji dvostruko povišene brzine na rotoru. Zakretne nosive plohe solarnih ćelija služe još i za regulaciju snage turbine, kod jakih vjetrova.Horizontalno zakretni mehanizam uz pomoć posebnog računala služi za optimalnu orijentaciju turbine prema vjetru i dnevnu prema suncu za solarne ćelije (3).Radi sigurnijeg, trajnijeg i jeftinijeg pogona na brodu su dodatno predviđeni: postrojenje elektrolize (10), kompresor (11), spremnik vodika (12) i goriva vodikova ćelija (13) uz standardne elektromotore (14) i propelere (15), te jarboli (16), mehanizmi (17) i jedra (18).Successful and promising marine plants are looking for cheap, clean and renewable energy. Such energy from two renewable sources: solar and wind can be provided by solar cells (8), wind turbines (7) in the combined nozzle, rotary ship designs on a common structure installed on a wide deck of fast and economical trimaran. The combined nozzle consists of an aerodynamically profiled short sheath (5) of the nozzle neck and a lower straight, oblique collector surface (4), which collects air mass. verticals (9) for optimum inclination in each season. The increase in power at the turbine in the nozzle increases by the third potency of twice the increased speed on the rotor. The rotating load cells of solar cells are also used to regulate the power of the turbine in strong winds. the ship is additionally provided with: an electrolysis plant (10), a compressor (11), a hydrogen tank (12) and hydrogen fuel cells (13) in addition to standard electric motors (14) and propellers (15), and masts (16), mechanisms (17) and sails (18).

Description

Područje na koje se izum odnosi The field to which the invention relates

Većina brodova koji plove morima i oceanima trebaju za svoj uspješan pogon jeftinu, čistu i po mogućnosti obnovljivu energiju. Takvu vrst energije i to obnovljivu iz dva izvora (sunce i vjetar) mogu osigurati solarne ćelije i vjetroturbina ugrađene na zajedničku konstrukciju kombinirane zakretne sapnice. Most ships sailing the seas and oceans need cheap, clean and preferably renewable energy for their successful operation. This type of energy, renewable from two sources (sun and wind), can be provided by solar cells and a wind turbine installed on the joint construction of the combined rotary nozzle.

Ova nova tehnika pripada području vjetroturbina ili vjetrogeneratora, odnosno tehnici korištenja energije vjetra i spada u grupu: F03D 1/00 This new technique belongs to the field of wind turbines or wind generators, i.e. the technique of using wind energy and belongs to the group: F03D 1/00

Pogonski mehanizam na vjetar s osi rotacije uglavnom u pravcu vjetra» prema međunarodnoj klasifikaciji patenata, jer je osnovna konstrukcija građena za pretvorbu energije vjetra a solarne ćelije i jedra su energetski korisna i ekonomična dopuna. Wind propulsion mechanism with the axis of rotation mainly in the direction of the wind» according to the international classification of patents, because the basic structure is built for the conversion of wind energy and the solar cells and sails are an energetically useful and economical addition.

Tehnički problem Technical problem

Pogon brodova sa jedrima iako je bio čist i jeftin, nije bio siguran i trajan. Zato su pomorci rado prihvatili pogon na paru, diesel motor i plinsku turbinu. Međutim, ti pogonski sustavi su relativno skupi, a u budućnosti će biti i skuplji. Osim toga, to su krupni, tj. značajni zagađivači. The propulsion of ships with sails, although it was clean and cheap, was not safe and durable. That is why sailors gladly accepted steam propulsion, diesel engines and gas turbines. However, these drive systems are relatively expensive, and will become more expensive in the future. In addition, these are large, i.e., significant pollutants.

Danas se od mjerodavnih međunarodnih institucija izričito traži da se, radi općeg dobra, emisije štetnih plinova smanje na kopnu i moru. Za neposluh slijede oštre kazne. Today, the competent international institutions are expressly requested to reduce emissions of harmful gases on land and sea for the sake of the common good. Severe penalties follow for disobedience.

Rješenje za sve ove probleme nudi novo energetsko brodsko postrojenje, sa jedrima, te solarnim ćelijama i vjetroturbinom u kombiniranoj sapnici na zajedničkoj konstrukciji, uz odgovarajuću rezervu za siguran pogon sa vodikovom gorivnom ćelijom, za ono vrijeme kada nema sunca ni vjetra. The solution to all these problems is offered by a new energy ship plant, with sails, solar cells and a wind turbine in a combined nozzle on a common structure, with an adequate reserve for safe operation with a hydrogen fuel cell, for those times when there is no sun or wind.

Stanje tehnike State of the art

Energiju vjetra svijet već dugo koristi za pogon brodova, mlinova, pumpi ili generatora. Od tih generatorskih uređaja najpoznatiji i najkorišteniji je propelerski sa dvije, tri ili više lopatica postavljen horizontalno na vrhu stupa sa mogućnošću okretanja u pravcu djelovanja vjetra. Međutim svi ti uređaji rade u slobodnoj struji vjetra. Vjetroturbina, koja bi bila ugrađena u regulirajuću sapnicu kombiniranog aerodinamičkog rotacionog plašta i dopunske kolektorske plohe uz solarne ćelije na zajedničkoj konstrukciji još nije realizirana. The world has long used wind energy to power ships, mills, pumps or generators. The best known and most used of these generator devices is the propeller with two, three or more blades placed horizontally on top of the pole with the possibility of turning in the direction of the wind. However, all these devices work in the free flow of wind. The wind turbine, which would be installed in the regulating nozzle of the combined aerodynamic rotating mantle and supplementary collector surface with solar cells on the joint structure, has not yet been realized.

Izlaganje suštine izuma Presentation of the essence of the invention

Kroz pojačanu brodsku strukturu ugrađen je nosivi cjevasti stup, na koji se postavlja aksijalno-radijalni ležaj. Taj ležaj je nosač čitave okretne konstrukcije, koja to radi pomoću elektromotornog zakretnog mehanizma. Ova konstrukcija ima dvostruki pogonski značaj tj. proizvodnju električne energije iz dva čista i obnovljiva izvora : vjetra i sunca. Dobivanje električne struje iz vjetra ostvaruje se pomoću vjetroturbine ugrađene u grlo kombinirane sapnice. Takva vjetroturbina može dati 3 do 4 puta (300% do 400%) više elektroenergije nego standardna, bez sapnice. Through the reinforced ship structure, a load-bearing tubular column is installed, on which an axial-radial bearing is placed. This bearing is the support of the entire revolving structure, which does so by means of an electric motor turning mechanism. This structure has a double operational significance, i.e. the production of electricity from two clean and renewable sources: wind and sun. Obtaining electricity from the wind is achieved using a wind turbine installed in the throat of the combined nozzle. Such a wind turbine can provide 3 to 4 times (300% to 400%) more electricity than a standard one without a nozzle.

Veća snaga na turbini potječe od povišene brzine vjetra u grlu sapnice prema formuli: The higher power on the turbine comes from the increased wind speed in the throat of the nozzle according to the formula:

Pel = 0,193 · vs³ · 10ˉ³ (kW / m²) Pel = 0.193 · vs³ · 10ˉ³ (kW / m²)

Ovo je izraz za specifičnu netto snagu (na kolektoru generatora) po jedinici (m²) radne površine rotora. This is an expression for the specific net power (at the generator collector) per unit (m²) of rotor working area.

Prema jednadžbi kontinuiteta, brzina vjetra u grlu sapnice je dvostruko veća nego u okolini : According to the continuity equation, the wind speed in the throat of the nozzle is twice as high as in the surroundings:

vs = 2 · vo (m/s) , gdje je vo = brzina vjetra u okolišu. vs = 2 · vo (m/s) , where vo = wind speed in the environment.

Dakle teoretska specifična snaga za vjetroturbinu u sapnici iznosi : Therefore, the theoretical specific power for the wind turbine in the nozzle amounts to:

Pel,sap = 0,193 · (2 ·vo)³ · 10ˉ³ Pel,sap = 0.193 · (2 ·vo)³ · 10ˉ³

Pel,sap = 0,193 · 2³ ·vo³ · 10ˉ³ Pel,sap = 0.193 · 2³ ·vo³ · 10ˉ³

Pel,sap = 8 · 0,193 ·vo³ · 10ˉ³ (kW / m²) Pel,sap = 8 · 0.193 ·vo³ · 10ˉ³ (kW / m²)

Praktički, radi većih brzina biti će povećani i gubici, pa će neto snaga na turbini u sapnici iznositi samo 3 do 4 puta više nego kod današnjih vjetroturbina bez sapnice. Practically, due to higher speeds, the losses will also be increased, so the net power on the turbine in the nozzle will be only 3 to 4 times more than in today's wind turbines without a nozzle.

Kombinirana sapnica je sastavljena od dva glavna dijela, i to : od aerodinamički profiliranog kratkog grla plašta, koji je izveden u segmentima. Unutarnja ploha toga plašta djeluje kao podtlačna strana avioprofila što zbog podtlaka inducira veliki porast radijalne a time i rezultirajuće ukupne brzine u grlu sapnice. The combined nozzle is composed of two main parts, namely: an aerodynamically profiled short neck of the mantle, which is made in segments. The inner surface of that mantle acts as a negative pressure side of the airfoil, which due to the negative pressure induces a large increase in the radial and thus the resulting total velocity in the throat of the nozzle.

Drugi, prednji dio kombiniranog plašta izrađen od jeftinih ravnih ploha ima ulogu sakupljača zračne mase iz donje zone i lagano povećanje brzine tom vjetru. The second, front part of the combined mantle made of cheap flat surfaces has the role of gathering air mass from the lower zone and slightly increasing the speed of that wind.

Povećanje brzine vjetra u grlu sapnice vs = 2 · vo, daje mogućnost takvoj vjetroturbini da radi znatno duže. Razlog tome je što vjetroturbine slabo rade na brzinama nižim od 5 m/s, a sapnica i njih diže u više radne brzine što produžava vrijeme pogona za 30 do 50%, jer su slabi vjetrovi češći i duže traju. A umnožak veće snage i dužeg vremena u radu, daje 3 do 4 puta više elektroenergije. An increase in the wind speed in the mouth of the nozzle vs = 2 · vo gives such a wind turbine the ability to work much longer. The reason for this is that wind turbines work poorly at speeds lower than 5 m/s, and the nozzle also raises them to higher operating speeds, which increases the operating time by 30 to 50%, because weak winds are more frequent and last longer. And the product of higher power and longer working time gives 3 to 4 times more electrical energy.

Vjetroturbina u kombiniranoj sapnici prikladna je za izradu postrojenja malih, srednjih i velikih snaga. The wind turbine in the combined nozzle is suitable for the construction of small, medium and large power plants.

Donje ravne, ali kose kolektorske plohe kombiniranog plašta ne služe samo koncentraciji zračne mase vjetra, već i kao nosači za ugradnju solarnih fotovoltaičnih panela ili ćelija, što omogućuje, na istom postrojenju, uspješnu i jeftinu proizvodnju električne energije iz dva čista i obnovljiva izvora : vjetra i sunca. Ovo postrojenje bilo bi vrlo ekonomično ne samo zbog dvostruke proizvodnje elektroenergije (vjetar + sunce, te niži specifični pogonski troškovi) već iz činjenice, da bi se isti skupi zakretni mehanizam i konstrukcija donjeg dijela kombinirane sapnice uz specijalni računski program koristio i za optimalnu dnevnu orijentaciju solarnih ćelija, što bi osiguralo veliku uštedu u investicijama i održavanju. The lower flat but inclined collector surfaces of the combined mantle serve not only to concentrate the air mass of the wind, but also as supports for the installation of solar photovoltaic panels or cells, which enables, on the same plant, the successful and cheap production of electricity from two clean and renewable sources: wind and the sun. This plant would be very economical not only due to the double production of electricity (wind + sun, and lower specific operating costs) but also due to the fact that the same expensive turning mechanism and construction of the lower part of the combined nozzle with a special calculation program would also be used for optimal daily orientation solar cells, which would ensure great savings in investments and maintenance.

Snaga ugrađenih solarnih fotovoltaičnih ćelija za određenu veličinu, jednaka je približno snazi vjetroturbine ugrađene u kombiniranu sapnicu. U slučaju, da se mogu koristiti oba obnovljiva izvora, sunce i vjetar, računalo će analizirati i odrediti koji je pogon povoljniji (ili čak oba, što će biti vrlo rijetko). The power of installed solar photovoltaic cells for a certain size is approximately equal to the power of a wind turbine installed in a combined nozzle. In the event that both renewable sources, sun and wind, can be used, the computer will analyze and determine which drive is more favorable (or even both, which will be very rare).

Konstrukcija, zakretni mehanizam i nosive ploče solarnih fotovoltaičnih panela imaju jednu sekundarnu ali važnu funkciju u pogonu vjetroturbine. Te ploče i paneli zavisno o godišnjem dobu imaju određeni kut nagiba prema horizontali, koji varira od : The construction, pivoting mechanism and bearing plates of solar photovoltaic panels have a secondary but important function in the operation of the wind turbine. These boards and panels, depending on the season, have a certain angle of inclination to the horizontal, which varies from:

ljeti ≈ 20° (povoljno za strujanje vjetra prema turbini) in summer ≈ 20° (favorable for wind flow towards the turbine)

jesen / proljeće ≈ 45° (nepovoljno za strujanje zraka) autumn / spring ≈ 45° (unfavorable for air flow)

zima ≈ 70° (blokira struju vjetra prema turbini) winter ≈ 70° (blocks the wind flow towards the turbine)

Za optimalan rad paneli se moraju zakretati od 20° do 70° i natrag, plus dnevno zakretanje od istoka, preko juga do zapada. Ovo sezonsko zakretanje vrlo je korisno za regulaciju snage vjetroturbine kod jačih vjetrova. I to pomoću zakreta panela u zimski režim, pod kutom od 70°, kada se zračna masa vjetra usmjerava u neaktivni prolaz iznad sapnice. For optimal operation, the panels must be rotated from 20° to 70° and back, plus a daily rotation from east to south to west. This seasonal rotation is very useful for regulating the power of the wind turbine in stronger winds. And that by turning the panel into the winter mode, at an angle of 70°, when the air mass of the wind is directed into the inactive passage above the nozzle.

DOPUNSKA POSTROJENJA: ADDITIONAL FACILITIES:

Vodik Hydrogen

Postrojenje elektrolize za proizvodnju vodika iz struje od vjetra i sunca kada brod miruje, te kompresor koji tlači taj vodik u spremnik, a zatim vodikova gorivna ćelija koja proizvodi električnu energiju za pogon broda iz rezervi u spremniku, kada nema vjetra, ni sunca. An electrolysis plant for the production of hydrogen from current from the wind and the sun when the ship is stationary, and a compressor that presses that hydrogen into the tank, and then a hydrogen fuel cell that produces electricity to drive the ship from the reserves in the tank, when there is no wind or sun.

Vjetar Wind

Jedra su u razvoju pomorstva, a i čitavog čovječanstva odigrala značajnu ulogu. Pomoću drvenog jarbola, jedra od platna ostvaruju na brodu odgovarajuću pogonsku silu poriva vjetra zavisno od njegova smjera i jačine. Kod našeg kombiniranog brodskog pogona predviđena su moderna aerodinamički profilirana jedra sa mehaniziranom opremom za centralno automatsko rukovanje. Porivna sila na jedrima optimalna je kada vjetar djeluje na brod sa bokova. Kod naše vjetroturbine, sa krmenim vjetrom, u grlu kombinirane sapnice naglo raste brzina strujanja zraka, koja se iza rotora turbine usmjerava na brodska pramčana jedra, čime se dobiva značajno povećanje dopunske sile poriva samog broda. Sails have played a significant role in the development of seafaring and the entire humanity. With the help of a wooden mast, canvas sails create the appropriate driving force of the wind's impulse on the ship, depending on its direction and strength. In our combined ship propulsion, modern aerodynamically profiled sails with mechanized equipment for central automatic handling are provided. The thrust force on the sails is optimal when the wind acts on the ship from the sides. With our wind turbine, with a stern wind, in the throat of the combined nozzle, the speed of the air flow increases sharply, which is directed behind the turbine rotor to the ship's bowsails, which results in a significant increase in the supplementary thrust force of the ship itself.

Popis pozivnih oznaka List of callsigns

1 (sl. 1) Nosivi stup, cjevaste izvedbe. Materijal za stup čelik. 1 (fig. 1) Bearing column, tubular version. The material for the column is steel.

2 (sl. 1) Pojačani aksijalno-radijalni nosivi ležaj sa velikim zupčanikom za djelovanje zakretnog mehanizma u horizontali. 2 (fig. 1) Reinforced axial-radial support bearing with a large gear for the operation of the turning mechanism in the horizontal.

3 (sl. 1) Elektromotorni zakretni mehanizam za optimalnu orijentaciju kombinirane sapnice prema vjetru ili suncu, tzv. dnevni optimalni položaji. 3 (fig. 1) Electromotoric turning mechanism for optimal orientation of the combined nozzle towards the wind or the sun, the so-called. daily optimal positions.

4 (sl. 1 i 2) Prednji, donji, kosi kolektorski plašt u sedam segmenata od ravnih profiliranih ploha od plastike spojenih na kratki aerodinamički plašt grla sapnice, što sve skupa predstavlja kombiniranu sapnicu. 4 (figs. 1 and 2) Front, lower, inclined collector cover in seven segments of flat profiled plastic surfaces connected to the short aerodynamic cover of the nozzle neck, which together represents a combined nozzle.

5 (sl. 1 i 2) Kratki plašt grla sapnice – unutarnja strana aerodinamički podtlačni profil a ukrućenja sa vanjske strane, te sve skupa sastavljeno od 12 kružnih segmenata. 5 (fig. 1 and 2) Short shell of the nozzle throat - the inner side of the aerodynamic underpressure profile and the stiffeners on the outside, all made up of 12 circular segments.

6 (sl. 1 i 2) Profilirani nosači vjetroturbine. 6 (fig. 1 and 2) Profiled wind turbine supports.

7 (sl. 1 i 2) Vjetroturbina komplet (rotor, generator itd.) u grlu kombinirane sapnice. 7 (fig. 1 and 2) Wind turbine complete (rotor, generator, etc.) in the throat of the combined nozzle.

8 (sl. 1 i 2) Fotovoltaične solarne ćelije za proizvodnju električne energije, na istoj konstrukciji zakretne vjetroturbine u kombiniranoj sapnici. 8 (fig. 1 and 2) Photovoltaic solar cells for the production of electricity, on the same construction of a rotating wind turbine in a combined nozzle.

9 (sl. 1) Zakretni elektromotorni mehanizam po vertikali za nagib nosivih ploča sa solarnim ćelijama prema godišnjim dobima i regulaciju snage vjetroturbine kod jakih vjetrova. 9 (fig. 1) Vertically rotating electric motor mechanism for tilting the load-bearing panels with solar cells according to the seasons and regulating the power of the wind turbine in strong winds.

10 (sl. 1) Postrojenje elektrolize za proizvodnju vodika iz viškova elektroenergije od sunca i vjetra. 10 (fig. 1) Electrolysis plant for the production of hydrogen from surplus electricity from the sun and wind.

11 (sl. 1) Kompresor, koji tlači taj vodik pod višim pritiskom u spremnik. 11 (fig. 1) Compressor, which presses this hydrogen under higher pressure into the tank.

12 (sl. 1) Specijalni spremnik za skladištenje vodika pod tlakom. Njegov kapacitet kao i čitavog ovog postrojenja, zavisi od veličine broda i njegove namjene. 12 (fig. 1) Special tank for storing hydrogen under pressure. Its capacity, like that of this entire facility, depends on the size of the ship and its purpose.

13 (sl. 1) Vodikova gorivna ćelija, koja proizvodi električnu energiju za pogon broda iz rezervi vodika, te višak topline za sekundarne potrebe. 13 (fig. 1) Hydrogen fuel cell, which produces electricity to drive the ship from hydrogen reserves, and excess heat for secondary needs.

14 (sl. 1) Pogonski elektromotor za plovidbu broda: On prima električnu struju od solarnih ćelija i vjetroturbine, te iz vodikove gorivne ćelije, kao rezerve za ono vrijeme kad nema sunca ni vjetra. 14 (fig. 1) Drive electric motor for ship navigation: It receives electricity from solar cells and a wind turbine, and from a hydrogen fuel cell, as a reserve for those times when there is no sun or wind.

15 (sl. 1) Propeleri za pogon broda. 15 (fig. 1) Propellers for ship propulsion.

16 (sl. 1) Jarboli za jedra. 16 (fig. 1) Masts for sails.

17 (sl. 1) Mehanizmi centralnog automatskog rukovanja jedrima. 17 (fig. 1) Central automatic sail handling mechanisms.

18 (sl. 1) Moderna aerodinamički profilirana jedra, za dopunsku porivnu silu vjetra. 18 (fig. 1) Modern aerodynamically profiled sails, for additional wind thrust.

Kratak opis crteža Brief description of the drawing

Slika 1 prikazuje uzdužni presjek vjetroturbine u kombiniranoj sapnici zakretne izvedbe sa ugrađenim solarnim ćelijama. Na toj slici prikazana je suština izuma a na njoj su označene slijedeće pozivne oznake; Figure 1 shows a longitudinal section of a wind turbine in a combined rotating nozzle with built-in solar cells. That picture shows the essence of the invention and the following call signs are marked on it;

1. Nosivi čelični stup, cjevaste izvedbe. 1. Bearing steel column, tubular version.

2. Pojačani aksijalno-radijalni nosivi ležaj sa velikim zupčanikom. 2. Reinforced axial-radial support bearing with large gear.

3. Elektromotorni zakretni mehanizam za optimalnu horizontalnu orijentaciju kombinirane sapnice prema vjetru i suncu. 3. Electromotoric swivel mechanism for optimal horizontal orientation of the combined nozzle towards wind and sun.

4. Prednji donji kolektorski plašt sapnice. 4. Front lower collector cover of the nozzle.

5. Kratki aerodinamički plašt grla kombinirane sapnice od 12 segmenata. 5. Short aerodynamic throat cover of the combined nozzle of 12 segments.

6. Profilirani nosači vjetroturbine. 6. Profiled wind turbine supports.

7. Vjetroturbina komplet (rotor, generator itd.) 7. Wind turbine set (rotor, generator, etc.)

8. Fotovoltaične solarne ćelije proizvođači električne energije, na istoj konstrukciji zakretne vjetroturbine u kombiniranoj sapnici. 8. Photovoltaic solar cells producing electricity, on the same construction of a rotating wind turbine in a combined nozzle.

9. Zakretni elektromotorni mehanizam po vertikali za nagib nosivih ploča sa solarnim ćelijama i regulaciju snage vjetroturbine kod jakih vjetrova. 9. Vertically rotating electric motor mechanism for tilting the load-bearing panels with solar cells and regulating the power of the wind turbine in strong winds.

Dodatni brodski uređaji radi sigurnijeg, trajnijeg i ekonomičnijeg pogona su; Additional ship devices for safer, more durable and more economical operation are;

10. Postrojenje elektrolize za proizvodnju vodika iz viškova elektroenergije od sunca i vjetra, kada je brod usidren ili privezan u luci. 10. Electrolysis plant for the production of hydrogen from excess electricity from the sun and wind, when the ship is anchored or moored in the port.

11. Kompresor, koji tlači vodik iz elektrolize u spremnik. 11. Compressor, which compresses hydrogen from electrolysis into the tank.

12. Specijalni spremnik za skladištenje vodika pod tlakom. 12. Special tank for storing hydrogen under pressure.

13. Vodikova gorivna ćelija, koja kada nema sunca ili vjetra proizvodi električnu energiju za pogon broda iz stlačenih rezervi u spremniku. 13. Hydrogen fuel cell, which when there is no sun or wind, produces electricity to drive the ship from compressed reserves in the tank.

14. Standardni elektromotori za pogon brodskih propelera. 14. Standard electric motors for driving ship propellers.

15. Normalni brodski propeleri. 15. Normal ship propellers.

16. Jarboli za jedra, kao dopunsku porivnu silu kod povoljnih vjetrova sa krme ili bokova. 16. Masts for sails, as an additional driving force in favorable winds from the stern or sides.

17. Mehanizmi automatskog centraliziranog rukovanja jedrima. 17. Mechanisms of automatic centralized handling of sails.

18. Moderna aerodinamički profilirana jedra. 18. Modern aerodynamically profiled sails.

Na slici 1 prikazana je vjetroturbina u kombiniranoj sapnici sa solarnim ćelijama (pozivne oznake od 1 do 9) ugrađena na palubu katamarana, ili trimarana. Figure 1 shows a wind turbine in a combined nozzle with solar cells (callsigns 1 to 9) installed on the deck of a catamaran or trimaran.

U krmenom dijelu ugrađeno je rezervno postrojenje sa vodikovom gorivnom ćelijom radi sigurnijeg i trajnijeg pogona (pozivne oznake od 10 do 15),te jedra (16 do 18). In the aft part, a spare plant with a hydrogen fuel cell is installed for safer and more durable operation (call numbers 10 to 15), and sails (16 to 18).

Zbog bolje preglednosti postrojenja na slici je prikazan samo dio broda. For better visibility of the plant, only part of the ship is shown in the picture.

Slika 2 Figure 2

Slika 2 pokazuje pogled na čelo vjetroturbine u kombiniranoj sapnici zakretne izvedbe sa solarnim ćelijama a sve to montirano na nadgrađu trimarana. Radi bolje preglednosti u plovidbi komandni most je proširen na obje strane. Crtkano je označen donji dio kombinirane sapnice ako na kursu broda energija vjetra ili sunca dolazi sa boka. Konstrukcija trimarana sa širinom svoje palube omogućuje kvalitetnu i sigurnu ugradnju postrojenja, te veliki stabilitet u plovidbi. Figure 2 shows a view of the front of the wind turbine in a combined rotating nozzle with solar cells, all mounted on the superstructure of the trimaran. For better navigation visibility, the command bridge has been widened on both sides. The lower part of the combined nozzle is marked in dashes if the wind or solar energy comes from the side on the ship's course. The construction of the trimaran with the width of its deck enables high-quality and safe installation of the plant, and great stability in navigation.

Slika 3 Figure 3

Slika 3 daje pogled na tlocrt vjetroturbine u kombiniranoj sapnici zakretne izvedbe sa solarnim ćelijama a sve to na zajedničkoj konstrukciji ugrađeno na palubu trimarana. Sapnica je okrenuta prema krmi otkud dolazi vjetar. Dignuto je 5 jedara u «položaj» vjetar s krme. Šesti, centralni na krmi, nije podignut da ne smeta rad vjetroturbine. Figure 3 gives a view of the floor plan of the wind turbine in the combined rotating nozzle with solar cells, and all of this on a common structure installed on the deck of the trimaran. The nozzle is facing the stern, where the wind is coming from. 5 sails were hoisted in "position" wind from the stern. The sixth, central at the stern, is not raised so as not to interfere with the operation of the wind turbine.

Slika 4 Figure 4

Slika 4 pokazuje bočni pogled na brod sa ugrađenom vjetroturbinom u kombiniranoj sapnici, te solarnim ćelijama na zajedničkoj konstrukciji. Na toj slici prikazan je sustav regulacije snage vjetroturbine kod jakih vjetrova, u čemu pomažu nosive ploče solarnih ćelija i njihova konstrukcija, sa zakretnim mehanizmom po vertikali. Kod slabijih i srednjih, odnosno standardnih vjetrova te nosive ploče pomoću posebnog mehanizma nagnute su pod kutom od 20°, što omogućava povoljno strujanje vjetra prema turbini. Kada jačina vjetra prelazi određenu vrijednost, posebno u grlu sapnice, tada regulacioni mehanizmi automatski pomoću računala postavljaju nosive ploče (i solarne ćelije) pod kutom od 70°, uslijed čega se strujanje vjetra usmjerava neaktivno tj. iznad rotora turbine. Zakretanje tih ploča počinje od prve na vrhu i one se zatvaraju jedna za drugom zavisno od porasta brzine vjetra, postepeno. U slučaju da vjetar oslabi tj. da mu brzina opada, tada će mehanizam regulacije automatski postavljati spomenute ploče u položaj pod kutom od 20°, radi nesmetanog strujanja zraka, i osiguranja odgovarajuće snage turbine. Figure 4 shows a side view of a ship with a built-in wind turbine in a combined nozzle, and solar cells on a common structure. This picture shows the wind turbine power regulation system in strong winds, which is helped by the support panels of the solar cells and their structure, with a vertical pivoting mechanism. In weaker and medium, or standard winds, these supporting plates are tilted at an angle of 20° using a special mechanism, which enables favorable wind flow towards the turbine. When the wind strength exceeds a certain value, especially in the throat of the nozzle, then the control mechanisms automatically use the computer to place the supporting plates (and solar cells) at an angle of 70°, as a result of which the wind flow is directed inactive, i.e. above the turbine rotor. The rotation of those plates starts from the first one at the top and they close one after the other depending on the increase in wind speed, gradually. In the event that the wind weakens, i.e. that its speed decreases, then the regulation mechanism will automatically place the mentioned panels in a position at an angle of 20°, for the sake of unhindered air flow, and ensuring adequate turbine power.

Slika 5 Figure 5

Slika 5 daje bočni pogled na brod sa ugrađenim jarbolima i jedrima. Tri jarbola su (svaki na svom trupu) na pramcu a tri na krmi trimarana. Na svakom jarbolu je komplet odgovarajućih jedara i mehanizama za automatsko centralizirano rukovanje. U slučaju da vjetar dolazi s pramca, jedra se ne dižu, a za pogon broda radi vjetroturbina u sapnici. Figure 5 shows a side view of the ship with installed masts and sails. There are three masts (each on its own hull) on the bow and three on the stern of the trimaran. On each mast is a set of appropriate sails and mechanisms for automatic centralized handling. If the wind is coming from the bow, the sails are not raised, and the wind turbine in the nozzle works to drive the ship.

Opis ostvarenja izuma Description of the invention

Preporuča se izrada prototipa manje snage, radi nižih troškova i uvjeta za ispitivanje. Prema priloženim crtežima uz odgovarajuće proračune treba izraditi radioničku dokumentaciju, a po njoj kombiniranu sapnicu te sve ugraditi na nosivi stup a zatim na brod. Nakon toga ugraditi vjetroturbinu i solarne ćelije. Poslije toga slijedi ispitivanje na vezu u luci, a zatim na otvorenom moru u različitim vremenskim i pogonskim uvjetima. It is recommended to make a prototype of lower power, for lower costs and conditions for testing. According to the attached drawings, together with appropriate budgets, the workshop documentation should be created, and according to it, the combined nozzle should be installed on the bearing post and then on the ship. After that, install the wind turbine and solar cells. This is followed by a test on the mooring in the port, and then on the open sea in different weather and operating conditions.

Način primjene izuma Method of application of the invention

Vjetroturbina u kombiniranoj sapnici sa dodanim solarnim ćelijama je novo elektroenergetsko postrojenje za proizvodnju 3 do 4 puta više elektroenergije (nego postojeće bez sapnice) i to iz dva obnovljiva izvora. Postrojenje može biti izrađeno za male, srednje i velike snage, od 5 kW do 5 MW. Iako se ovo postrojenje može uspješno ugraditi i na kopnu, zbog odgovarajuće antikorozijske zaštite namijenjeno je prvenstveno za ugradnju na brodove male, srednje i velike i to tipa: katamaran ili trimaran. Brod sa ovakvim pogonom može ploviti u svim smjerovima, osim manje razlike u brzinama (uz vjetar i niz vjetar). Za veću sigurnost i brzinu u plovidbi brod pored pomoćnog dieselgeneratora za rasvjetu (pogon biodiesel), treba da ima još: postrojenje elektrolize, kompresor i spremnik za vodik, te gorivnu vodikovu ćeliju. A wind turbine in a combined nozzle with added solar cells is a new power plant for producing 3 to 4 times more electricity (than the existing one without a nozzle) from two renewable sources. The plant can be made for small, medium and high power, from 5 kW to 5 MW. Although this plant can be successfully installed on land, due to adequate anti-corrosion protection, it is intended primarily for installation on small, medium and large ships of the catamaran or trimaran type. A boat with this type of propulsion can sail in all directions, except for a small difference in speed (upwind and downwind). For greater safety and speed in navigation, in addition to the auxiliary diesel generator for lighting (biodiesel drive), the ship should also have: an electrolysis plant, a compressor and a hydrogen tank, and a hydrogen fuel cell.

Svrha ovog postrojenja je slijedeća : kada brod ima višak energije, tj. ne vozi, usidren ili vezan u luci a ima sunca i vjetra, tada taj višak elektroenergije ide u elektrolizu gdje proizvodi vodik, koji se kompresorom sabija u spremnik i čuva za ono vrijeme, kada neće biti vjetra, ni sunca. Tada će vodik iz spremnika u gorivnoj ćeliji vodika proizvoditi dovoljnu količinu elektroenergije i topline. The purpose of this plant is as follows: when the ship has excess energy, i.e. it is not driving, anchored or tied up in the port and there is sun and wind, then this excess electrical energy goes into electrolysis where it produces hydrogen, which is compressed in a tank with a compressor and stored for that time , when there will be no wind, no sun. Then the hydrogen from the tank in the hydrogen fuel cell will produce a sufficient amount of electricity and heat.

Za primjenu novog pogonskog sustava najprikladniji su brodovi tipa katamaran ili trimaran, jer imaju veliki stabilitet u plovidbi. Tim brodovima pored dobrog stabiliteta i brzine pridaje se sve veći značaj naročito zbog velike površine palube, što je važno za putničke i kontejnerske brodove, te trajekte i oceanske ribarice. For the application of the new propulsion system, catamaran or trimaran type ships are the most suitable, because they have great stability in navigation. In addition to good stability and speed, these ships are given increasing importance, especially due to the large deck area, which is important for passenger and container ships, ferries and ocean fishing vessels.

Nadgrađe na trimaranu ima veliki značaj, jer povezuje tri trupa u jednu cjelinu. A na tom prostoru naročito su značajne pozicije kormilarnice i ostalih upravljačkih kabina, što je vidljivo iz priloženih slika. The superstructure on the trimaran is of great importance, because it connects the three hulls into one unit. And in that area, the positions of the wheelhouse and other control cabins are particularly significant, as can be seen from the attached pictures.

Claims (5)

1. Kombinirani brodski pogon s energijom vjetra i sunca, naznačen time što na svojoj konstrukciji sapnice (1), (2),(3), (4), (5) i (6) ima ugrađen komplet vjetrogeneratora (7) za proizvodnju elektroenergije s time, daje on postavljen horizontalno u grlo te kombinirane sapnice.1. Combined ship propulsion with wind and solar energy, characterized by the fact that on its structure nozzles (1), (2), (3), (4), (5) and (6) have a set of wind generators (7) installed for production of electricity with that, if it is placed horizontally in the throat of the combined nozzle. 2. Kombinirani brodski pogon, prema zahtjevu 1, naznačen time, da na plohama svog donjeg kolektorskog plašta ima ugrađene nosive plohe za montažu fotovoltaičnih solarnih ćelija (8) sa nagibom prema godišnjem dobu u svrhu maksimalne proizvodnje električne energije a optimalna dnevna orijentacija prema suncu izvodi se pomoću ugrađenog motornog mehanizma (3) i računala, sa istim uređajima koji su ugrađeni za okretanje kombinirane sapnice prema vjetru, uz posebni program za solarne sustave.2. Combined ship propulsion, according to claim 1, characterized by the fact that on the surfaces of its lower collector mantle, it has built-in load-bearing surfaces for mounting photovoltaic solar cells (8) with an inclination according to the season for the purpose of maximum production of electricity, and the optimal daily orientation towards the sun performs is by means of a built-in motor mechanism (3) and a computer, with the same devices that are built in to turn the combined nozzle towards the wind, with a special program for solar systems. 3. Kombinirani brodski pogon, prema zahtjevu 1, naznačen time, da na donjem dijelu kolektorskog plašta ima ugrađene solarne ćelije na konstrukciji nosivih ploha sa elektromotornim mehanizmom (8) i (9), čijim se zakretom po vertikali regulira protok zraka na rotoru, odnosno brzina strujanja vjetra u grlu sapnice a time i snaga turbine kod jakih vjetrova.3. Combined ship drive, according to claim 1, characterized by the fact that solar cells are installed on the lower part of the collector mantle on the structure of the load-bearing surfaces with the electric motor mechanism (8) and (9), whose vertical rotation regulates the air flow on the rotor, i.e. the speed of the wind flow in the throat of the nozzle and thus the power of the turbine in strong winds. 4. Kombinirani brodski pogon, prema zahtjevu 1, naznačen time da višak proizvedene elektroenergije za vrijeme mirovanja broda prednje postrojenju elektrolize (10) za proizvodnju vodika, a zatim se preko kompresora (11) on tlači u spremnik (12), odakle ga koristi gorivna vodikova ćelija (13) za proizvodnju struje i pogon broda, preko elektromotora (14) i propelera (15), kada nema sunca, ni vjetra.4. Combined ship drive, according to claim 1, characterized by the fact that the surplus of electricity produced during the ship's idle time is sent to the front electrolysis plant (10) for the production of hydrogen, and then via the compressor (11) it is compressed into the tank (12), from where it is used by the fuel hydrogen cell (13) for power generation and ship propulsion, via electric motor (14) and propeller (15), when there is no sun or wind. 5. Kombinirani brodski pogon, prema zahtjevu 1, naznačen time da sa krmenim vjetrom u grlu sapnice raste brzina strujanja zraka, koji se iza rotora turbine usmjerava na brodska pramčana jedra (18 ) čime se dobiva značajna dopunsku sila poriva.5. Combined ship drive, according to claim 1, characterized by the fact that with the stern wind in the throat of the nozzle, the speed of the air flow increases, which is directed behind the turbine rotor to the ship's bowsails (18), which provides a significant additional thrust force.
HRP20110152AA 2011-02-28 2011-02-28 Combined ship power plant using wind and solar energy HRP20110152A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20110152AA HRP20110152A2 (en) 2011-02-28 2011-02-28 Combined ship power plant using wind and solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20110152AA HRP20110152A2 (en) 2011-02-28 2011-02-28 Combined ship power plant using wind and solar energy

Publications (1)

Publication Number Publication Date
HRP20110152A2 true HRP20110152A2 (en) 2012-11-30

Family

ID=47220926

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20110152AA HRP20110152A2 (en) 2011-02-28 2011-02-28 Combined ship power plant using wind and solar energy

Country Status (1)

Country Link
HR (1) HRP20110152A2 (en)

Similar Documents

Publication Publication Date Title
Pan et al. Research progress on ship power systems integrated with new energy sources: A review
US8405242B2 (en) Wind power system
US20070138021A1 (en) Maritime hydrogen generation system
US20170264100A1 (en) System for storing electrical power
CN108357638A (en) A kind of remote controlled unmanned ship of wind drive voith schneider propeller
Rutkowski Study of Green Shipping Technologies-Harnessing Wind, Waves and Solar Power in New Generation Marine Propulsion Systems
CN103057684B (en) Compound energy trimaran
CN208007234U (en) A kind of wind-force drives remote controlled unmanned ship with solar association
CN111486050B (en) Deformable power generation sail and unmanned exploration ship carrying same
CN201484652U (en) Ship power system
JP2013002399A (en) Ocean wind power generation wind turbine unflowing by wind even without mooring to sea bottom, by using a part of wind power for windward propulsion
CN105020099A (en) Self-adaptive wind energy generation set
JP2019108046A (en) Vessel with aerial wings
CN202557781U (en) Movable sail hydraulic environmental-protection sailship
DK202270497A1 (en) Floating vessel for energy harvesting
CN105836089A (en) Energy storage ship
Zakiah et al. Solar and wind energy for ship power system, current status and future prospect
HRP20110152A2 (en) Combined ship power plant using wind and solar energy
JPH07189884A (en) Wind and hydraulic power generator and wind power generator cruising on water surface
KR20130094077A (en) Hybrid vessel powered by wind and solar energy
Kukner et al. Renewable energy options and an assessment of wind-based propulsion systems for small crafts
Zeńczak The possibilities of fishing cutter energetic efficiency improvement through the application of the renewable energy sources
CN215553981U (en) A green three-body unmanned ship for marine pasture
Rolland et al. Ship design classification for wind and solar energy capture
CN105626379A (en) Solar energy and wind energy hybrid catamaran

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
ODRP Renewal fee for the maintenance of a patent

Payment date: 20130325

Year of fee payment: 3

OBST Application withdrawn