HRP20000916A2 - Duplex process for diffusional creation of solid carbide layers on metal materials - Google Patents

Duplex process for diffusional creation of solid carbide layers on metal materials Download PDF

Info

Publication number
HRP20000916A2
HRP20000916A2 HR20000916A HRP20000916A HRP20000916A2 HR P20000916 A2 HRP20000916 A2 HR P20000916A2 HR 20000916 A HR20000916 A HR 20000916A HR P20000916 A HRP20000916 A HR P20000916A HR P20000916 A2 HRP20000916 A2 HR P20000916A2
Authority
HR
Croatia
Prior art keywords
carbide
carbon
carbide layer
layer
formation
Prior art date
Application number
HR20000916A
Other languages
Croatian (hr)
Inventor
Stupniueek Mladen
Matijević Božidar
Original Assignee
Stupniueek Mladen
Matijević Božidar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stupniueek Mladen, Matijević Božidar filed Critical Stupniueek Mladen
Priority to HR20000916A priority Critical patent/HRP20000916B1/en
Priority to PCT/HR2001/000053 priority patent/WO2002053793A1/en
Publication of HRP20000916A2 publication Critical patent/HRP20000916A2/en
Publication of HRP20000916B1 publication Critical patent/HRP20000916B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces

Description

Područje tehnike The field of technology

Predmet izuma je duplex postupak difuzijskog stvaranja tvrdih površinskih slojeva (karbidnih i cementiranih) na metalnim površinama u cilju povećanja otpornosti prema trošenju. The subject of the invention is the duplex process of diffusion creation of hard surface layers (carbide and cemented) on metal surfaces in order to increase wear resistance.

Prema Međunarodnoj klasifikaciji patenata izum spada u grupe C 23 C 8 - Difuzija u čvrstom stanju samo elemenata nemetalnih elemenata u površinu metalnog materijala i C 23 C 10 - Difuzija u čvrstom stanju samo metalnih elemenata ili silicija u površinu metalnog materijala. According to the International Classification of Patents, the invention belongs to the groups C 23 C 8 - Diffusion in the solid state of only elements of non-metallic elements into the surface of a metallic material and C 23 C 10 - Diffusion in the solid state of only metallic elements or silicon into the surface of a metallic material.

Tehnički problem Technical problem

Izum unapređuje primjenu postupaka difuzijskog stvaranja tvrdih površinskih slojeva jer se primjenom prethodnog pougljičavanja omogući stvaranje tvrdog cementiranog martenzitnog međusloja što doprinosi postizanju debljih karbidnih slojeva a i dobivanju tvrđe podloge karbidnom sloju. Time se povećava otpornost površina obrađenih konstrukcijskih dijelova i alata prema tribološkom trošenju, što doprinosi većoj trajnosti i kvaliteti u primjeni. The invention improves the application of processes for the diffusion formation of hard surface layers, because the application of previous carburization enables the formation of a hard cemented martensitic intermediate layer, which contributes to the achievement of thicker carbide layers and obtaining a harder substrate for the carbide layer. This increases the resistance of the surfaces of processed structural parts and tools to tribological wear, which contributes to greater durability and quality in use.

Stanje tehnike State of the art

Postupci difuzijskog stvaranja karbidnih slojeva primjenjuju se za strojne dijelove i alate koji su izrađeni od željeznih materijala koji sadrže povišeni udjel ugljika koji je potreban za stvaranje karbida na površini dijelova. Čim viša je ponuda ugljika u osnovnom materijalu tim veća je brzina stvaranja karbidnog sloja. Zato su za te postupke primjereniji materijali s višim sadržajem ugljika, odnosno s višom termodinamičkom aktivnosti ugljika. Budući da se pri postupku difuzijskog stvaranja karbidnog sloja troši velika količina ugljika iz osnovnog materijala za stvaranje karbida na površini metala, a koji sadrži oko 17% ugljika, površinski sloj metalnog substrata se djelomično razugljiči. To ima za posljedicu da je tvrdoća površinskog sloja osnovnog materijala smanjena a time i mehanička te tribološka otpornost površine strojnih dijelova i alata. Ova pojava nastaje pri svim postupcima difuzijskog stvaranja karbidnih slojeva neovisno o vrsti karbidotvornog elementa (V, Cr, Nb, W, Ti,..), vrsti medija (čvrsto, tekuće, plinovito, fluidizirano) i sastavu medija (metali, ferolegure, oksidi, reducenti, ...) prema patentima DE 2819856 C2, DE 3025033 A1, EP D 161 684 B1 i dr. Osnovna značajka ovih postupaka je da ugljik iz substrata (čelika i legura) sudjeluje u stvaranju karbidnog sloja na površini te se na taj način smanji koncentracija ugljika (razugljiči) površinski sloj substrata ispod karbidnog sloja. Tvrdoća tako razugljičenog dijela substrata je niža, tako da površinski tvrdi karbidni sloj ima znatno mekšu metalnu podlogu. Processes of diffusion formation of carbide layers are applied for machine parts and tools that are made of iron materials that contain a high proportion of carbon, which is necessary for the formation of carbides on the surface of the parts. The higher the supply of carbon in the base material, the higher the rate of formation of the carbide layer. That is why materials with a higher carbon content, i.e. with a higher thermodynamic activity of carbon, are more suitable for these procedures. Since a large amount of carbon from the base material for carbide formation on the metal surface, which contains about 17% carbon, is consumed during the process of diffusion formation of the carbide layer, the surface layer of the metal substrate is partially decarburized. This has the consequence that the hardness of the surface layer of the base material is reduced and thus the mechanical and tribological resistance of the surface of machine parts and tools. This phenomenon occurs during all processes of diffusion formation of carbide layers, regardless of the type of carbide-forming element (V, Cr, Nb, W, Ti,...), the type of medium (solid, liquid, gaseous, fluidized) and the composition of the medium (metals, ferroalloys, oxides , reducers, ...) according to patents DE 2819856 C2, DE 3025033 A1, EP D 161 684 B1, etc. The basic feature of these procedures is that carbon from the substrate (steel and alloy) participates in the formation of a carbide layer on the surface and way to reduce the carbon concentration (decarburize) the surface layer of the substrate under the carbide layer. The hardness of the decarburized part of the substrate is lower, so the surface hard carbide layer has a much softer metal base.

Postojeće metode ne rješavaju problem takova razugljičenja. Postupak prema patentnoj prijavi GB 2 204 327 A nudi djelomično poboljšanje ali uz dugotrajno višestruko ponavljanje ciklusa procesa. Postupak ne eliminira u potpunosti pojavu razugljičenja ispod karbidnog sloja, nego samo doprinosi stvaranju karbidnog sloja. Ovaj se postupak provodi pri nižim temperaturama (560-720 °C) kod kojih je brzina reakcija mala a i provodi se u strukturnom području ferita koji ima veoma malu otopivost ugljika. Postupak prema prijavi JP 58174567 A je jednostavniji u tehničkoj provedbi od prethodnog ali također ne rješava problem razugljičenja ispod karbidnog sloja, već djeluje samo na uvjete stvaranja karbidnog sloja. Osim toga, postupak je ograničen samo na lokalnu obradbu dijela površine obrađivanih dijelova i primjenom samo jednog medija za pougljičavanje (pasta od usitnjenog drvenog ugljika s aktivatorima LiCO3 i BaCO3) te za samo jedan medij i postupak naknadnog stvaranja karbidnog sloja (Ti, V, Nb, Ta, ili Cr i njihovi oksidi) i za materijale s ekstremno niskim sadržajem ugljika. Existing methods do not solve the problem of such decarburization. The process according to the patent application GB 2 204 327 A offers a partial improvement but with long-term multiple repetition of the process cycle. The procedure does not completely eliminate the occurrence of decarburization under the carbide layer, but only contributes to the formation of the carbide layer. This procedure is carried out at lower temperatures (560-720 °C) where the reaction rate is low and is carried out in the structural region of ferrite, which has a very low solubility of carbon. The procedure according to application JP 58174567 A is simpler in technical implementation than the previous one, but it also does not solve the problem of decarburization under the carbide layer, but only affects the conditions of the formation of the carbide layer. In addition, the procedure is limited only to the local treatment of part of the surface of the treated parts and the application of only one medium for carburization (pulverized wood carbon paste with activators LiCO3 and BaCO3) and for only one medium and the process of subsequent formation of the carbide layer (Ti, V, Nb) , Ta, or Cr and their oxides) and for materials with extremely low carbon content.

Bit izuma The essence of invention

Osnovna bit izuma je da se postupak sastoji od dvije međusobno povezane etape procesa: pougljičavanja (slika 1) i difuzijskog stvaranja karbidnog sloja (slika 2) u kojem se troši dio pougljičenjem unešenog ugljika. U prvoj etapi provodi se proces pougljičavanja površinskog sloja metalnog materijala pri temperaturama iznad 850°C kada metalni materijali imaju austenitnu mikrostrukturu i veliku mogućnost otapanja ugljika. Pougljičenje se provodi tako da se u površinski sloj metalnog materijala unese znatno veće količina ugljika nego što je potrebno za naknadno stvaranje karbidnog sloja u drugoj etapi procesa (slika 3). Tako pougljičeni metalni materijal u površinskom sloju sadrži toliko ugljika što je dovoljno za stvaranje karbidnog sloja u drugoj etapi procesa a preostali dio ugljika i za postizanje cementiranog martenzitnog sloja ispod karbidnog sloja, što se postiže naknadnim kaljenjem. Ovakvim postupkom postižu se dva tvrda površinska sloja; tz. cementirani u površinskom sloju metalnog materijala i karbidni sloj na površini metalnog materijala. Time se postiže visoka otpornost površine prema trošenju. Osim toga, ovakvim postupkom izbjegava se pojava razugljičenja međusloja što se dešava pri klasičnim postupcima difuzijskog stvaranja karbidnih slojeva bez primjene prethodnog pougljičenja. The basic essence of the invention is that the procedure consists of two interconnected stages of the process: carburization (figure 1) and diffusion formation of a carbide layer (figure 2) in which a part of the carbon introduced by carburization is consumed. In the first stage, the process of carburizing the surface layer of the metal material is carried out at temperatures above 850°C when the metal materials have an austenite microstructure and a high possibility of carbon dissolution. Carburizing is carried out by introducing a much larger amount of carbon into the surface layer of the metal material than is necessary for the subsequent formation of the carbide layer in the second stage of the process (Figure 3). The carburized metal material in the surface layer contains so much carbon that it is enough to create a carbide layer in the second stage of the process, and the remaining part of carbon to achieve a cemented martensite layer under the carbide layer, which is achieved by subsequent hardening. With this procedure, two hard surface layers are achieved; i.e. cemented in the surface layer of the metal material and the carbide layer on the surface of the metal material. This achieves a high resistance of the surface to wear. In addition, this procedure avoids the occurrence of decarburization of the intermediate layer, which occurs with classical methods of diffusion formation of carbide layers without the application of prior carburization.

Prednosti ovog tehničkog rješenja prema dosadašnjim su sljedeće: The advantages of this technical solution compared to the previous ones are as follows:

1. Razvijenim postupkom postiže se još i dodatni tvrdi međusloj (martenzit u tz. cementiranom metalnom materijalu) a ne samo karbidni sloj na površini metalnog materijala kao što je to u patentnim prijavama GB 2 204 327 A i JP 58174567 A. 1. The developed process also achieves an additional hard intermediate layer (martensite in the so-called cemented metal material) and not only a carbide layer on the surface of the metal material as in patent applications GB 2 204 327 A and JP 58174567 A.

2. Pougljičavanje se provodi jednokratno pri temperaturi iznad 850 °C kada se u austenitnoj rešetki postiže visoka otopivost ugljika i velika brzina difuzije za razliku od postupka prema patentnoj prijavi GB 2 204 327 A kada se provodi višekratno (6-7 puta) pri nižim temperaturama (560-720 °C) gdje je otopivost ugljika u feritnoj rešetki veoma mala i brzina difuzije mala. 2. Carburizing is carried out once at a temperature above 850 °C when a high solubility of carbon and a high diffusion speed is achieved in the austenite grid, in contrast to the procedure according to patent application GB 2 204 327 A when it is carried out repeatedly (6-7 times) at lower temperatures (560-720 °C) where the solubility of carbon in the ferrite lattice is very low and the diffusion rate is low.

3. Pougljičavanje se može provoditi na bilo koji poznati način neovisno o vrsti i sastavu medija (kruto, tekuće, plinovito, ionizirano ili fluidizirano stanje). Bitno je da potencijal ugljika u mediju ima vrijednost višu od sadržaja ugljika u obrađivanom metalnom materijalu. Postojeća rješenja odnose se na pougljičavanje u tekućem mediju ugljikovodika (GB 2 204 327 A) ili jedne paste određenog sastava (JP 58174567 A) a služe za stvaranje samo jednog sloja: karbidnog. 3. Carburization can be carried out in any known way regardless of the type and composition of the medium (solid, liquid, gaseous, ionized or fluidized state). It is important that the carbon potential in the medium has a value higher than the carbon content in the processed metal material. Existing solutions refer to carburization in a liquid medium of hydrocarbons (GB 2 204 327 A) or a paste of a certain composition (JP 58174567 A) and serve to create only one layer: carbide.

4. Difuzijsko stvaranje karbidnog sloja može se provesti na bilo koji poznati način neovisno o vrsti i sastavu medija (kruto, tekuće, plinovito, ionizirano ili fluidizirano) za jedan ili više karbidotvornih elemenata istovremeno. 4. Diffusion formation of the carbide layer can be carried out in any known way, regardless of the type and composition of the medium (solid, liquid, gaseous, ionized or fluidized) for one or more carbide-forming elements at the same time.

5. Postupak se može primijeniti za metalne materijale koji imaju niski ili srednji sadržaj ugljika a ne samo za materijale s ekstremno niskim sadržajem ugljika kao kod postupka prema patentnoj prijavi JP 58174567 A. 5. The procedure can be applied for metal materials that have a low or medium carbon content and not only for materials with an extremely low carbon content as with the procedure according to patent application JP 58174567 A.

6. Druga etapa procesa, difuzijsko stvaranje karbidnog sloja, provodi se neposredno nakon pougljičavanja (slika 4a) tako da izostaje potreba međuohlađivanja i ponovnog ugrijavanja što daje i ekonomičniju obradbu, ali je moguća i odvojeno provođenje obje etape (slika 4b). U tom se slučaju nakon pougljičavanja dijelovi ohlade do sobne temperature te naknadno ugrijavaju do temperature druge etape procesa. 6. The second stage of the process, the diffusion formation of the carbide layer, is carried out immediately after carburizing (figure 4a), so that there is no need for intermediate cooling and reheating, which also results in more economical processing, but it is also possible to carry out both stages separately (figure 4b). In this case, after carburizing, the parts are cooled to room temperature and subsequently heated to the temperature of the second stage of the process.

7. Postupak se može primijeniti i u slučaju kada se želi postići samo karbidni sloj na površini metalnog materijala bez dodatnog međusloja a bez pojave razugljičenja uslijed trošenja ugljika pri stvaranju karbida (slika 2). 7. The procedure can also be applied in the case when it is desired to achieve only a carbide layer on the surface of the metal material without an additional intermediate layer and without the occurrence of decarburization due to the consumption of carbon during the formation of carbides (Figure 2).

Opisi slika Image descriptions

Slika 1 Dijagram prikazuje tijek koncentracije ugljika u površinskom sloju čelika nakon provedene prve etape duplex postupka: pougljičavanja. Pougljičenjem unešena masa ugljika odgovara potrebitoj masi ugljika za stvaranje karbidnog sloja u drugoj etapi duplex postupka: difuzijskom stvaranju karbidnog sloja na površini čelika. Figure 1 The diagram shows the course of carbon concentration in the surface layer of steel after the first stage of the duplex process: carburization. The mass of carbon introduced by carburizing corresponds to the required mass of carbon for the formation of a carbide layer in the second stage of the duplex process: the diffusion formation of a carbide layer on the steel surface.

Slika 2 Dijagram prikazuje promjenu koncentracije ugljika u površinskom sloju čelika u drugoj etapi duplex postupka: difuzijskom stvaranju karbidnog sloja. Koncentracija ugljika se smanjuje od iznosa koji je postignut pougljičenjem do iznosa koji je približno jednak koncentraciji ugljika u čeliku prije pougljičenja. Figure 2 The diagram shows the change in the carbon concentration in the surface layer of the steel in the second stage of the duplex process: the diffusion formation of the carbide layer. The carbon concentration is reduced from the amount achieved by carburizing to an amount that is approximately equal to the carbon concentration in the steel before carburizing.

Slika 3 Dijagram prikazuje promjenu koncentracije ugljika u površinskom sloju čelika u drugoj etapi duplex postupka ali za slučaj kada je prethodnim pougljičavanjem unesena znatno veća masa ugljika od potrebne za stvaranje karbidnog sloja a u cilju dobivanja tvrdog međusloja u površinskom dijelu čelika ispod karbidnog sloja tz. duplex sloj (pougljičeni martenzit i karbid). To je posebno korisno za čelike i legure koji sadrže nisku ili srednju koncentraciju ugljika. Figure 3 The diagram shows the change in the concentration of carbon in the surface layer of steel in the second stage of the duplex process, but for the case when a significantly larger mass of carbon than necessary for the formation of the carbide layer was introduced by the previous carburization in order to obtain a hard intermediate layer in the surface part of the steel under the carbide layer. duplex layer (carburized martensite and carbide). This is particularly useful for steels and alloys containing low or medium carbon concentrations.

Slika 4 Temperaturno-vremenski tijek duplex postupka koji se sastoji od pougljičavanja i difuzijskog stvaranja karbidnih slojeva koji se mogu provesti neposredno jedan za drugim (slika 4a) ili primjenom međuohlađivanja (slika 4b). Figure 4 Temperature-time course of the duplex process, which consists of carburization and diffusion formation of carbide layers, which can be carried out immediately one after the other (Figure 4a) or by applying intermediate cooling (Figure 4b).

Slika 5 Presjek karbidnog sloja čelika Ck 45 koji je difuzijski stvoren bez predhodnog pougljičenja. Figure 5 Cross-section of the carbide layer of Ck 45 steel, which was created by diffusion without prior carburization.

Slika 6 Presjek karbidnog sloja čelika Ck 45 koji je pougljičen prije difuzijskog stvaranja karbidnog sloja. Figure 6 Cross-section of the carbide layer of Ck 45 steel that was carburized before the diffusion formation of the carbide layer.

Slika 7 Dijagram tvrdoće čelika Ck 45 ispod karbidnog sloja kod klasičnog postupka bez pougljičenja. Figure 7 Hardness diagram of Ck 45 steel under the carbide layer in the classic process without carburizing.

Slika 8 Dijagram tvrdoće čelika Ck 45 ispod karbidnog sloja nakon provedenog duplex postupka koji se sastoji od pougljičavanja i difuzijskog stvaranja karbidnog sloja. Figure 8 Hardness diagram of Ck 45 steel under the carbide layer after the duplex process, which consists of carburization and diffusion formation of the carbide layer.

Slika 9 Presjek karbidnog i martenzitnog sloja čelika 20MnCr5 obrađenog duplex postupkom (pougljuičavanje 150 minuta u granulatu KG 6 pri 950 °C, difuzijsko vanadiranje u trajanju 240 minuta pri 950 °C te kaljenje u ulju). Figure 9 Cross-section of the carbide and martensite layer of steel 20MnCr5 processed by the duplex process (carburizing for 150 minutes in granulate KG 6 at 950 °C, diffusion vanadium for 240 minutes at 950 °C and quenching in oil).

Slika 10 Dijagram tvrdoće čelika 20MnCr5 ispod karbidnog sloja nakon provedenog duplex postupka (pougljuičavanje 150 minuta u granulatu KG 6 pri 950 °C, difuzijsko vanadiranje u trajanju 240 minuta pri 950 °C te kaljenje u ulju). Figure 10 Diagram of the hardness of steel 20MnCr5 under the carbide layer after the duplex process (carburizing for 150 minutes in KG 6 granulate at 950 °C, diffusion vanadium for 240 minutes at 950 °C and quenching in oil).

Opis ostvarenja izuma s primjerima izvođenja Description of the embodiment of the invention with examples of execution

Bit izuma je da se duplex postupak sastoji od dvije etape procesa. U prvoj etapi, pougljičavanjem se difuzijom uvodi ugljik (slika 1) u iznosu koji je potreban za stvaranje karbidnog sloja u drugoj etapi procesa; difuzijskom stvaranju karbidnog sloja (slika 2). Pri tome se potroši prethodno unesena količina ugljika tako da metalni substrat ponovno sadržava približno početnu koncentraciju ugljika obrađivanog metalnog materijala. Time je izbjegnuta pojava lokalnog razugljičenja, što je uobičajena pojava kod primjene klasičnih postupaka difuzijskog stvaranja karbidnih slojeva bez prethodnog pougljičenja. U drugoj varijanti duplex postupka, pougljičavanjem se unese znatno viša količina ugljika od one koja je potrebna za naknadno stvaranje karbidnog sloja (slika 3). U drugoj etapi procesa potroši se samo dio dodatno unesenog ugljika pri stvaranju karbidnog sloja, tako da preostane značajan pougljičeni sloj koji naknadnim kaljenjem daje tzv. cementirani sloj u kojemu je tvrdoća znatno viša od tvrdoće jezgre kaljenog substrata. Tvrdi cementirani sloj dobra je podloga još tvrđem karbidnom sloju što doprinosi višoj otpornosti prema trošenju. Ovakvim duplex postupkom postiže se duplex sloj koji se sastoji od pougljičenog martenzitnog tvrdog sloja i na njemu još tvrđeg karbidnog sloja. Osim povoljnog djelovanja predhodnog pougljičavanja na postizanje tvrdog međusloja, prethodno pougljičenje doprinosi i znatnom povećanju brzine stvaranja karbidnog sloja, čime se snizuju troškovi obradbe. The essence of the invention is that the duplex process consists of two process stages. In the first stage, carbon is introduced by carburizing by diffusion (Figure 1) in the amount needed to create a carbide layer in the second stage of the process; by the diffusion formation of a carbide layer (Figure 2). In doing so, the previously introduced amount of carbon is consumed so that the metal substrate again contains approximately the initial carbon concentration of the processed metal material. This avoids the occurrence of local decarburization, which is a common occurrence when using classical methods of diffusion formation of carbide layers without prior carburization. In the second variant of the duplex process, by carburizing, a significantly higher amount of carbon is introduced than that required for the subsequent formation of the carbide layer (Figure 3). In the second stage of the process, only a part of the additionally introduced carbon is consumed during the formation of the carbide layer, so that a significant carbonized layer remains, which after subsequent hardening gives the so-called cemented layer in which the hardness is significantly higher than the hardness of the core of the hardened substrate. The hard cemented layer is a good base for the even harder carbide layer, which contributes to higher wear resistance. This duplex process results in a duplex layer consisting of a carburized martensitic hard layer and an even harder carbide layer on top of it. In addition to the favorable effect of prior carburization on the achievement of a hard intermediate layer, prior carburization also contributes to a significant increase in the rate of formation of the carbide layer, which lowers processing costs.

1. primjer izvođenja izuma: 1st embodiment of the invention:

Uzorak čelika Ck 45 pougljičen je pri temperaturi 950 °C u granulatu Durferrit KG 6 u trajanju 30 minuta a zatim direktno prenesen u solnu kupku za difuzijsko stvaranje karbidnih slojeva te u njoj držan 240 minuta pri temperaturi 1000 °C. Nakon isteka tog vremena provedeno je direktno kaljenje u vodi. Usporedno je drugi uzorak od istog čelika obrađen istovremeno i na isti način u istoj solnoj kupki ali bez prethodnog pougljičavanja. Oba uzorka su prerezana a presjeci su brušeni i polirani u cilju provedbe mikrografske analize i mjerenja mikrotvrdoće na presjeku uzoraka. Debljina karbidnog sloja bez primjene prethodnog pougljičavanja iznosi 4,5 mikrometra (slika 5) a kod uzorka koji je bio prethodno pougljičen debljina karbidnog sloja iznosi 6,5 mikrometara (slika 6). Tvrdoća površinskog sloja čelika kod uzorka koji nije bio prethodno pougljičen niža je od 600 HV (slika 7) a kod prethodno pougljičenog čelika iznad 700 HV (slika 8). The Ck 45 steel sample was carburized at a temperature of 950 °C in Durferrit KG 6 granulate for 30 minutes and then directly transferred to a salt bath for the diffusion formation of carbide layers and kept there for 240 minutes at a temperature of 1000 °C. After this time, direct hardening in water was carried out. Comparatively, another sample of the same steel was processed simultaneously and in the same way in the same salt bath, but without prior carburization. Both samples were cut and the cross-sections were ground and polished in order to carry out micrographic analysis and microhardness measurement on the cross-section of the samples. The thickness of the carbide layer without the application of prior carburization is 4.5 micrometers (Figure 5), and in the sample that was previously carburized, the thickness of the carbide layer is 6.5 micrometers (Figure 6). The hardness of the surface layer of the steel in the sample that was not previously carburized is lower than 600 HV (Figure 7) and in the case of the previously carburized steel above 700 HV (Figure 8).

2. primjer izvođenja izuma: 2nd embodiment of the invention:

Uzorci čelika 20MnCr5 prvo su pougljičeni u granulatu Durferrit KG 6 pri temperaturi 950 °C u trajanju 150 minuta. U drugoj etapi procesa, uzorci su uronjeni u solnu kupku za difuzijsko vanadiranje pri temperaturi 950 °C, držani u njoj 240 minuta te direktno kaljeni u ulju. Na poprečnom presjeku uzorka izmjerena je debljina 6 mikrometara karbidnog sloja (slika 9) i povišena tvrdoća u cementiranom sloju oko 1500 mikrometara (slika 10). The 20MnCr5 steel samples were first carburized in Durferrit KG 6 granulate at a temperature of 950 °C for 150 minutes. In the second stage of the process, the samples were immersed in a salt bath for diffusion vanadium at a temperature of 950 °C, kept there for 240 minutes and directly hardened in oil. On the cross-section of the sample, a thickness of 6 micrometers of the carbide layer was measured (Figure 9) and an increased hardness in the cemented layer of about 1500 micrometers (Figure 10).

Način industrijske primjene izuma Method of industrial application of the invention

Postupak se može primjenjivati u industriji prerade metala i nemetala te proizvodnje strojeva i uređaja prvenstveno za proizvodnju alata za oblikovanje metala deformiranjem (probijači i matrice za provlačenje, trnovi za istiskivanje, štance, ...), za lijevanje lakih i obojenih metala (uljevne sapnice, jezgre, kalupi), za oblikovanje metalnih i keramičkih prahova (kalupi, jezgre), za obradbu polimernih materijala (ekstruderi, sapnice, kalupi) te za strojne dijelove pumpi za transport abrazivnih medija. Tvrdi karbidni slojevi doprinose povećanju otpornosti prema trošenju i time do produljenja vijeka trajanja strojnih dijelova i alata čime se povećava ekonomičnost djelovanja strojeva i uređaja. The process can be applied in the metal and non-metal processing industry and the production of machines and devices, primarily for the production of tools for shaping metal by deformation (punches and drawing dies, extrusion mandrels, punches, ...), for casting light and non-ferrous metals (pouring nozzles , cores, molds), for shaping metal and ceramic powders (moulds, cores), for processing polymer materials (extruders, nozzles, molds) and for machine parts of pumps for transporting abrasive media. Hard carbide layers contribute to increased resistance to wear and thus to prolonging the service life of machine parts and tools, which increases the economy of the operation of machines and devices.

Prethodno pougljičavanje čelika može se provesti ne bilo koji način koji se inače provodi u industriji u cilju cementiranja konstrukcijskih dijelova strojegradnje (zupčanici, osovine, ...). To su postupci u kojima se pougljičavanje provodi u granulatima (na pr. Durferrit KG), solnim kupkama (na pr. Cecontrol-Degussa), plinskim atmosferama (ENDO atmosfere, Supercarb, Carbomaag), ioniziranim atmosferama i fluidiziranim kupkama. Precarburizing of steel can be carried out in any way that is normally carried out in the industry in order to cement structural parts of mechanical engineering (gears, shafts, ...). These are procedures in which carburization is carried out in granules (eg Durferrit KG), salt baths (eg Cecontrol-Degussa), gas atmospheres (ENDO atmospheres, Supercarb, Carbomaag), ionized atmospheres and fluidized baths.

Difuzijsko stvaranje karbidnih slojeva može se provesti bilo kojim postupkom (Toyota Diffusion Process, Degussa, ...) u čvrstom, tekućem, plinovitom ili fluidiziranom mediju za sve vrste karbidotvornih elemenata (V, Cr, Nb, W, Ti, Ta, ...). Diffusion formation of carbide layers can be carried out by any process (Toyota Diffusion Process, Degussa, ...) in a solid, liquid, gaseous or fluidized medium for all types of carbide-forming elements (V, Cr, Nb, W, Ti, Ta, ...) .).

Claims (10)

1. Duplex postupak difuzijskog stvaranja tvrdih karbidnih slojeva na metalnim materijalima koji mogu otapati ugljik, naznačen time, što se sastoji od postupka pougljičavanja metalnog materijala u mediju koji ima potencijal ugljika koji je veći od sadržaja ugljika u obrađivanom metalnom materijalu i difuzijskog stvaranja karbidnog sloja na obrađivanom metalnom materijalu u mediju koji sadrži karbidotvorne elemente i dodatke potrebne za reakciju ugljika s karbidotvornim elementima.1. Duplex process of diffusion creation of hard carbide layers on metal materials that can dissolve carbon, characterized by the fact that it consists of the process of carburizing the metal material in a medium that has a carbon potential that is higher than the carbon content in the processed metal material and the diffusion creation of a carbide layer on processed metal material in a medium containing carbide-forming elements and additives necessary for the reaction of carbon with carbide-forming elements. 2. Postupak prema patentnom zahtjevu 1., naznačen time, što se difuzijsko stvaranje karbidnog sloja provodi bez znatnog ohlađivanja obrađivanog metalnog materijala u kratkom vremenskom intervalu nakon završetka pougljičavanja ili što se difuzijsko stvaranje karbidnog sloja provodi nakon ohlađivanja obrađivanog metalnog materijala na temperaturu okoline te ponovnog ugrijavanja na temperaturu difuzijskog stvaranja karbidnih slojeva.2. The method according to patent claim 1, characterized by the fact that the diffusion formation of the carbide layer is carried out without significant cooling of the processed metal material in a short time interval after the completion of carburization, or that the diffusion formation of the carbide layer is carried out after cooling the processed metal material to ambient temperature and again heating to the temperature of diffusion formation of carbide layers. 3. Postupak prema patentnim zahtjevima 1. i 2., naznačen time, što se pougljičavanje provodi u čvrstim, tekućim, plinovitim, ioniziranim ili fluidiziranim medijima koji imaju potencijal ugljika koji je viši od sadržaja ugljika u obrađivanom metalnom materijalu.3. The method according to patent claims 1 and 2, characterized by the fact that carburization is carried out in solid, liquid, gaseous, ionized or fluidized media that have a carbon potential that is higher than the carbon content in the processed metal material. 4. Postupak prema patentnim zahtjevima 1. i 2., naznačen time, što se pougljičavanje provodi pri temperaturama 850-1100 °C kada metalni materijali imaju austenitnu kristalnu rešetku koja omogućava otapanje ugljika do visokih koncentracija.4. The process according to patent claims 1 and 2, characterized by the fact that carburization is carried out at temperatures of 850-1100 °C when the metal materials have an austenite crystal lattice that enables the dissolution of carbon to high concentrations. 5. Postupak prema patentnim zahtjevima 1. i 2., naznačen time, što se pougljičenjem unese dodatna masa ugljika koja je potrebna za stvaranje karbidnog sloja.5. The method according to patent claims 1 and 2, characterized in that the additional mass of carbon required for the formation of a carbide layer is introduced by carburizing. 6. Postupak prema patentnim zahtjevima 1. i 2., naznačen time, što se pougljičenjem unese znatno veća masa ugljika od potrebne za stvaranje karbidnog sloja čime se postiže tvrdi martenzitni međusloj ispod karbidnog sloja.6. The process according to patent claims 1 and 2, characterized by the fact that by carburizing, a significantly larger mass of carbon is introduced than is necessary for the formation of a carbide layer, which achieves a hard martensitic intermediate layer under the carbide layer. 7. Postupak prema patentnim zahtjevima 1. i 2., naznačen time, što se difuzijsko stvaranje karbidnog sloja provodi u čvrstom, tekućem, plinovitom ili fluidiziranom mediju koji sadrži jedan ili više karbidotvornih elemenata: Cr, V, Nb, W, Ti ili Ta u elementarnom obliku, kao ferolegure ili kao okside te reaktivne dodatke (kloride, halogenide, fluoride, boride, ...) koji omogućavaju reakciju ugljika i karbidotvornog elementa za stvaranje karbidnog sloja na površini metalnog materijala.7. The method according to patent claims 1 and 2, characterized in that the diffusion formation of the carbide layer is carried out in a solid, liquid, gaseous or fluidized medium containing one or more carbide-forming elements: Cr, V, Nb, W, Ti or Ta in elemental form, as ferroalloys or as oxides and reactive additives (chlorides, halides, fluorides, borides, ...) that enable the reaction of carbon and the carbide-forming element to create a carbide layer on the surface of the metal material. 8. Postupak prema patentnim zahtjevima 1. i 2., naznačen time, što je temperatura difuzijskog stvaranja karbidnog sloja od 850-1200 °C.8. The method according to claims 1 and 2, characterized in that the temperature of the diffusion formation of the carbide layer is 850-1200 °C. 9. Postupak prema patentnim zahtjevima 1. i 2., naznačen time, što se primjenjuje za željezo, nikalj, kobalt i njihove legure a napose za čelike s niskim i srednjim sadržajem ugljika.9. The process according to patent claims 1 and 2, characterized by the fact that it is applied for iron, nickel, cobalt and their alloys, and especially for steels with low and medium carbon content. 10. Postupak prema patentnim zahtjevima 1. i 2., naznačen time, što se nakon difuzijskog stvaranja karbidnih slojeva provodi kaljenje (direktno ili indirektno) u cilju postizanja visoke tvrdoće pougljičenog sloja ispod karbidnog sloja.10. The method according to patent claims 1 and 2, characterized by the fact that after the diffusion formation of the carbide layers, hardening is carried out (directly or indirectly) in order to achieve high hardness of the carbonized layer below the carbide layer.
HR20000916A 2000-12-29 2000-12-29 Duplex process for diffusional creation of solid carbide layers on metal materials HRP20000916B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HR20000916A HRP20000916B1 (en) 2000-12-29 2000-12-29 Duplex process for diffusional creation of solid carbide layers on metal materials
PCT/HR2001/000053 WO2002053793A1 (en) 2000-12-29 2001-12-20 Duplex process of diffusion forming of hard carbide layers on metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR20000916A HRP20000916B1 (en) 2000-12-29 2000-12-29 Duplex process for diffusional creation of solid carbide layers on metal materials

Publications (2)

Publication Number Publication Date
HRP20000916A2 true HRP20000916A2 (en) 2002-06-30
HRP20000916B1 HRP20000916B1 (en) 2005-06-30

Family

ID=10947234

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20000916A HRP20000916B1 (en) 2000-12-29 2000-12-29 Duplex process for diffusional creation of solid carbide layers on metal materials

Country Status (2)

Country Link
HR (1) HRP20000916B1 (en)
WO (1) WO2002053793A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881498B1 (en) 2004-06-24 2005-04-19 Sikorsky Aircraft Corporation Surface process involving isotropic superfinishing
DE102004053935B4 (en) * 2004-11-09 2015-04-09 Schaeffler Technologies AG & Co. KG Process for the heat treatment of a component made of a thermosetting heat-resistant steel and a component made of a thermosetting, heat-resistant steel
CN115029659B (en) * 2022-05-06 2024-03-01 广东翔鹭钨业股份有限公司 Method for eliminating decarbonization defect of hard alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685543A (en) * 1951-01-17 1954-08-03 Wearex Corp Production of chromium carbide surfaced wear resistant ferrous bodies
US3282746A (en) * 1963-11-18 1966-11-01 Formsprag Co Method of hardening wear surfaces and product
JPS56112460A (en) * 1980-12-08 1981-09-04 Daido Kogyo Co Ltd Manufacture of ring plate having edge of chain for square-hole-piercing machine
JPS57134551A (en) * 1981-02-14 1982-08-19 Sumitomo Metal Ind Ltd Manufacture of corrosion resistant steel pipe with superior workability and high temperature strength
JPS58174567A (en) * 1982-04-02 1983-10-13 Toyota Central Res & Dev Lab Inc Method for coating metal material with carbide
GB2204327B (en) * 1987-05-01 1991-07-31 Nii Tekh Avtomobil Promy Deposition of diffusion carbide coatings on iron-carbon alloy articles
JP3387427B2 (en) * 1997-11-27 2003-03-17 アイシン精機株式会社 Heat treatment method for steel

Also Published As

Publication number Publication date
WO2002053793A1 (en) 2002-07-11
HRP20000916B1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
Arai Thermoreactive deposition/diffusion process for surface hardening of steels
CN105899697B (en) The manufacture method and carburizing steel part of carburizing steel part
CN101392361A (en) Nitrocarburizing method of martensitic stainless steel and preparation method thereof
Norkhudjayev et al. Influence of nitrocementation modes on the change in the hardness of the surface layer of structural steels
CN101638791A (en) Heat treatment process for driving and driven bevel gear of drive axle
CN108165924B (en) Salt bath penetrating agent for enhancing surface hardness of die steel and application method thereof
CN108277453B (en) High-chromium micro-deformation cold stamping die surface chromium-vanadium co-infiltration treatment method
Xiao et al. Failure mechanism and improvement process of preparing carbide coating on high speed steel by thermal diffusion reaction
Ivanov et al. Carbonitration of a tool for pressing stainless steel pipes
JPS6320908B2 (en)
US9738962B2 (en) Method for the carburization of a deep-drawn part or a stamped-bent part made of austenitic rustproof stainless steel
HRP20000916A2 (en) Duplex process for diffusional creation of solid carbide layers on metal materials
US3668951A (en) Force-applying tools
Guterres et al. Investigate Temperature Preheating on the Chill Plate to Identify Surface Characteristic on the Ductile Iron by Sand Casting
JP7397029B2 (en) Carburizing method for steel parts and method for manufacturing steel parts
CN109468541A (en) A kind of rail traffic high-precision bearing processing technology
CN100590207C (en) Technique for oil quenching casting sphere made from high chrome alloy
US8083866B2 (en) Method for hardening the surfaces of work pieces made of stainless steel, and a molten salt bath for realizing the method
Strobl et al. New steel combinations produced by the Damascus technique
JPH01283430A (en) Bearing excellent in rolling fatigue life characteristic
Guterres et al. The effect of chills thickness to microstructure and surface hardness layer on specimen ductile cast iron
Lipinski et al. Influence of oxygen content in medium carbon steel on bending fatigue strength
CN108754410A (en) The preparation method of gradient coating for blanking die surface peening
US9738964B2 (en) Method for the nitro carburization of a deep-drawn part or a stamped-bent part made of austenitic stainless steel
CN106676463B (en) Surface deep layer strengthening method using graphitized micro-nano carbon material as diffusion source

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20061205

Year of fee payment: 7

PBON Lapse due to non-payment of renewal fee

Effective date: 20071230