GB2598441A - Cultivating apparatus - Google Patents

Cultivating apparatus Download PDF

Info

Publication number
GB2598441A
GB2598441A GB2105733.6A GB202105733A GB2598441A GB 2598441 A GB2598441 A GB 2598441A GB 202105733 A GB202105733 A GB 202105733A GB 2598441 A GB2598441 A GB 2598441A
Authority
GB
United Kingdom
Prior art keywords
shell
cultivating
region
operable
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
GB2105733.6A
Other versions
GB202105733D0 (en
Inventor
Tai Yu-Feng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Efarm Global Agri Tech Ltd
Original Assignee
Efarm Global Agri Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efarm Global Agri Tech Ltd filed Critical Efarm Global Agri Tech Ltd
Publication of GB202105733D0 publication Critical patent/GB202105733D0/en
Publication of GB2598441A publication Critical patent/GB2598441A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/08Mechanical apparatus for circulating the air
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/16Dismountable or portable greenhouses ; Greenhouses with sliding roofs
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/26Electric devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mushroom Cultivation (AREA)
  • Hydroponics (AREA)
  • Greenhouses (AREA)
  • Cultivation Of Plants (AREA)

Abstract

A cultivating apparatus for plants or fungi includes a carrier 10, a fresh air supply, a humidifying mechanism, an illuminating mechanism, and a control mechanism comprising at least one thermometer, 72 air sensor 74 and humidity sensor 73 and a monitoring host 75 electrically connected to the thermometer, humidity sensor, air sensor, a fresh air fan 23, a heat exchanger 24, a water pump 37 and a light source 41. The apparatus may further comprise a self-moving blowing mechanism that may be mounted on a rack (25, figure 13) on the ceiling or a track (251’, figure 17) on the floor, the track/rack supporting a vehicle (26, 26’) moveable along the track/rack, a frame 27 connected to the vehicle, the frame supporting fans (28). The carrier may be a shipping container

Description

CULTIVATING APPARATUS BACKGROUND OF INVENTION
I. FIELD OF INVENTION
[0001] The present invention relates to the cultivation of plants and mushrooms, more particularly; to a cultivating apparatus for plants and mushrooms.
9. RELATED PRIOR ART
[0002] In agriculture, the cultivation of plants, such as vegetables and mushrooms, are vulnerable to the weather and environment. Yields can be 10 reduced or polluted due to problems in the weather or environment. To overcome these problems, screen-houses and greenhouses are built to isolate plants or mushrooms from external environments.
[0003] The screen-houses and greenhouses are handy in providing isolated farms. However, the use of the screen-houses or greenhouses is 15 not without any problems.
[0004] Firstly, buildings are not allowed in some agricultural land or farmland. In such a case, a screen house or greenhouse cannot be built.
[0005] Secondly, a screen-house or greenhouse is structurally weak and hence does not withstand strong wind in extreme weathers.
[0006] Thirdly, the location of a screen-house or greenhouse is fixed and hence the screen-house or green house cannot be moved from one place to another to avoid pollution or natural disasters such as floods.
[0007] Fourthly, a screen-house or greenhouse can be transported from one place to another only after it is taken apart. Hence, the screen-house or green house cannot be used to cultivate plants or mushrooms during the transportation.
[0008] Fifthly, a screen-house or greenhouse can only be used to s cultivate types of plants or mushrooms in season due to seasonal changes in the weather and irradiation. Hence, a screen-house or greenhouse cannot be used to cultivate types of plants or mushrooms out of season. Hence, oversupply or undersupply is inevitable.
[0009] The present invention is therefore intended to obviate or at least alleviate the problems encountered in prior art.
SUMMARY OF INVENTION
[0010] it is the primary objective of the present invention to provide a movable and reliable cultivating apparatus.
[0011] To achieve the foregoing objective, the cultivating apparatus includes a carrier, a fresh air supply, a humidifying mechanism, an illuminating mechanism, a blower mechanism, a sterilizing pool and a controlling mechanism. The carrier includes a shell, a partition, a partition door, a front door, and a lateral door. The partition is inserted in the shell to divide a space in the shell into a control region and a cultivating region.
The partition door is pivotally connected to the partition and operable to open or cut communication of the control region with the cultivating region. The front door is pivotally connected to a front wall of the shell and operable to open or cut communication of the cultivating region with exterior of the shell. The lateral door is pivotally connected to a lateral wall of the shell and operable to open or cut communication of the control region with the exterior of the shell. The fresh air supply includes an air filter, a fresh air fan and a heat exchanger. The air filter is supported on a lateral wall of the shell so that the exterior of the shell is in communication with the control region via the air filter_ The fresh air fan is in communication with the air filter at an end and in communication with the cultivating region at another end and operable to transmit fresh air into the cultivating region from the exterior of the shell. The heat exchanger is supported on the shell and operable to exchange heat with the cultivating region. The humidifying mechanism includes a water tank, a humidifier, sprinlders and a water pump. The water tank is inserted in the control region in the shell. The humidifier is inserted in the control region in the shell, in communication with the water tank at an end, in coinmunication with the cultivating region at another end, and operable to provide humidifying air. The sprinklers are inserted in the cultivating region in the shell. The water pump is inserted in the control region in the shell (11), in communication with the water tank at an end, and in communication with the sprinklers at another end. The illuminating mechanism includes at least one first light source inserted in the cultivating region in the shell and operable to emit first light. The controlling mechanism includes at least one thermometer, at least one humidity sensor, at least one air sensor and a monitoring host. The thermometer is inserted in the cultivating region in the shell, and operable to detect a value of temperature in the cultivating region. The humidity sensor is inserted in the cultivating region in the shell, and operable to detect a value of humidity in the cultivating region.
The air sensor is inserted in the cultivating region in the shell, and operable to detect a value of air quality in the cultivating region. The monitoring host is electrically connected to the thermometer, the humidity sensor, the air sensor, the fresh air fan, the heat exchanger, the water pump and the first light source, and operable to actuate the water pump, the fresh air fan, the heat exchanger, the humidifier and the first light source according to predetermined values of the temperature, humidity and air quality.
[0012] Other objectives, advantages and features of the present invention will be apparent from the following description referring to the attached drawings.
BRIEF DESCRIPTION OF DRAWINGS
[0013] The present invention will be described via detailed illustrations of three embodiments referring to the drawings wherein: FIG. 1 is a perspective view of a cultivating apparatus according to the first embodiment of the present invention: Fla 2 is another perspective view of the cultivating apparatus shown in FIG. I; FIG. 3 is a cut-away view of the cultivating apparatus shown in FIG. 1; FIG. 4 is another cut-away view of the cultivating apparatus of FIG. 1; FIG. 5 is an enlarged partial and cut-away view of the cultivating 20 apparatus shown in FIG. I; FIG. 6 is a cross-sectional view of the cultivating apparatus taken along a line I-I shown in FIG. 1; FIG. 7 is an enlarged partial view of the cultivating apparatus shown in FIG. 6; FIG. 8 is another enlarged partial view of the cultivating apparatus shown in FIG. 6; FIG. 9 is a cross-sectional view of the cultivating apparatus taken along a line II-II shown in FIG. 6; FIG. 10 is a cross-sectional view of the cultivating apparatus taken along a line shown in FIG. 6; FIG. 11 is a perspective of a shelf inserted in the cultivating apparatus shown in FIG. 3; FIG. 12 is a block diagram of a control module of the cultivating apparatus shown in FIG. 3; FIG. 13 is a cut-away view of a cultivating apparatus according to the second embodiment of the present invention; FIG. 14 is an enlarged partial view of the cultivating apparatus shown in FIG. 13; FIG. 15 is an enlarged partial and cut-away view of the cultivating 15 apparatus shown in FIG. 13, containing two shelves; FIG. 16 is an enlarged perspective view of a vehicle of the cultivating apparatus shown in FIG. 15; FIG. 17 is a cut-away view of a cultivating apparatus according to the third embodiment of the present invention; and FIG. 18 is an enlarged partial view of the cultivating apparatus shown in FIG. 17.
DETAILED DESCRIPTION OF THE EMBODIMENTS
100141 Referring to FIGS. I through 12, a cultivating apparatus includes a carrier 10, a fresh air supply (not numbered), a humidifying mechanism (not numbered), an illuminating mechanism (not numbered), a blower mechanism (not numbered), a sterilizing pool 60 and a controlling mechanism (not numbered) according to a first embodiment of the present invention.
[0015] Referring to FIGS. Ito 5, the carrier 10 includes a shell 11, a partition 12, a partition door 13, two front doors 142 and 144, a lateral door 146 and a horizontal plate 15.
100161 The shell 11 can be made of a standard container for shipment.
Preferably, the size of the shell 11 is 20x40x40 feet. The shell 11 includes a roof (not numbered), a floor (not numbered), a front wall (not numbered), 10 a rear wall (not numbered) and two lateral walls (not numbered).
[00171 The lateral entrance 112 is made in one of the lateral walls of the shell 11, The lateral entrance 112 is in communication with a space in the shell 11.
10018] A front entrance 114 is made in the front wall of the shell 11.
The front entrance 114 is in communication with the space in the shell 11.
100191 The partition 12 is inserted in the shell 11, thereby dividing the space in the hell 11 into a control region A and a cultivating region B. The partition 12 includes a partition entrance 122 through which the control region A is in communication with the cultivating region B. The lateral entrance 112 allows access to the control region A. The front entrance 114 allows access to the cultivating region B. [00201 The partition door 13 is pivotally connected to the partition 12.
The partition door 13 is operable to close the partition entrance 122.
[00211 Each of the front doors 142 and 144 is pivotally connected to a front wall of the shell 11. Each of the front doors 142 and 144 is pivoted independently of the other to close the front entrance 114. Each of the front doors 142 and 144 includes at least one aperture 143. Each of the front doors 142 and 144 preferably includes several apertures 143. The space in the shell 11 (the cultivating region B) is in communication with the exterior of the shell 11 via the apertures 143. Each of the apertures 143 is covered with a filter or screen (not shown).
[0022] The lateral door 146 is pivotally connected to a lateral wall of the shell 11. The lateral door 146 is used to close the lateral entrance 112.
[00231 Referring to FIGS. 6 and 7, the horizontal plate 15 and the lower portions of the front, rear and lateral walls of the shell 11 together define at least one drain region C. A portion of the horizontal plate 15 in the cultivating region B is formed with several sinkholes 151. The cultivating region B is in communication with the drain region C via the sinkholes 151.
[0024] Referring to FIGS. 2 through 9, the fresh air supply includes an air filter 21, at least one fresh air pipe 22, a fresh air fan 23 and a heat exchanger 24.
[0025] The air filter 21 is supported on one of the lateral walls of the shell II so that the interior of the shell 11 is in communication with the control region A via the air filter 21. Preferably, the air filter 21 is a window provided with a screen.
[0026] The fresh air pipes 22 are inserted in the shell 11. Each of the fresh air pipes 22 includes a portion in the control region A and another portion in the cultivating region B. Referring to FIG. 10, the portion of each of the fresh air pipes 22 in the cultivating region B is formed with several orifices 221.
[0027] The fresh air fan 23 is inserted in the control region A in the shell 11. The fresh air fan 23 is in communication with the air filter 21 and the fresh air pipes 22. Selectively, air is transmitted into the cultivating region B from the exterior of the shell 11 via the air filter 21 and the fresh air pipes 22.
[00281 The heat exchanger 24 is supported on an external face of the rear wall of the shell 11. The heat exchanger 24 is connected to the fresh air pipes 22 so that heat-exchanging air is transmitted to the fresh air pipes 22 (cultivating region B) from the heat exchanger 24 to keep the air transmitted by the fresh air fan 23 at a predetermined value of temperature.
[0029] Referring to FIGS. 3 through 10, the humidifying mechanism includes a water tank 31, a water filter 32, a sterilizer 33, at least one humidifying pipe 34, a humidifier 35, several sprinklers 36, a water pump 37, and a hose 38.
[0030] The water tank 31 is inserted in the control region A in the shell 11.
[00311 The water filter 32 is inserted in the control region A in the shell 11. The water filter 32 is in communication with the water tank 31 at an end and is in communication with an external water source (not shown) at another end. The water filter 32 is actuated by the amount of water contained in the water tank 31 for example to filter water transmitted into the water tank 31 from the external water source. Preferably, the water filter 32 is a reverse osmosis filter.
[00321 The sterilizer 33 is in communication with the water tank 31 and is actuated to sterilize the water contained in the water tank 31. The sterilizer 33 is preferably an ozone producer or an ultralight emitter.
[00331 The humidifying pipe 34 is inserted in the shell 11 and includes a portion in the control region A and another portion in the cultivating region B. Several humidifying bores 341 are made in the portion of the humidifying pipe 34 in the cultivating region B, arranged along a length of the humidifying pipe 34.
[00341 The humidifier 35 is inserted in the control region A in the shell 11, The humidifier 35 is in communication with the water tank 31 at an end and is in communication with the humidifying pipe 34 at another end. The humidifier 35 is actuated by the amount of the water contained in the water tank 31. for example to vibrate the water to provide humidified air. The humidified travels along the humidifying pipe 34 and then goes into the cultivating region B via the humidifying bores 341 to increase the humidity in the cultivating region B. [0031 Referring to FIG. 10, the sprinklers 36 are inserted in the cultivating region B in the shell 11.
[0036] Referring to FIGS. 8 and 9, the water pump 37 is inserted in the control region A in the shell 11. The water pump 37 is in communication with the water tank 31 at an end and is in communication with the sprinklers 36 at another end. Selectively, the water pump 37 is actuated to transmit the water into the sprinklers 36 from the water tank 31. Then, the water leaves the sprinklers 36.
[00371 Referring to FIG. 5, the hose 38 is in communication with the water pump 37 at an end and is in communication with the drain region C at another end (not shown). The hose 38 includes a valve 381 operable to open or shut the communication of the hose 38 with the drain region C so that the drain region C can be washed.
[00381 Referring to FIGS, 2 through 10, the illuminating mechanism includes a first light source 41 and a second light source 42.
[00391 The first light source 41 is inserted in the cultivating region B in the shell 11. The first light source 41 emits first light. The first light preferably stimulates the growth of plants or mushrooms cultivated in the shell 11 or simply illuminates.
[00401 The second light source 42 is inserted in the control region A in the shell 11. The second light source 42 is actuated to emit second light. The second light can be identical to or different from the first light.
[00411 Referring to FIGS. 1, 3 through 5 and 9, the blower mechanism includes a blower 51 and a sensor 52.
(00421 The blower 51 is inserted in the shell 11 corresponding to the lateral entrance 112. The blower 51 is actuated to send wind toward the exterior of the shell 11 through the lateral entrance 112.
[0043] Referring to FIG. 1, the sensor 52 is inserted in the shell 11 corresponding to the lateral entrance 112. The sensor 52 is actuated by opening the lateral door 146.
[0044] Referring to FIGS. 3 and 5, the sterilizing pool 60 is located at the portion of the horizontal plate 155 (or the floor of the shell 11) in the control region A corresponding to the partition door 13. Preferably, the sterilizing pool 60 is a tray or tank for containing sterilizing liquid.
[0045] Referring to FIGS. 1,4 through 10 and 12, the controlling mechanism includes at least one camera 71, at least one thermometer 72, at least one humidity sensor 73, at least one air sensor 74 and a monitoring host 75.
[0046] Preferably, several cameras 71 are supported on the shell 11.
Some of the cameras 71 are located in the shell 11. The other cameras 71 are located out of the shell 11.
[0047] Referring to FIG. 10, preferably, a thermometer 72 is inserted is in the cultivating region B in the shell 11, another thermometer 72 is inserted in the control region A, and still another thermometer 72 is supported on the external face of the shell 11. Thus, values of temperature in the control region A and the cultivating region B and out of the shell are detected.
[00481 Referring to FIG. 10, preferably, there is a humidity sensor 73 in the cultivating region B in the shell 11, another humidity sensor 73 is inserted in the control region A, and another humidity sensor 73 is supported on the external face of the control region A. Thus, values of humidity in the control region A and the cultivating region 13 and out of the shell 11 are Ii detected.
100491 Referring to FIG. 10, preferably, an air sensor 74 is inserted in the cultivating region B in the shell 11, another air sensor 74 is inserted in the control region A, and another air sensor 74 is supported on the external face of the shell 11. Thus, air quality such as carbon dioxide concentration, particulate matter concentration in the control region A and the cultivating region B and out of the shell 11 is detected.
100501 Referring to FIGS. 8 and 12, the monitoring host 75 is electrically connected to the cameras 71, the thermometers 72, the humidity 10 sensors 73, the air sensors 74, the fresh air fan 23, the heat exchanger 24, the sterilizer 33, the humidifier 35, the water pump 37, the first light source 41, the second light source 42, the blower 51 and the sensor 52.
100511 The monitoring host 75 includes a network connector 751 and a control panel 752. The network connector 751 is used for connection to a network in a wireless manner or via a cable to transmit data. With the network connector 751, a user monitors the values of air quality, temperature, humidity and time of irradiation in the cultivating region B. Preferably, a cable network can be Ethernet, the Internet, the cable television network ("CATV"), the public switched telephone network ("PSTN"). A wireless network can be a mobile phone network (40 or 50) or a Wi-Fl network.
100521 The control panel 752 is operable by the user to enter data. In addition, the control panel 752 shows data to the user.
100531 Referring to Fla 11, an optional shelf 80 is inserted in the cultivating region B in the shell 11 and supported on the horizontal plate 155 (or the flower of the shell 11). Plants or mushrooms (not shown) can be supported and cultivated on the shelf 80. The shelf 80 can be omitted if it is not needed.
[00541 The configuration of the cultivating apparatus has been described. The operation of the cultivating apparatus will be discussed.
[00551 Referring to FIGS. 3 through 12, plants or mushrooms (not shown) are supported and cultivated on the shelf 80, which is inserted in the cultivating region B. Based on the natures and the curves of the growth of the plants or mushrooms, the monitoring host 75 is used to set the values of the air quality, temperature, humidity and irradiation in the cultivating region B. Thus, the cultivating region B provides an optimal environment for the growth of the plants or mushrooms. Alternatively, the cultivating region B can adjust the period of growth of the plants or mushrooms based on demands from the market.
[0056] For example, firstly, according to the value of humidity detected by the humidity sensor 73, the monitoring host 75 instructs the water pump 37 of the humidifying mechanism to pump water into the cultivating region B from the water tank 31 through the humidifying pipe 34. Thus, the humidity in the cultivating region B is adjusted.
[00571 Secondly, based on the value of temperature detected by the thermometer 72 and/or the value(s) detected by the air sensor 74, the monitoring host 75 instructs the fresh air fan 23 and the heat exchanger 24 of the fresh air supply to transmit fresh air into the cultivating region B from the exterior of the shell 11 via the air filter 21 and the fresh air pipes 22. Thus, the temperature and air quality in the cultivating region B are retained. A difference in the air pressure due to the transmission of the fresh air into the cultivating region B via the fresh air pipes 22 makes air go to the exterior of the shell 11 from the cultivating region B via the apertures 143 in the front doors 142 and 144. Therefore, the air pressure in the cultivating region B and the air pressure in the exterior of the shell 11 are balanced, and the change of air and the regulation of the temperature, humidity and air quality are achieved.
[0058] Thirdly, actuated by the sensor 52, the monitoring host 75 instructs the blower 51 to direct wind to the lateral entrance 112 in a direction toward the exterior of the shell 11.
[0059] Moreover, during the growth of the plants or mushrooms, the monitoring host 75 is used to observe the growth of the plants or mushrooms and adjust the temperature, humidity and air quality and irradiation in the cultivating region B to make sure that the plants or mushrooms grow at a desired rate.
[0060] Referring to FIGS. 12 through 15, there is shown a cultivating apparatus according to a second embodiment of the present invention. The second embodiment is like the first embodiment except for several features.
[00611 Firstly, an air-conditioning pipe AL is used instead of the fresh air pipes 22 and the humidifying pipe 34, The air-conditioning pipe AL is a combination of the fresh air pipes 22 with the humidifying pipe 34. The air-conditioning pipe AL is inserted in the shell 11. The air-conditioning pipe AL includes a portion in the control region A and another portion in the cultivating region B. The air-conditioning pipe AL is connected to the humidifier 35, the fresh air fan 23 and the heat exchanger 24. Preferably, the air-conditioning pipe AL includes several vents AL1 in a side. Air goes out of the air-conditioning pipe AL via the vents ALI.
[00621 Secondly, referring to FIGS. 13, 15 and 16, the cultivating apparatus further includes a self-moving blowing mechanism in the cultivating region B. The self-moving blowing mechanism includes a rack 25, a vehicle 26, a frame 27 and several fans 28.
[00631 The rack 25 includes track 251 and crossbars 252. Each of the crossbars 252 includes two ends connected to the lateral walls of the shell 11. The tracks 251 are supported on the crossbars 252. That is, the tracks 251 are hung on the crossbars 252 in the shell 11.
[00641 The vehicle 26 is electrically connected to the monitoring host 75. The vehicle 26 is supported on the tracks 251 of the rack 25. The vehicle 26 is movable to and fro along the tracks 251.
[0065] The frame 27 is connected to the vehicle 26 at an upper end.
Preferably, a caster (not numbered) is connected to a lower end of the frame 27.
[00661 The fans 28 arc supported on the frame 27. The fans 28 are electrically connected to the monitoring host 75. The fans 28 are used to blow air to the plants or mushrooms.
[00671 Thirdly, -referring to FIGS. 15 and 16, the illuminating mechanism further includes at least one third light source 43 electrically connected to the monitoring host 75. Preferably, several third light sources 43 are used to cast third light on shelf's 80 and the frame 27, respectively. The third light is good for the growth of the plants or mushrooms.
[0068] Referring to FIGS. 17 and 18, the cultivating apparatus includes an additional self-moving blowing mechanism in the cultivating region B according to a third embodiment of the present invention. The third embodiment is like the second embodiment except that the self-moving blowing mechanism includes tracks 251' and a vehicle 26' instead of the tracks 25 and the vehicle 26.
[0069] The tracks 251' are supported on the horizontal plate 15 (or the floor ofthe shell 11) in the cultivating region 13.
[0070] The vehicle 26' is supported on the tracks 251'. The vehicle 26' is electrically connected to the monitoring host 75. Thus, the vehicle 26' is movable to and fro along the tracks 251'.
[0071] The frame 27 is carried on the vehicle 26'.
[0072] The present invention has been described via the illustration of the embodiments. Those skilled in the art can derive variations from the embodiments without departing from the scope of the present invention. Therefore, the embodiments shall not limit the scope of the present 20 invention defined in the claims.

Claims (7)

  1. CLAIMS1. A cultivating apparatus comprising: a carrier (10) comprising: a shell (II); a partition (12) inserted in the shell (11) to divide a space in the shell (Ii) into a control region (A) and a cultivating region (B); a partition door (13) pivotally connected to the partition (12) and operable to open or cut communication of the control region (A) with the cultivating region (B); a front door (142, 144) pivotally connected to a front wall of the shell (11) and operable to open or cut communication of the cultivating region (B) with exterior of the shell (11); and a lateral door (146) pivotally connected to a lateral wall of the shell (11) and operable to open or cut communication of the control region (A) with the exterior of the shell (11); a fresh air supply comprising: an air filter (21) supported on a lateral wall of the shell (11) so that the exterior of the shell (11) is in communication with the control region (A) via the air filter (21); a fresh air fan (23) in communication with the air filter (21) at an end and in communication with the cultivating region at another end and operable to transmit fresh air into the cultivating region (B) from the exterior of the shell (11); and a heat exchanger (24) supported on the shell (11) and operable to exchange heat with the cultivating region (B); a humidifying mechanism comprising: a water tank (31) inserted in the control region (A) in the shell (11); a humidifier (35) inserted in the control region (A) in the shell (11), in communication with the water tank (31) at an end, in communication with the cultivating region (B) at another end, and operable to provide humidifying air; sprinklers (36) inserted in the cultivating region (B) in the shell (11); and a water pump (37) inserted in the control region (A) in the shell (11), in communication with the water tank (31) at an end, and in communication with the sprinklers (36) at another end; an illuminating mechanism comprising at least one first light source (41) inserted in the cultivating region (B) in the shell (11) and operable to emit first light; and a controlling mechanism comprising: at least one thermometer (72) inserted in the cultivating region (B) in the shell (11), and operable to detect a value of temperature in the cultivating region (B); at least one humidity sensor (73) inserted in the cultivating region (B) in the shell (11), and operable to detect a value of humidity in the cultivating region (B); at least one air sensor (74) inserted in the cultivating region (B) in the shell (11), and operable to detect a value of air quality in the cultivating region (B); and a monitoring host (75) electrically connected to the thermometer (72), the humidity sensor (73), the air sensor (74), the fresh air fan (23), the heat exchanger (24), the water pump (37) and the first light source (41), and operable to actuate the water pump (37), the fresh air fan (23), the heat exchanger (24), the humidifier (35) and the first light source (41) according to predetermined values of the temperature, humidity and air quality.
  2. 2. The cultivating apparatus according to claim 1, further comprising an air-conditioning pipe (AL) comprising a first portion in the control region (A), a second portion in the cultivating region (B), and vents (AL I) in the second portion of the air-conditioning pipe (AL), wherein the air-conditioning pipe (AL) is connected to the humidifier (35), the fresh air fan (23) and the heat exchanger (24).
  3. 3. The cultivating apparatus according to claim 1, wherein the humidifying mechanism further comprises a water filter (32) inserted in the control region (A) in the shell (11), and connected to the water tank (31) and an external water source.
  4. 4. The cultivating apparatus according to claim 1, wherein the controlling mechanism further comprises at least one camera (71) inserted in the shell (11) and electrically connected to the monitoring host (75).
  5. 5. The cultivating apparatus according to claim 1, wherein the front door (142, 144) comprises at least one aperture (143).
  6. 6. The cultivating apparatus according to claim 1, further comprising a self-moving blowing mechanism comprising: a rack (25) comprising crossbars (252) inserted in the cultivating region (B) in the shell (11) and a track (251) supported on the crossbars (252); a vehicle (26) movable along the track (251) and electrically connected to the monitoring host (75); a frame (27) comprising an upper end connected to the vehicle (26); and fans (28) supported on the frame (27) and electrically connected to the monitoring host (75).
  7. 7. The cultivating apparatus according to claim 1, further comprising a self-moving blowing mechanism comprising: a track (251') supported on a lower portion of the shell (11); a vehicle (26') movable along the track (251') and electrically connected to the monitoring host (75); a frame (27) comprising a lower end connected to the vehicle (26'); and fans (28) supported on the frame (27) and electrically connected to the monitoring host (75).The cultivating apparatus according to claim 1, wherein the shell (11) comprises a floor, and the carrier (10) further comprises a horizontal plate (15) extending in the shell (11) to provide a drain region (C) between the floor of the shell (11) and the horizontal plate (15).The cultivating apparatus according to claim 1, wherein the illuminating mechanism further comprises at least one second light source (42) inserted in the control region (A) in the shell (11) and operable to emit light.The cultivating apparatus according to claim 1, wherein the cultivating region (B) further comprises at least one shelf (80).The cultivating apparatus according to claim 10, wherein the illuminating mechanism further comprises at least one third light source 8. 9. 10. 11.for casting light onto the shelf (80).
GB2105733.6A 2020-05-08 2021-04-22 Cultivating apparatus Pending GB2598441A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109205631U TWM598595U (en) 2020-05-08 2020-05-08 Plant (fungus) planting equipment

Publications (2)

Publication Number Publication Date
GB202105733D0 GB202105733D0 (en) 2021-06-09
GB2598441A true GB2598441A (en) 2022-03-02

Family

ID=72601315

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2105733.6A Pending GB2598441A (en) 2020-05-08 2021-04-22 Cultivating apparatus

Country Status (11)

Country Link
KR (1) KR20210137389A (en)
AU (1) AU2021202591A1 (en)
CA (1) CA3117149A1 (en)
DE (1) DE102021110995B4 (en)
DK (1) DK202100403A1 (en)
FR (1) FR3109856A1 (en)
GB (1) GB2598441A (en)
IL (1) IL282601A (en)
NL (1) NL2028055B1 (en)
PL (1) PL437786A1 (en)
TW (1) TWM598595U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157006A1 (en) * 2022-02-16 2023-08-24 Shabat Matan Apparatus for growing consumable products

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493808A (en) * 1993-05-25 1996-02-27 Apolan Pty Ltd. Controlled atmosphere storage chamber
US20030101645A1 (en) * 2001-12-04 2003-06-05 Robert Cole Hydroponic growing enclosure and method for the fabrication of animal feed grass from seed
US20140115958A1 (en) * 2012-10-26 2014-05-01 GreenTech Agro LLC Self-sustaining artificially controllable environment within a storage container or other enclosed space
CN108142168A (en) * 2018-02-12 2018-06-12 宁夏大学 The self-propelled atomization cooling of facility suspension, spray, spray fertilizer all-in-one machine
CN208210985U (en) * 2017-12-04 2018-12-11 湖州慧能机电科技有限公司 A kind of slidingtype greenhouse plants sprinkling winterized equipment
CN208754806U (en) * 2018-07-31 2019-04-19 淮安信息职业技术学院 A kind of melon and fruit greenhouse apparatus
CN111296129A (en) * 2020-03-31 2020-06-19 惠州可道智慧科技有限公司 Intelligent plant generation-adding breeding cabin
CN212851976U (en) * 2020-07-10 2021-04-02 莫顺功 Forestry seedling raising heating apparatus
CN213044429U (en) * 2020-05-22 2021-04-27 宇丰环球农业科技有限公司 Plant and fungus planting equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234812B1 (en) 2008-12-03 2012-08-07 Terry Colless Fodder-growing enclosure
WO2011047436A1 (en) * 2009-10-23 2011-04-28 David Ivanovic Methods and apparatus for growing plants
KR200462981Y1 (en) 2010-03-23 2012-10-18 대한민국 Device for plant cultivator using container
DK2866551T3 (en) * 2012-06-29 2020-01-20 Freight Farms Inc SYSTEM AND PROCEDURE FOR GENERATING HIGH PRODUCT PLANT PRODUCTION IN ANY ENVIRONMENT
US9936650B2 (en) * 2014-09-09 2018-04-10 Podgrow, LLC Secure and externally controllable growing enclosure
KR20160136923A (en) 2015-05-21 2016-11-30 류용수 The Movable Hydroponics Systems for Growing Green Fodder and Plants
PL416812A1 (en) * 2016-04-11 2017-04-24 Balticon Spółka Akcyjna Container for growing plants
CN207151336U (en) * 2017-07-17 2018-03-30 吴齐放 The plant cultivation growth storehouse of ecological ring control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493808A (en) * 1993-05-25 1996-02-27 Apolan Pty Ltd. Controlled atmosphere storage chamber
US20030101645A1 (en) * 2001-12-04 2003-06-05 Robert Cole Hydroponic growing enclosure and method for the fabrication of animal feed grass from seed
US20140115958A1 (en) * 2012-10-26 2014-05-01 GreenTech Agro LLC Self-sustaining artificially controllable environment within a storage container or other enclosed space
CN208210985U (en) * 2017-12-04 2018-12-11 湖州慧能机电科技有限公司 A kind of slidingtype greenhouse plants sprinkling winterized equipment
CN108142168A (en) * 2018-02-12 2018-06-12 宁夏大学 The self-propelled atomization cooling of facility suspension, spray, spray fertilizer all-in-one machine
CN208754806U (en) * 2018-07-31 2019-04-19 淮安信息职业技术学院 A kind of melon and fruit greenhouse apparatus
CN111296129A (en) * 2020-03-31 2020-06-19 惠州可道智慧科技有限公司 Intelligent plant generation-adding breeding cabin
CN213044429U (en) * 2020-05-22 2021-04-27 宇丰环球农业科技有限公司 Plant and fungus planting equipment
CN212851976U (en) * 2020-07-10 2021-04-02 莫顺功 Forestry seedling raising heating apparatus

Also Published As

Publication number Publication date
DE102021110995A1 (en) 2021-11-11
IL282601A (en) 2021-12-01
DE102021110995B4 (en) 2024-04-25
PL437786A1 (en) 2021-11-15
GB202105733D0 (en) 2021-06-09
KR20210137389A (en) 2021-11-17
FR3109856A1 (en) 2021-11-12
DK202100403A1 (en) 2022-01-04
AU2021202591A1 (en) 2021-11-25
CA3117149A1 (en) 2021-11-08
NL2028055A (en) 2021-11-16
TWM598595U (en) 2020-07-21
NL2028055B1 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
US20210360872A1 (en) Cultivating Apparatus
KR101692486B1 (en) LED plant factory automation systems
US8468741B2 (en) Semi-automated crop production system
US20200037524A1 (en) Modular Farm with Carousel System
US20030005626A1 (en) Plant cultivator and control system therefor
US20160029578A1 (en) Aeroponic Commercial Plant Cultivation System Utilizing a Grow Enclosure
JP3227371U (en) Plant and mushroom breeding equipment
KR102176107B1 (en) Device for cultivating plants
KR20150105797A (en) plants cultivating apparatus for family use
KR20150086867A (en) Ginseng hydroponics cultivation system
NL2028055B1 (en) Cultivating apparatus
KR102291473B1 (en) Small hydroponics cultivation apparatus
CA3144288A1 (en) Greenhouse
JP2004016232A (en) System for greenhouse cultivation of mushroom and the like
KR20120065202A (en) Plant growth control device and control system by automatic for greenhouse
CN213044429U (en) Plant and fungus planting equipment
JP2008104364A (en) Device for physiological management of plants
KR200357431Y1 (en) Vegatation Cultivating Equipment for Home Use
KR102348811B1 (en) IOT Convergence Mobile Smart Mushroom Cultivation Facility
KR101666194B1 (en) Multifunctional household device for cultivating vegetable and sprout
WO2021077197A1 (en) Plant-growing apparatus with gas cavity
CN219125017U (en) Planting cabinet
US20230073284A1 (en) Automated plant growing system and methods
JP2020065483A (en) Plant cultivation system
RU2787699C1 (en) Indoor greenhouse