JPS58174567A - Method for coating metal material with carbide - Google Patents

Method for coating metal material with carbide

Info

Publication number
JPS58174567A
JPS58174567A JP5561482A JP5561482A JPS58174567A JP S58174567 A JPS58174567 A JP S58174567A JP 5561482 A JP5561482 A JP 5561482A JP 5561482 A JP5561482 A JP 5561482A JP S58174567 A JPS58174567 A JP S58174567A
Authority
JP
Japan
Prior art keywords
carbide
metal
carbon
forming
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5561482A
Other languages
Japanese (ja)
Other versions
JPS6141984B2 (en
Inventor
Toru Arai
新井 透
Hironori Fujita
藤田 浩紀
Yasuo Takada
保夫 高田
Katsuo Koriyama
郡山 勝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP5561482A priority Critical patent/JPS58174567A/en
Publication of JPS58174567A publication Critical patent/JPS58174567A/en
Publication of JPS6141984B2 publication Critical patent/JPS6141984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • C23C12/02Diffusion in one step

Abstract

PURPOSE:To form a metal carbide layer with a necessary thickness on a necessary place, by a method wherein a carburization material containing carbon is applied to the surface of a metal material with reduced carbon content and the coated metal materal is heated in the presence of a powder comprising a carbide forming metal element. CONSTITUTION:A metal carbide layer having high hardness and excellent anti- wear property is applied to the surface of a metal material capable of forming solid solution with externally supplied carbon such as steel, a Ni alloy or a Co alloy or a Co alloy and extremely low in carbon content, especially, a knife having a thin sharp protruded part. On the other hand, a powder of a carburizing activator such as LiCO3 or BaCO3 is mixed in a fine powdery carbon material such as charcoal and the resulting mixture is blended with a sticky binder such as water glass to form a slurry which is in turn applied to a carbide forming place in a thickness of 0.1-1mm. to be dried thereon. In the next step, a metal of Ti, V, Nb, Ta or Cr, an alloy thereof or oxide thereof forming hard carbide is adhered to the coated caribide forming place in a powdery form and the whole is heated to 800-1,100 deg.C to simultaneously carry out carburization and the formation of carbide of the above-mentioned metal.

Description

【発明の詳細な説明】 本発明は、金属材料、特Ic次素含有量の少ない金属材
料の表面に、任意の厚さの膨化物被覆層を形成する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a swelling material coating layer of arbitrary thickness on the surface of a metal material, particularly a metal material having a low Ic element content.

金属材料1例えば鉄合金材料の表面に炭化物層を被覆す
ることは、該炭化物層がすぐれた・耐摩耗成に関する技
術は実用化されている。この場合。
The technique of coating the surface of metal material 1, for example, an iron alloy material with a carbide layer, provides excellent wear resistance and has been put to practical use. in this case.

炭化物層形成に使用される次素は、材料中に含ましかし
、#2化物被覆層を形成しようとする材料が、常IC#
2化物層形成に必要な炭素量を含有するとは限らない。
The secondary element used to form the carbide layer is contained in the material, but the material used to form the #2 carbide coating layer is usually IC#
It does not necessarily contain the amount of carbon necessary to form a bibide layer.

例えば、磁性の小さいオースブナイト系ステンレス鋼や
、冷間鍛造性のよい低層素鋼は炭素の含有量が少ないが
、いずれも工業上有用な材料であり、これらの材料表面
に耐摩耗性のすぐれた膨化物被覆を施す必要性は高い。
For example, ausbunite stainless steel with low magnetism and low-rise steel with good cold forging properties have a low carbon content, but they are both industrially useful materials, and the surfaces of these materials have excellent wear resistance. There is a strong need to apply a puffed material coating.

その他、材料中に全く炭素を含まない材料についても1
次化物を被覆することによる利点も多い。
In addition, 1 for materials that do not contain any carbon at all.
There are many advantages to coating with chemical compounds.

また、高次素鋼を用いる場合でも、薄い板の表面IC炭
化物層を形成させたい場合には母材内部に含まれる全炭
素量は炭化物形成面積に比べて小さいため、必要とされ
る厚さが得られないこともある。
In addition, even when using high-grade raw steel, if you want to form an IC carbide layer on the surface of a thin plate, the total amount of carbon contained inside the base material is small compared to the carbide formation area, so the required thickness may not be obtained.

例えば005m厚さのSK4の板の両面にはわずかL5
μmの炭化物を形成することにより、母材中の炭素量は
ほとんど存在しなくなる。
For example, only L5 on both sides of a 005m thick SK4 plate.
By forming micron carbides, the amount of carbon in the base material is almost eliminated.

さらに鋼の場合は、材料中に炭化物形成のため1 の必要な炭素量があっても−:その炭素をすべて家く。Furthermore, in the case of steel, due to the formation of carbides in the material, 1 Even if there is the required amount of carbon -: all that carbon is removed.

化物形成に使用すると、材料中IC残る炭素がなくなる
ため、その鋼材を焼入れしても、母材に所定の焼入硬さ
を与えることができなくなるという問題もある。そこで
、鋼材の場合は、炭化物層形成に必要な炭素量のはかl
lI:、さらに材料中Icl1a入れ硬さを得るに必要
な炭素量(α5〜LO−i1番%−)が存在しているこ
とが必要 である場合もある。
When used to form a compound, there is no carbon left in the material, so even if the steel material is quenched, it becomes impossible to give the base material a predetermined quenching hardness. Therefore, in the case of steel materials, it is difficult to estimate the amount of carbon required to form a carbide layer.
lI: In addition, it may be necessary that the amount of carbon (α5~LO-i1%-) necessary to obtain Icl1a hardness in the material is present.

しかし、従来の炭化物被覆方法では、上記のよう1cJ
11j化物形成に使用でき硅素の含有量が少ない材料や
、焼入れ硬さを得るに必要な炭素量を含有しない鉄鋼材
料に対して、工業上有用な程度の厚さの炭化物被覆層を
形成することが困難であり。
However, in the conventional carbide coating method, as described above, 1 cJ
To form a carbide coating layer with an industrially useful thickness on materials that can be used to form 11j carbides and have a low silicon content, and on steel materials that do not contain the amount of carbon necessary to obtain quenched hardness. is difficult.

又鋼については仮に炭化物を形成しても、その母材の焼
入れ硬さが得られないので、全体として炭化物被覆層形
成の効果を発揮することができない・そこで、かって本
発明者らにより、かかる材料に対する炭化物被覆方法と
して1次の方法が考えられた。
In addition, even if carbide is formed in steel, the hardness of the base material cannot be obtained by quenching, so the effect of forming a carbide coating layer cannot be exerted as a whole. The first method was considered as a method for coating materials with carbide.

すなわち、まず第1工程として、材料に浸脚処環を施し
て被処理材中の炭素、章有量を増加させ、ついで第2工
程糺て、増加した−素を利用して被処理材表IIiに炭
化物被覆層を形成する方法である(特公昭56−867
08)。ところが、この方法で、第1工程の浸脚を行り
ても、材料中C固溶限以上の炭素な含有させることはで
きないので、形成できる炭化物層の厚さは、事実上沓材
料の炭素の一溶@により制約され、常に厚い炭化物層の
形成が可能となったわけではなか9た。
That is, in the first step, the material is subjected to immersion treatment to increase the amount of carbon and carbon in the material to be treated, and then in the second step, the increased carbon content is used to increase the surface of the material to be treated. This is a method of forming a carbide coating layer on IIi (Japanese Patent Publication No. 56-867
08). However, in this method, even if the first step of soaking is performed, it is not possible to incorporate carbon in the material in an amount exceeding the solid solubility limit of C. Therefore, the thickness of the carbide layer that can be formed is actually the same as the carbon in the shoe material. However, it was not always possible to form a thick carbide layer due to the single melting property.

本発明は、上記電点を克服し、材料中の炭素量とは無関
係に任意の厚さの炭化物被覆層を形成することができる
方法を提供しようとするものである。
The present invention aims to provide a method that overcomes the above-mentioned electric point and can form a carbide coating layer of any thickness regardless of the amount of carbon in the material.

すなわち1本発明は、炭化物層を形成する表面以外の金
属材、料の表面に浸脚剤を塗布した後、該金属材料をチ
タン、バチ5FaA、ニオブ、タンタル、およびクロム
の各元素の内、いずれか一種の存在下に加熱することに
より、炭素な浸廣剤から金属材料へ浸透拡散させる浸羨
魁珊と、金属材料の表WBC任意の厚さの炭化物被覆層
を形成させる炭化物形成処理とを同時に並行して行うこ
とを特■ 黴とする金属材料の炭化物被覆方法、にある。
That is, in the present invention, after applying a dipping agent to the surface of a metal material other than the surface on which a carbide layer is to be formed, the metal material is treated with one of the following elements: titanium, 5FaA, niobium, tantalum, and chromium. By heating in the presence of one of these, a carbon-based penetrating agent penetrates and diffuses into the metal material, and a carbide forming treatment forms a carbide coating layer of an arbitrary thickness on the surface WBC of the metal material. ■ A method for coating metal materials with carbide, which is characterized by carrying out the following steps simultaneously and in parallel.

本発明方法によれば、外部から金属材料中cl素を補給
する浸脚処環を続けながら、同時に他方で、材料中にも
ともと存在していた炭素と、補給された炭素との両方の
炭素を使用して、材料表面W−炭化物被覆層を形成する
ことかできる。そのため、金属材料中にもともと存在し
ていた炭素量に制約されることなく、又金属材料の固有
の固WII!iとも無関係に任意の厚さの炭化物層を容
JICm成することができる。その結果、第1F:従来
は、含有炭素量が少なく、se化物を形成できなかつた
材料の表面に炭化物被覆層を形成することができるよう
になり、さらに第StC今迄は薄い炭化物層しか形成で
きなかつた薄板の材料に厚い駅化物層を任官lc形成す
ることができるようになった。
According to the method of the present invention, while continuing the immersion ring to replenish chlorine in the metal material from the outside, at the same time, both the carbon originally present in the material and the replenished carbon are removed. It can be used to form a W-carbide coating on the material surface. Therefore, it is not limited by the amount of carbon that originally existed in the metal material, and the inherent hardness of the metal material! A carbide layer of any thickness can be formed regardless of i. As a result, it has become possible to form a carbide coating layer on the surface of materials that previously had a low carbon content and were unable to form selenium compounds. It is now possible to form a thick layer of stationary material on thin plate material, which previously was not possible.

このため1本発明方法により、数ミクロンという藩い金
属薄板の表面に、その板の厚さ以上の厚い炭化物層の形
成が可能となった。
Therefore, by the method of the present invention, it has become possible to form a thick carbide layer on the surface of a thin metal plate with a thickness of several microns, which is thicker than the thickness of the plate.

また従来、被処理材の有する特殊形状のために。Also, conventionally, due to the special shape of the material to be treated.

すべての表11iIc炭化物を形成することは困難とさ
れていた材料があった。すなわち刃物やタップのようC
,鋭角の突起部分を有する場合は1脚化物形成時に突起
部分の母材中の炭素が不足し、厚い炭化物形成かで倉な
かりた。
There were materials for which it was difficult to form all Table 11iIc carbides. In other words, like a knife or a tap C
In cases where the protrusion has an acute angle, carbon in the matrix of the protrusion is insufficient during the formation of a monopod, resulting in the formation of a thick carbide.

しかしながら1本発明方法により、この様な突起部分の
近傍の材料表面に浸炭剤を塗布することにより突起部分
にも充分な厚さの炭化物層の形成を行うことができる。
However, according to the method of the present invention, by applying a carburizing agent to the surface of the material in the vicinity of such projections, a sufficiently thick carbide layer can be formed even on the projections.

本発明方法を適用する被処理材は、従来の膨化物形成方
法の適用対象と異なり、14素を全く含まないものでも
良い。しかし、外部から供給された炭素を母材中に!i
nすることができる金属材料でなければならない。この
様な金属材料としては。
The material to be treated to which the method of the present invention is applied may not contain any of the 14 elements, unlike the materials to which the conventional expanded material forming method is applied. However, carbon supplied from the outside is in the base material! i
It must be a metal material that can be As a metal material like this.

例えば、1000  ℃で15%の炭素の11ill隈
を有する鉄鋼や、αgqM程度の廣素固*tiのニッケ
ル会合およびコバルト合金などがある。
For example, there are steels with 11 ills of 15% carbon at 1000° C., nickel association and cobalt alloys with a hardness of about αgqM, and cobalt alloys.

さらに本発明の最゛大の実用上のメリットであるが2本
発明の被処理材は薄板の材料でもよい。薄板の場合は、
母材中の全炭素量が膨化物形成面積にくらバて小さいた
め、厚い炭化物層の形成が不:′i 可能とされていた。しかし、・本発明方法のように。
Furthermore, the two greatest practical advantages of the present invention are that the material to be treated in the present invention may be a thin plate material. In the case of thin plates,
Since the total amount of carbon in the base material is smaller than the area in which the expanded material is formed, it was thought that it was possible to form a thick carbide layer. However, like the method of the present invention.

炭化物形成のための炭素を連続的に供給し続けることに
より、薄板の上に厚い炭化物層の形成が可能となつた。
By continuously supplying carbon for carbide formation, it became possible to form a thick carbide layer on the thin plate.

なお、ここで薄板とは、はぼ1■以下の厚さの板をいう
、1IIIIを輔す厚さの材料であれば、母材中の全炭
素量が炭化物形成に不足することは少ない。
Note that the term "thin plate" here refers to a plate with a thickness of 1 inch or less, and as long as the material has a thickness of 13 mm or less, the total carbon content in the base material is unlikely to be insufficient for carbide formation.

被処理材に塗布される浸炭剤は、*素供給物質と浸炭用
活性剤と、これらを結合させるバインダーとからなり、
さらE、水又はアルコールが添加され、全体が混練され
てスラリー状1IIICある。
The carburizing agent applied to the material to be treated consists of *a raw material, a carburizing activator, and a binder that binds them together.
Further, water or alcohol is added and the whole is kneaded to form a slurry 1IIIC.

炭素供給物質としては、木炭、コークス、および黒鉛を
使用する。これら、炭化物供給物質は。
Charcoal, coke, and graphite are used as carbon feed materials. These carbide supply substances.

浸炭剤がスラリー状で金属材料に塗布できるように、粉
末状態であることが必要であり1粒度は−60〜−10
0メッシ、程度が望ましい。
The carburizing agent needs to be in a powder state so that it can be applied to metal materials in slurry form, and the particle size is -60 to -10.
A level of 0 mesh is desirable.

浸炭用活性剤としては、炭酸リチウム(LiCOi)。Lithium carbonate (LiCOi) is used as an activator for carburizing.

炭酸バリウム(8aCO1)*炭酸ナトリウム(Nas
COm)等の炭酸塩を用いる。
Barium carbonate (8aCO1) * Sodium carbonate (Nas
Carbonates such as COm) are used.

バインダーとしては、コロイダルV II * 、コロ
イダルアルミナ、コ・c1□:・・イダ〜グラフ窄イト
、水ガラス、デキストリン等の&如の粘着剤を用いる。
As the binder, adhesives such as colloidal VII*, colloidal alumina, co-c1□:...Ida-graphite, water glass, dextrin, etc. are used.

なお、これらバインダーは、′l#融塩浴法において。In addition, these binders are used in the 'l# molten salt bath method.

洛中で硼酸又は硼酸樵と反応しで、溶液中に溶入するも
のであってはならない。
It must not react with boric acid or boric acid wood in the atmosphere and dissolve into the solution.

スラリー状のi![剤は、1llI用的にはα1〜1−
の厚さで材料表面に塗布することが好ましし・。
Slurry i! [For 1llI, the agent is α1-1-
It is preferable to apply it to the surface of the material at a thickness of .

このように金属表面に比較的薄く塗布するの−よ。In this way, it is applied relatively thinly to the metal surface.

加熱によるスフリーの剥離をE2FI!I、1IIIk
塩浴中に長時間浸漬してもバインダーとしての結合力を
雑持し、しかも処理1!に温水洗浄により容″易にスゲ
啼−を除去で會るからである。なお、α1−未満の塗布
厚さでは浸択の効果が少ない。
E2FI prevents souffle from peeling off due to heating! I, 1IIIk
Even when immersed in a salt bath for a long time, it retains its binding strength as a binder, and it is treated with 1! This is because the sedge sedge can be easily removed by washing with warm water.If the coating thickness is less than α1, the selection effect will be small.

1!Im剤は、母材中の炭素が欠乏する部分に近し・材
料表l11iIcf11布することが望ましい・したが
−で・刃物やIツブのような、鋭角な突起部分を有する
材料に炭化物を被覆する場合は、特IcN票が欠乏する
突起部分の母材lc迂い材料表面に浸炭剤を塗布し、炭
化物層を形成しようとする突起部分への炭素の供給を容
易にする。
1! The Im agent should be applied close to the carbon-deficient part of the base material.It is preferable to apply it to the material table l11iIcf11. However, it is recommended to coat the carbide on materials with sharp protrusions, such as knives and Icf11. In this case, a carburizing agent is applied to the surface of the material around the base material lc of the protruding portions where IcN is deficient to facilitate the supply of carbon to the protruding portions where the carbide layer is to be formed.

浸炭剤を塗布した金属材料は、チタン、ノクナジウム、
=1プ、タンlk−,およびタームの各元素(以下1次
化物形成元素と総称する)の(1ずれか一纏の存在下で
加熱し、最終的には□材料表面Cm化物被積層を形成す
る。この加熱工程においては。
Metal materials coated with carburizing agents include titanium, nocnasium,
=1P, Tanlk-, and Term elements (hereinafter collectively referred to as primary compound-forming elements) are heated in the presence of one or more of them, and finally a Cm compound layer is formed on the surface of the material. In this heating process.

金属材料への浸炭処理と、炭化物形成処理が同時に蛇管
して行われている。したがって、浸軟のための加熱条件
、雰囲気等の処理条件は、*化物形成のための処理条件
と同一の条件が使用される。
Carburizing treatment of metal materials and carbide formation treatment are performed simultaneously in a spiral manner. Therefore, the processing conditions such as heating conditions and atmosphere for maceration are the same as those for *compound formation.

膨化物形成元素は、金属単体、これらの金属を含む合金
雪あるいは、これら金属の酸化物の形で使用する。例え
ば9合金としては、)!ロバナνウム(F・−v)lあ
るいはフェロクロム(F・−Cr)、などであり、酸化
物としては、酸化バナνつA (va o@) +ルイ
i1酸化りoA(CrtOl)等である。
The swelling compound-forming element is used in the form of a simple metal, an alloy containing these metals, or an oxide of these metals. For example, for alloy 9)! Examples of oxides include vanadium oxide (F・-v)l or ferrochrome (F・-Cr), and examples of oxides include vanadium oxide (vao@) + Louis i1 oxide (CrtOl), etc. .

浸炭処理は、金属材料に塗布された浸炭剤中の炭素供給
物質から出た炭素が金属材料の表面に浸透し9次いで材
料の母材中を拡散することにより行われる。この際炭素
の拡散は、#II化物形成時に母材中に炭素の少ない部
分が生ずるとその部分に崗は優先的に行われる。
Carburizing is performed by carbon released from a carbon supply substance in a carburizing agent applied to a metal material, penetrating the surface of the metal material, and then diffusing into the matrix of the material. At this time, carbon diffusion is preferentially carried out in a portion where there is less carbon in the base material when the #II compound is formed.

また、gkm処理は。炭化物形成処理の続く隈り1連続
しで行う。
Also, gkm processing. Carbide formation treatment is performed in one continuous area.

しかしてl匙物形成元票の存在下で加熱された金属材料
の表面では、外部から供給される炭化物形成元素と母材
表面近くの炭素が結合して、金属材料の表面に炭化物を
形成する。
However, on the surface of a metal material heated in the presence of a spoon-forming element, carbide-forming elements supplied from the outside and carbon near the surface of the base material combine to form carbide on the surface of the metal material. .

炭化物形成の場所は、金属材料の表面で浸炭剤が塗布さ
れなかった部分である。
The location of carbide formation is the part of the surface of the metal material to which the carburizing agent was not applied.

本発明で、#2化物被覆層を形成させるための具体的な
方法は、すて#CC知知炭化物被覆方法すなわち溶融塩
浴法、電解法、粉末法、および気相法の各法が使用でき
る。
In the present invention, specific methods for forming the #2 compound coating layer include #CC known carbide coating methods, ie, molten salt bath method, electrolytic method, powder method, and vapor phase method. can.

溶融樵洛法としては1発明者らが先に開発した方法、即
ち1脚化物形成元素を落人せしめた硼酸又は硼酸塩の溶
融塩浴中に被処理材を浸漬保持して被処理材の表l11
cj12化物層を拳或する方法が極めで有効である。ま
た諌処環浴中に被処理材を浸漬保持してこれを陰極とし
、別に浴中に挿入した1i11 電極性材料を&11fIiとして電解処理な行う電解法
は。
The melting method is a method previously developed by the inventors, in which the material to be treated is immersed and held in a molten salt bath of boric acid or borate in which monopod-forming elements are allowed to fall. Table l11
The method of removing the cj12 compound layer is extremely effective. In addition, there is an electrolytic method in which the material to be treated is immersed and held in a ring bath, and this is used as a cathode, and a 1i11 electrode material inserted into the bath is separately subjected to electrolytic treatment using &11fIi.

処理時間を短縮するために有効である。粉末法としては
一般に使用されている種化アンモニウム(NH2Cl 
> 、あるいは発明者らの開発した弗化硼素酸樵、たと
えば硼弗化カリウム(KBF、)の粉末とl化物lI成
元素七食む粉末との混合粉末中に、被処理材を埋め込ん
で加熱する方法がすぐれティる。この場合に、混合粉末
にさらに水又はアルコールviI加して全体をスラリー
状態にして。
This is effective for shortening processing time. As a powder method, seeded ammonium (NH2Cl) is commonly used.
> Alternatively, using a fluoroboric acid mill developed by the inventors, for example, the material to be treated is embedded and heated in a mixed powder of potassium borofluoride (KBF) powder and powder containing seven elements of 1I compound. The method is excellent. In this case, water or alcohol viI is further added to the mixed powder to make the whole into a slurry state.

被処理材の表面に塗布するのがスラリー法である。The slurry method is used to coat the surface of the material to be treated.

この方法によれば、被処理材の一部にのみ塗布しテラそ
の部分を局部的C炭化物層とすることができる。
According to this method, it is possible to coat only a part of the material to be treated and make that part a local C carbide layer.

また、他の方法として、四樵化チ滉タン(CH,)、水
素(H3)の混合ガスが封入された密閉容器またはそれ
らのガスの9IcfIl中で被処理材を加熱保持するこ
とによってもチタン炭化物(TiC)をlll或するこ
とができる。
Another method is to heat and hold the material to be treated in a closed container filled with a mixed gas of titanium chloride (CH) and hydrogen (H3) or in a 9IcfIl of these gases. Carbide (TiC) can be used.

炭化物形成のための処理温度は、従来一般に知られてい
るように、?OOtから金属材料の融点以下の範囲でよ
い。しかし、炭化物の形成は、温度が高い程急速だが、
他方高温になれば、材質の劣化が激しくなるので、実用
的Ictよ800℃ないし1100℃が望ましい。
The processing temperature for carbide formation is, as is generally known in the past, ? The range may be from OOt to below the melting point of the metal material. However, carbide formation is more rapid at higher temperatures;
On the other hand, if the temperature becomes high, the deterioration of the material becomes severe, so a practical Ict of 800°C to 1100°C is desirable.

炭化物形成のための処理時間は、必要とする炭化物被覆
層の厚さや処理温度との関係で決定される。すなわち、
厚い炭化物層の形成を目的とする場合、および処りIa
度が低い場合番よ、いずれも長い処理時間を必要とする
。一般に1時間ないし80時間程度が適当である。
The treatment time for carbide formation is determined in relation to the required thickness of the carbide coating layer and the treatment temperature. That is,
When the purpose is to form a thick carbide layer, and treatment Ia
Both cases require a long processing time. Generally, about 1 hour to 80 hours is appropriate.

り薄いと耐摩耗性の効果に不安がある。なお1脚化物層
の形成は、1!I炭剤からの炭素の供給と炭化物形成元
素が存在する限り続くので、処1Ia1度と処理時間を
選竜すれは、任意の厚さの炭化物層の形成が可能である
。しかし、炭化物層があまり厚実施例1 α05m厚さのJIB8に4CI1.素含有量約1重量
優、以下重量%を%と略記する。)の板状試片の片面に
のみスラリー状の浸炭剤を約1+w厚さで塗布し、1o
otrで乾燥させた。上記浸炭剤としては、−100メ
マv1の木炭粉476%と。
If the thickness is too thin, there is concern about the wear resistance effect. The formation of the monopodal monster layer is 1! Since the supply of carbon from the carbon agent continues as long as the carbide-forming elements are present, it is possible to form a carbide layer of any thickness by selecting the treatment time and treatment time. However, the carbide layer is too thick in Example 1 α05m thick JIB8 and 4CI1. The elemental content is about 1% by weight, hereinafter abbreviated as % by weight. ) A slurry-like carburizing agent was applied to one side of the plate specimen to a thickness of about 1+w, and 1o
Dry on otr. The carburizing agent used was -100 mema v1 charcoal powder 476%.

−60メyFaaのBaCO54?、5%の混合粉末に
コロイダル水層液5%を添加し、かくはんして調製した
。この試片な1脚化物形成元素としてのF・−■粉(バ
ナVつふ5B形含む)201;と硼砂80g6を要人し
てなる溶融浴中に浸漬し、900℃で8時間保持した。
-60 May Faa BaCO54? , 5% colloidal aqueous phase liquid was added to 5% mixed powder, and the mixture was stirred. This specimen was immersed in a molten bath made of dignitaries with 201 grams of F. .

次に、その試片を浴中かち取り出し、水焼入し、ついで
温水で試片を洗騎して付着していた浸炭剤を除去した。
Next, the specimen was taken out of the bath and water quenched, and then the specimen was washed with warm water to remove the adhering carburizing agent.

このようにして得られた試片を切断し断面組織を観察し
た。栴1図は、この時の断面組織を示す顕微鏡写真であ
る。この顕微鏡写真、およびX線マイクロアナフィイー
による分析により、試片の浸炭剤を塗布した表面と反対
側の表面(以下、こCL”(,60μm厚さの鋼の上に
、約15μmのバナジウム次化物層が形成されていた。
The specimen thus obtained was cut and the cross-sectional structure was observed. Figure 1 is a microscopic photograph showing the cross-sectional structure at this time. This micrograph and analysis by X-ray microanaphy revealed that the surface of the specimen opposite to the surface coated with the carburizing agent (hereinafter referred to as "CL") was coated with a vanadium layer of about 15 μm on the 60 μm thick steel. A compound layer was formed.

また、この場合の鋼の母材硬さはHマ880であって1
本発明の処理を施さない場合の焼入れ機の母材硬さと同
一の硬さを得ることができた。
In addition, the base material hardness of the steel in this case is H ma 880 and 1
It was possible to obtain the same hardness as the base material of the quenching machine without the treatment of the present invention.

一方、閤−試片c ltt L #浸炭剤を塗布するこ
となく11−洛中で同一条件で炭化物被覆処理を行また
・その結果得られた試片の断面組織を第8図の顕微鏡写
真に示す。写真から明らかなように試片の両伺表11i
に形成されたバfNつ五脚化物層はわずか18μKmI
Cすぎず、又、母材硬さも純鉄に近い約Hマ100にす
「なかうた。
On the other hand, a carbide coating treatment was carried out under the same conditions in 11-Raku without applying carburizing agent.The cross-sectional structure of the resulting specimen is shown in the micrograph in Fig. 8. . As is clear from the photo, the test specimen has both sides 11i.
The pentapodite layer formed in
It's not too hard, and the base material hardness is about 100 H, which is close to pure iron.

実施例2 αlaw厚さの純ニッケルの板状試片の片ciliK−
のみ一実施例1と同一の浸炭剤を約Q8鱈の厚さで塗布
し、その後11然乾燥させた。
Example 2 A plate-shaped specimen of pure nickel with αlaw thickness ciliK-
The same carburizing agent as in Example 1 was applied to a thickness of approximately Q8, followed by drying for 11 days.

この試片の炭化物形成WJにスラリー状の処理剤を約3
厘の厚さで塗布し、その後自然乾燥させた。
A slurry treatment agent was applied to the carbide forming WJ of this specimen for about 30 minutes.
It was applied to a thickness of 100 cm and then allowed to dry naturally.

上記処理材としては、−100メツVJ−の膨化物形成
元素としての710ニオブ(F・−Nb 、ニ第1 プロ696含む)粉末9696と、−100メッシ1の
KBF、粉末6g6との涙金粉末にコロイダルシリカ水
磐液6%を加えてIIIIした。
The above-mentioned treatment materials include 710 niobium (F・-Nb, including Nidai 1 Pro 696) powder 9696 as a swelling substance forming element of -100 mesh VJ-, KBF of -100 mesh 1, and lacrimal gold of powder 6 g6. 6% colloidal silica solution was added to the powder for III.

この試片を耐熱鋼製有蓋客器(直径18081゜高#1
00■、肉j11ml)に入れ、蓋と容器の隙間に7翼
ロボロン(F・−B、ボロンの含有tg。
This specimen was used as a heat-resistant steel boxbox (diameter 18081° height #1).
00 ■, meat j 11 ml) and put it in the gap between the lid and the container.

優)粉を置いてV−ルした。ついでその春−を大気中の
電気炉に入れ、900℃で3時間加熱した。
Excellent) Powder was placed and V-ru was applied. The spring was then placed in an electric furnace in the atmosphere and heated at 900°C for 3 hours.

そのIl、容器を電気炉より取り出し、空冷した。The container was taken out of the electric furnace and cooled in air.

ついで、容器から試片を取り出し、試片に付着していた
処理層を除去した。
Then, the sample was taken out from the container, and the treated layer adhering to the sample was removed.

以上の旭珊により試片の炭化物形成面には、約10pm
のニオブ廣化物層が形成されていた。なお、この際の母
材硬さは鋼のように焼入硬化しないため約Hマ80であ
った。
The above Asahi coral has about 10 pm on the carbide forming surface of the specimen.
A niobium fluoride layer was formed. Note that the hardness of the base material at this time was about Hma 80 because it does not harden by quenching like steel.

一方、*−試片に対し、浸炭剤を塗布することなく、た
だ同−処理剤を塗布して、同一条件で炭化物被覆処理を
試みたが、試片の表mtctよ、全く脚化物層が形成さ
れなかつた。
On the other hand, an attempt was made to coat the *-specimen with carbide under the same conditions by simply applying the same treatment agent without applying carburizing agent, but the surface mtct of the specimen showed that there was no pedicle layer at all. It was not formed.

実施例8 実施例1と同一のJI88に’?板状試片の片面にのみ
、スラリー状の浸炭剤を約15m厚さで塗布した後、乾
燥させた。上記浸炭剤として一100メツVaの木脚粉
BO96k 1−60’y Vaf)Na雪COi粉6
0%の混合粉末cl水ガフス水溶液lO%を添加して調
製した。
Example 8 The same JI88 as in Example 1'? A slurry carburizing agent was applied to a thickness of about 15 m only on one side of the plate-shaped specimen, and then dried. As the above carburizing agent, 1100 Metsu Va tree leg powder BO96k 1-60'y Vaf) Na snow COi powder 6
It was prepared by adding 0% mixed powder Cl water gaff aqueous solution 10%.

一方、−100メマV島の金属クロム粉66%と焼結防
止剤として一100メツV−のAl*Om粉tso*と
一100メ1VaのNH4Cl粉5g6とを混合して調
製した処理剤を、上端開口の耐熱鋼製客器に上端より8
〜4#lIIして゛いれた0次に試片を処理剤の中央部
に埋め込み、最後に処理剤の上に一10’0メツV、の
F・−B粉を8−の厚さで被覆した。ついでその容器を
大気中の電気炉に入れ、950℃で8時間加熱処理を行
った。その後、処理容器を電気炉より取り出し、そのま
まの状態で空冷した。冷却した処mya器から試験片を
とり出し、付着していた浸炭剤、および処理剤をワイヤ
プフVで簡単C#夫した。
On the other hand, a treatment agent prepared by mixing 66% of metallic chromium powder of -100 mV and 5 g of 1100 mV of Al*Om powder and 5 g of NH4Cl powder of 1100 mV as an anti-sintering agent was used. , 8 from the top of the heat-resistant steel customer appliance with an opening at the top.
Embed the sample containing ~4 #lII in the center of the treatment agent, and finally cover the treatment agent with 110'0V of F/-B powder to a thickness of 8. did. The container was then placed in an electric furnace in the atmosphere and heat treated at 950° C. for 8 hours. Thereafter, the processing container was taken out of the electric furnace and air-cooled in that state. The test piece was taken out from the cooled processing vessel, and the adhering carburizing agent and treatment agent were removed using a wire puff V.

このようにして得られた試片の断面組織を顕微鏡観察し
たところ、試片の炭化物形成面には、約16μmの厚さ
のクロム炭化物が形成されていた。
When the cross-sectional structure of the specimen thus obtained was observed under a microscope, it was found that chromium carbide with a thickness of about 16 μm was formed on the carbide-forming surface of the specimen.

なお、その母材硬さは約Hマ800であつた。The hardness of the base material was approximately 800 mm.

一方、上記試片に対し浸炭剤を塗布することなく、同一
処理条件で炭化物被覆処理を行ったが。
On the other hand, the above sample was subjected to carbide coating treatment under the same treatment conditions without applying a carburizing agent.

11B成されたクロム炭化物層の厚さは、わずか約壱μ
論にすlなかった。
The thickness of the chromium carbide layer formed by 11B is only about 1 μm.
There was no argument.

実施例4 αl麿厚さf)JI8818804 (炭素會有量約α
O+*)の板状試片の片面にのみ、実施例1上同−の浸
炭剤を約asmの厚さで塗布し、 1100℃で乾燥さ
せた。“ついでこの試片を、浴全量に対して10%のF
・−■粉を溶入さ豐た溶融硼砂浴中に浸漬し、試片を陰
極、容器を陽極として、α8A/dの電流密度で1時間
電解した・ 上記処理後の試片の断面組織を第8図の顕微鏡写真によ
り示す。写真より明らかなごとく、試片の炭化物形成面
には、約18μmのバナVつ五廣化物層が形成されてい
た。なお、その母材硬さは約Hマ840であつた。
Example 4 αl thickness f) JI8818804 (Carbon content approximately α
The carburizing agent of Example 1 and above was applied to a thickness of about asm only on one side of a plate-shaped specimen of O+*), and was dried at 1100°C. “Next, add this sample to 10% F of the total bath volume.
・-■ The powder was immersed in a molten borax bath and electrolyzed for 1 hour at a current density of α8A/d using the specimen as a cathode and the container as an anode.・The cross-sectional structure of the specimen after the above treatment was This is shown by the micrograph in FIG. As is clear from the photograph, an approximately 18 μm thick V-shaped carbide layer was formed on the carbide-forming surface of the specimen. The hardness of the base material was approximately 840 mm.

一方、浸廣剤を全く塗布することなく・同−試片に対し
、同一条件で炭化物被覆処理を行った。
On the other hand, the same specimen was subjected to carbide coating under the same conditions without applying any soaking agent.

その結果、試片の両面に形成されたバナジウム炭化物層
の厚さは、わずか08μmlcすぎなかうた。
As a result, the thickness of the vanadium carbide layer formed on both sides of the specimen was only 0.8 μml.

実施例5 αl■厚さの純コバルトの板状試片の片11iにのみ、
ヌラリー状の浸屓剤を約α@”m厚さで塗布し、乾燥さ
せた。上記浸次剤としては、−60IyFJ&のコーク
ス粉50q6と、−20メマシ、のKm CO,1) 
4096の混合粉末に、デキストリン水溶液10g6を
添加して調製した。この試片を、浴全量に対して696
に相当する量だけ金属T烏を陽極にして電解要人させた
溶融硼砂洛中に浸漬し。
Example 5 Only on piece 11i of a pure cobalt plate specimen with thickness αl■,
A nullary-like soaking agent was applied to a thickness of about α@”m and dried.The soaking agent used was -60IyFJ& coke powder 50q6 and -20Memashi Km CO, 1)
It was prepared by adding 10 g6 of a dextrin aqueous solution to the mixed powder of 4096. Add this sample to 696% of the total amount of the bath.
An amount corresponding to the amount of metal used as an anode was immersed in molten borax.

1000℃で2時間保持し、ついで収り出し空冷した。It was held at 1000°C for 2 hours, then taken out and cooled in the air.

以上の処理により、試片の膨化物形成面には。As a result of the above treatment, the swelling material-forming surface of the test piece is coated.

約1511IIIのダンタvle化物層が形成されてい
た。
A Danta Vle compound layer of about 1511 III was formed.

なお、この母材硬さは約Hマ90であった。Note that the hardness of this base material was about Hma90.

一方、同一試片に対し、浸脚剤を塗布することなく、同
一浴中で同一条件で羨化物被覆処理を試、、11 みたが、試片の表ff1il−は、□全く膨化物層が形
成されなかった。
On the other hand, the same specimen was coated with enzymatic material under the same conditions in the same bath without applying any soaking agent. Not formed.

実施例6 α1m厚さの純コバルトの板状試片の片面にのみ、実施
例1と同一のi!l炭剤を約1511の厚さで塗布し、
乾燥させた。ついでこの試片を耐熱鋼調有蓋容sIc入
れ、 $1CTIC1a αog9IC圧。
Example 6 The same i! Apply charcoal agent to a thickness of about 1511,
Dry. Next, this test piece was placed in a heat-resistant steel style lidded container sIC, and the pressure was set to $1CTIC1a αog9IC.

CH6α08気圧−H5C19暴慨圧よりなる混合ガス
を容器内に封入し、蕾をして、密閉容器とした。
A gas mixture consisting of CH6α08 atmospheres and H5C19 explosive pressure was sealed in a container, and a bud was formed to form a closed container.

ついでこの容器を大気中の電気炉に入れ、1000℃で
8時間加熱した。その後容器を電気炉より取り出し、空
冷した俵、容器より試片を取り出した。
This container was then placed in an electric furnace in the atmosphere and heated at 1000° C. for 8 hours. Thereafter, the container was taken out of the electric furnace, and the air-cooled bales and specimens were taken out from the container.

以上の処理により得られた試片の膨化物形成面には、約
15μmのチタン巌化物が形成されていた。また、その
母材硬さは豹Hマ9oでありた。
About 15 μm of titanium sulfide was formed on the expanded surface of the specimen obtained by the above treatment. Moreover, the hardness of the base material was 9o.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、および第8WAは、それぞれ実施例1゜倍)で
ある。 −38( 黄や り
FIG. 1 and 8th WA are each 1° times larger than the example. -38 (yellow)

Claims (1)

【特許請求の範囲】 (11N化物層を形成する表面以外の金属材料の表面に
浸炭剤を塗布した談、咳金属材料をチタン、バナVウム
、=オプ、タン一ル、およびクロムの各元素の内、いず
れか一種の存在下に加熱することにより1脚素を浸炭剤
から金属材料へ浸透拡散させる浸脚処理と、金属材料の
表11fIc任意の厚さの鯉化物被覆層を形成させる炭
化物形成処理とを同時に並行して仝 行うことを特徴とする金属材料の炭化物被覆方法 (2)金属材料は、薄板であることを特徴とする特許請
求の範囲第1項に記載の金属材料の炭化物被覆方法 (8)金属材料は、鋭角な突起部分を有する材料であっ
て、浸炭剤の塗布部分はすくなくとも突起部分の近傍で
あることを特徴とする特許令 請求の範囲第1項記載の金属材料の軟化物被覆方法
[Claims] (A story in which a carburizing agent is applied to the surface of a metal material other than the surface on which a 11N compound layer is formed.) Table 11 fIc of metal materials Table 11 fIc Carbide to form a carpide coating layer of arbitrary thickness (2) A method for coating a metal material with a carbide, characterized in that the formation treatment is carried out simultaneously and in parallel. Coating method (8) The metal material according to claim 1 of the Patent Law, wherein the metal material has an acute protrusion, and the carburizing agent is applied at least in the vicinity of the protrusion. Softened coating method
JP5561482A 1982-04-02 1982-04-02 Method for coating metal material with carbide Granted JPS58174567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5561482A JPS58174567A (en) 1982-04-02 1982-04-02 Method for coating metal material with carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5561482A JPS58174567A (en) 1982-04-02 1982-04-02 Method for coating metal material with carbide

Publications (2)

Publication Number Publication Date
JPS58174567A true JPS58174567A (en) 1983-10-13
JPS6141984B2 JPS6141984B2 (en) 1986-09-18

Family

ID=13003646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5561482A Granted JPS58174567A (en) 1982-04-02 1982-04-02 Method for coating metal material with carbide

Country Status (1)

Country Link
JP (1) JPS58174567A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053793A1 (en) * 2000-12-29 2002-07-11 Mladen Stupnisek Duplex process of diffusion forming of hard carbide layers on metallic materials
WO2004087984A1 (en) * 2003-03-31 2004-10-14 Toyo Aluminium Kabushiki Kaisha Carbon-coated aluminum and method for producing same
JP2008013820A (en) * 2006-07-06 2008-01-24 Honda Motor Co Ltd Wear-resistant component, and its manufacturing method
JP2010001508A (en) * 2008-06-18 2010-01-07 Toyota Central R&D Labs Inc Carburization heat treatment method and carburization source material
JP2019131868A (en) * 2018-02-01 2019-08-08 日立オートモティブシステムズ株式会社 Slide member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053793A1 (en) * 2000-12-29 2002-07-11 Mladen Stupnisek Duplex process of diffusion forming of hard carbide layers on metallic materials
WO2004087984A1 (en) * 2003-03-31 2004-10-14 Toyo Aluminium Kabushiki Kaisha Carbon-coated aluminum and method for producing same
US7327556B2 (en) 2003-03-31 2008-02-05 Toyo Aluminum Kabushiki Kaisha Carbon-coated aluminum and method for producing same
KR100880434B1 (en) * 2003-03-31 2009-01-29 도요 알루미늄 가부시키가이샤 Carbon-coated aluminum and method for producing same
JP2008013820A (en) * 2006-07-06 2008-01-24 Honda Motor Co Ltd Wear-resistant component, and its manufacturing method
JP2010001508A (en) * 2008-06-18 2010-01-07 Toyota Central R&D Labs Inc Carburization heat treatment method and carburization source material
JP2019131868A (en) * 2018-02-01 2019-08-08 日立オートモティブシステムズ株式会社 Slide member

Also Published As

Publication number Publication date
JPS6141984B2 (en) 1986-09-18

Similar Documents

Publication Publication Date Title
US2685543A (en) Production of chromium carbide surfaced wear resistant ferrous bodies
Mola et al. Formation of Al‐enriched surface layers through reaction at the Mg‐substrate/Al‐powder interface
US3770512A (en) Method for surface hardening steel and cemented carbides
JPS58174567A (en) Method for coating metal material with carbide
CA1098254A (en) Method for forming a carbide layer of a va group element of the periodic or chromium on the surface of a ferrous alloy article
US3622374A (en) Diffusion coating of ferrous articles
US4818351A (en) Method for the surface treatment of an iron or iron alloy article
CA1036976A (en) Anodically dissolving group v-a element into molten borate bath
EP0043742B1 (en) Method of gas-chromizing steels
US4202705A (en) Treating bath, forming a mixed carbide layer of Va-Group elements on a ferrous alloy surface and resulting product
US3912827A (en) Method for forming a chromium carbide layer on the surface of an iron, ferrous alloy or cemented carbide article
EP0063386B1 (en) Method for forming a carbide layer on the surface of a ferrous alloy article or a cemented carbide article
JPS59190355A (en) Method for hardening surface of iron alloy material
US3579373A (en) Carbiding
US1848437A (en) Metal alloy
US1913100A (en) Method of making hard alloys
JPS61291962A (en) Surface treatment of iron alloy material
CA1304658C (en) Method for the surface treatment of an iron or iron alloy article
Li et al. Effect of vacuum carburizing on surface properties and microstructure of a tungsten heavy alloy
Kovrov et al. Electrolytic aluminizing of low carbon steel as protection treatment for current leads against high temperature oxidation
US2046629A (en) Process of cementation
CA1052317A (en) Electrolytic formation of group va carbide on an iron, ferrous alloy or cemented carbide article
JPH0356307B2 (en)
JPH0424423B2 (en)
CN108998792A (en) A kind of high-current pulsed electron beam irradiation TC4 titanium alloy surface alloyage process