GB2483330A - Engine preheating in a motor vehicle - Google Patents

Engine preheating in a motor vehicle Download PDF

Info

Publication number
GB2483330A
GB2483330A GB1113292.5A GB201113292A GB2483330A GB 2483330 A GB2483330 A GB 2483330A GB 201113292 A GB201113292 A GB 201113292A GB 2483330 A GB2483330 A GB 2483330A
Authority
GB
United Kingdom
Prior art keywords
engine
cooling circuit
storage unit
internal combustion
thermal energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1113292.5A
Other versions
GB201113292D0 (en
Inventor
Torsten Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Priority to GB1113292.5A priority Critical patent/GB2483330A/en
Publication of GB201113292D0 publication Critical patent/GB201113292D0/en
Publication of GB2483330A publication Critical patent/GB2483330A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • F02N19/10Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of engine coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

An engine configuration for a motor vehicle having an internal combustion engine 11 with direct fuel injection, which is thermally coupled to a cooling circuit 12 to dissipate waste heat occurring in operation, and having a storage unit 20, which can be coupled to the cooling circuit 12, for storing thermal energy, which is implemented for the purpose of discharging the stored thermal energy to the cooling circuit 12 and/or to the engine 11 before the engine 11 is put into operation and/or during a warm-up phase thereof. The apparatus further comprising a regulating module 32 which couples or decouples the storage unit 20 to or from the cooling circuit 12 as a function of the temperature of the engine 11 and/or the coolant 28 of the cooling circuit 12. The regulating module 32 may also be coupled to a sensor unit 34 for recognizing door or lock operation 36,38, seat occupation 40 and/or ignition activation 42 to initiate preheating of the engine.

Description

Engine configuration for a motor vehicle
Description
Technical Area The present invention relates to an engine configuration, which has an internal combustion engine having direct fuel injection, and a method for heating an internal combustion engine before and/or when it is put into operation and/or during a warn-up phase.
Background
Stricter exhaust gas standards and corresponding statutory provisions provide increasingly improved and environmentally-compatible exhaust gas quality of internal combustion engines. In accordance with the rising requirements with respect to permissible limiting values of exhaust gases and exhaust gas components as well as soot particles or similar materials contained in the combustion exhaust gas, the vehicle producers and engine developers are encouraged to further optimize the combustion procedures in the internal combustion engine.
It has been shown that the combustion only reaches an advantageous untreated emission composition with increasing temperature of the engine. In a starting or warm-up phase of the engine, i.e., from the starting time until reaching a predefined operating temperature, which is typically around approximately 90°C -105°C, for example, the mixture formation of the fuel cannot be performed optimally. As a result, in particular in the starting or warm-up phase of an internal combustion engine, the permissible limiting values for the chemical substances and particles contained in the engine exhaust gas are exceeded under certain circumstances.
Furthermore, experiments have shown that in particular in engines having direct fuel injection, in particular having direct gasoline injection, condensing of the fuel can occur, namely if a fuel-air mixture is injected into the still relatively cold combustion chamber of the engine. Condensate formation can occur in particular in this case on the still comparatively cold inner wall sections of the cylinder or the piston inner wall. Phenomena such as local over-enrichment of the fuel mixture can occur in this case, which could result in increased soot formation in the combustion procedure.
The swirling and time span for the formation of a fuel mixture by the direct injection of the fuel into the combustion chamber of the engine is also comparatively short in internal combustion engines having direct fuel injection.
The mentioned problems with respect to fuel condensation or local-over enrichment can therefore have particularly severe consequences in the case of direct-injection internal combustion engines for the quality of the exhaust gas and for the noncompliance with required exhaust gas standards, in particular in the starting or warm-up phase of the engine.
It is therefore the object of the present invention to reduce the exhaust gas quality and in particular the soot and fine dust component of the exhaust gas in the starting and/or warm-up phase of a motor vehicle internal combustion engine.
The invention is to be distinguished by the most minor possible design measures and structural alterations of a motor vehicle engine configuration and is to be implementable with low cost and production expenditure.
Invention The object on which the invention is based is achieved by an engine configuration according to Claim 1, a motor vehicle according to Claim 10, and a method according to Claim 11.
Individual advantageous embodiments of the invention are the subject matter of the respective dependent claims.
The engine configuration is designed for a motor vehicle and has an internal combustion engine having direct fuel injection. Furthermore, a cooling circuit is provided, with which the internal combustion engine is thermally coupled to dissipate its waste heat occurring in operation. A storage unit is further provided for the storage of thermal energy, which can be coupled to the cooling circuit and is implemented for the purpose of discharging stored thermal energy to the cooling circuit and/or directly to the engine before the internal combustion engine is put into operation and/or during a starting or warm-up phase of the internal combustion engine.
In this way, the temperature of the engine components, in particular of the engine block or those areas of the engine which directly adjoin the combustion chamber, can advantageously already be warmed up before the internal combustion engine is put into operation and/or during a warm-up phase directly chronologically following the putting into operation. Condensing of the fuel on the previously comparatively cold inner walls of the combustion chamber can therefore be effectively counteracted and the pollutant emission, in particular the particle formation, can be reduced during the starting and/or warm-up phase of the engine.
The fuel consumption in the warm-up phase can also be reduced and the warm-up phase per se can be shortened in time by the improved, in particular accelerated heating of the engine.
In a first advantageous refinement thereof, the storage unit has a reservoir for a heat storage medium. The reservoir can alternately be coupled to the cooling circuit of the engine configuration and also decoupled therefrom again in this case, in order to exchange thermal energy between the cooling circuit and the heat storage medium located in the reservoir of the storage unit, or to be able to thermally isolate heated or comparatively hot heat storage medium. The reservoir of the storage unit or the storage unit per se is preferably implemented as highly thermally insulated, so that even in the event of comparatively low external temperatures and also after a longer shutdown of the engine, sufficient thermal energy can still be available in the storage unit in order to be able to accelerate or shorten the heating procedure of the engine. The sizes of the storage unit and its reservoir are dimensioned according to the size and the heat capacity of the engine and its components and according to the fillable volume of the cooling circuit.
The storage unit is thus implemented to absorb and store excess waste heat of the engine in operation of the internal combustion engine, in particular to provide this stored thermal energy to the engine again as needed, in particular before or during a cold start of the engine.
Thus, according to a further preferred embodiment the storage unit can furthermore exclusively be thermally coupled to the engine via the cooling circuit. In this way, the design expenditure for implementing a passive heating unit for the internal combustion engine can be kept relatively low. In the simplest embodiment, for example, only the attachment of a thermal energy storage unit to the cooling circuit provided in any case, in particular a coolant circuit of the engine configuration, is to be provided. I0
In this case, retrofitting already existing engine concepts and corresponding engine configurations with the described storage unit is even conceivable.
Alternatively thereto, it is also conceivable to thermally couple the storage unit directly to the engine or to the engine components, so that in particular a heat transfer from the storage unit to the internal combustion engine can optionally also be performed independently of the cooling circuit of the engine configuration.
In a further advantageous embodiment, the engine configuration further has a pump or conveyor unit, which is implemented for the purpose, independently of the operating state of the engine, of supplying the engine with the thermal energy stored in the storage unit. In this case, for example, the heat storage medium contained in the reservoir of the storage unit can be introduced into the cooling circuit of an internal combustion engine which is still shut down or has just been put into operation. For this purpose, the preferably electrically implemented pump or conveyor unit can be actuated independently of the operating state of the engine, in order to supply the comparatively hot or warm heat storage medium, which is stored in the storage unit, to the cooling circuit and/or the engine.
In a refinement thereof, in particular the coolant which circulates in the cooling circuit in any case, in particular cooling water, which is typically admixed with an anti-freeze agent, is provided as the heat storage medium. The storage unit is implemented for receiving coolant heated in operation of the engine and for the time-delayed discharge of received coolant to the cooling circuit. Instead of typical cooling water as a heat storage medium, however, other heat storage media can fundamentally also be used in this case.
The time-delayed discharge of received or stored coolant to the cooling circuit is preferably performed via a controller or regulator, which substantially independently recognizes or detects that the engine is imminently to be put into operation and correspondingly activates a pump or conveyor unit for heating the engine, for example.
Furthermore, according to a further specific embodiment of the invention, a latent heat storage material can be provided as the heat storage medium, which is received in the storage unit or in its reservoir, which is highly thermally insulated to the outside. Latent heat storage materials use a phase transition or a change of their aggregate state to store thermal energy. In particular salts or paraffins are used as latent heat storage materials.
Furthermore, if a latent heat storage material is used in the storage unit, it is advantageous to provide an additional heat exchanger in or on the storage unit, in order, depending on the demand and operating state of the engine, either to introduce thermal energy into the heat storage material, or to discharge released latent heat to the cooling circuit, for example, and therefore indirectly to the internal combustion engine. The latent heat storage material remains in the storage unit in this case.
According to an advantageous refinement of the invention, in particular according to a specific embodiment in which the storage unit is directly supplied with the coolant circulating in the cooling circuit, at least one actuating unit, such as an inflow or outflow valve, is provided, using which the storage unit and optionally its reservoir for the heat storage medium can be integrated in regard to flow into the cooling circuit.
For example, it can be provided using the actuating unit that the storage unit is incorporated completely into the cooling circuit when the engine is running at operating temperature, so that the storage unit reaches a temperature level comparable to the cooling circuit. For this purpose, further control or regulating means are provided, which actuate the actuating unit if the engine is shut down and/or if the coolant temperature decreases below a predefined threshold value, for example, such that the storage unit is disconnected in regard to flow from the cooling circuit, so that the cooling circuit and/or the engine can be substantially thermally decoupled from the storage unit.
Engine and cooling circuit then cool down to the ambient temperature, while the storage unit keeps the heat storage medium received therein at a temperature level significantly elevated in relation to the ambient temperature over the longest possible period of time, preferably over days.
The actuating unit is to be actuated again when or before the engine is put into operation, in order to be able to supply the heat storage medium, which is received in the storage unit and is still relatively warm or hot, to the cooling S circuit and therefore to the engine to be heated.
According to a further preferred embodiment, the engine configuration has a regulating module, which, as a function of the temperature of the engine and/or as a function of the temperature of the coolant circulating in the cooling circuit, couples the storage unit to the cooling circuit or decouples it therefrom. Decoupling of storage unit and cooling circuit is particularly to be provided as soon as the temperature of the coolant circulating in the cooling circuit S drops below the normal operating temperature of the engine.
The regulating module can additionally initiate thermal decoupling of storage unit and engine or of storage unit and cooling circuit in anticipation of a temperature decrease of the coolant.
The regulating module can also be implemented as a separate structural unit. It is preferably integrated in a control module of the internal combustion engine. Since manifold state parameters of the engine and further vehicle parameters are provided in any case in such engine control modules, coupling or decoupling of storage unit and engine, or of storage unit and cooling circuit can be implemented with comparatively minor design expenditure. The attachment of any possible sensors to ascertain the engine or coolant temperature can be superfluous, on the basis of already existing engine concepts.
In a further advantageous embodiment thereof, it is additionally prcvided that the regulating module is coupled to at least one sensor unit, in order to detect an event which chronologically precedes putting the engine into operation, such as the recognition of vehicle door unlocking, vehicle door opening, vehicle seat occupation, and/or ignition activation. As a result of the detection or recognition of such events which typically precede putting an engine into operation, the regulating module is implemented for the purpose of transferring the thermal energy stored in the storage unit to the engine to achieve preheating of the engine.
This is advantageously already performed before the engine is actually put into operation, in order to shorten the starting or warm-up phase of the engine as much as possible.
In a further independent aspect, the invention further relates to a motor vehicle having an above-described engine configuration, whose internal combustion engine can the heated up or warmed beforehand, i.e., before it is actually put into operation, with the aid of a storage unit for storing thermal energy, which optionally can be thermally coupled to the cooling circuit of the engine.
In a further independent aspect, the invention further relates to a method for heating up or warming an internal combustion engine of a motor vehicle before it is put into operation and/or during a following warm-up phase of the engine, in a first step, thermal energy being stored in a storage unit which can be coupled to a cooling circuit of the internal combustion engine. The storage of thermal energy is preferably performed in this case in operation of the engine at its provided operating temperature. The thermal energy is stored in this case in the storage unit, for example, using sufficient thermal insulation and/or with the aid of a latent heat storage medium, independently of the respective operating state of the engine.
Before it is again put into operation and/or during a warm-up phase of a cooled-down internal combustion engine, it is provided in a further step that the thermal energy stored in the storage unit is transferred to the cooling circuit and/or to the engine. For this purpose, for example, a separate circulating pump for the coolant or for the cooling circuit can be put into operation, in order to supply the heat storage medium located in the storage unit to the cooling circuit and therefore also to the engine.
According to a refinement thereof, the storage unit therefore has a reservoir for receiving a heat storage medium, the storage unit being coupled to the cooling circuit in operation of the engine to store thermal energy. In particular, the storage unit can be more or less integrated in the cooling circuit, for example, by opening a corresponding valve.
Decoupling of cooling circuit and storage unit can be performed as a function of temperature, in particular by comparison of the temperature of the coolant or the heat storage medium to a target temperature. It is also conceivable to use the operating state of the engine, in particular the shutdown of an internal combustion engine, as a type of trigger for the thermal decoupling of storage unit and cooling circuit. The heating up or warming of the internal combustion engine before or during a cold or warm-up phase is preferably begun as a result of detection of an event which typically precedes putting the engine into operation.
For example, the recognition of vehicle door unlocking, vehicle door opening or closing, vehicle seat occupation, and/or activation of the ignition or the insertion of an ignition key or a similar portable starting and authentication device into a vehicle-side lock provided for this purpose can function as such an event.
Brief Description of the Figures
Further goals, features, and advantageous possible applications of the invention are described in the following description of an exemplary embodiment on the basis of the drawings. In the figures: Figure 1 shows a schematic view of an engine configuration having an internal combustion engine, a cooling circuit, and a storage unit which can be coupled thereto, and Figure 2 shows a simplified schematic view of a motor vehicle having an engine configuration.
Detailed Description
Figure 2 shows a simplified schematic view of a motor vehicle in the form of a passenger automobile 1, which has an engine configuration 10, which is shown in greater detail in Figure -I-.
The engine configuration 10, which is shown in a view similar to a block diagram in Figure 1, has an internal combustion engine 11, which is in thermal contact with the cooling circuit 12. The engine 11 is equipped with direct fuel injection and can correspondingly be implemented as a diesel or gasoline assembly. The engine is thermally connected to a cooling circuit 12 to dissipate waste heat occurring in operation of the engine 11. The coolant, which is commonly referred to as coolant, is circulated in the circuit 12 via a coolant pump 22 and supplied, depending on the coolant temperature and the configuration and setting of a thermostat 16 thus caused, to a heat exchanger 14, e.g., a water-cooled radiator 14, to exchange thermal energy with the surroundings. I0
A storage unit 20 is schematically shown on the bottom in Figure 1, which can optionally be coupled according to the dashed lines, for example, using a multiple-port valve or a thermostat 18, to the cooling circuit 12. It is particularly is provided in this case that comparatively warm or hot heat storage medium 26, in particular a coolant 28, is applied to the storage unit 20, in particular the reservoir contained therein, which is thermally insulated to the outside, or this storage unit has coolant 28 flowing through it, as soon as the coolant temperature has reached a predefined minimum temperature, which typically essentially corresponds to the operating temperature of the engine 11.
After a shutdown of the engine 11, an adjustment or closing of the multiple-port valve 18 and therefore thermal decoupling of cooling circuit 12 and storage unit 20 can be implemented. During the following cool-down phase of cooling circuit 12 and internal combustion engine 11, the comparatively warm or hot coolant contained in the reservoir of the storage unit 20 can be preserved at an elevated temperature level and substantially thermally isolated.
Before, during, or immediately after the internal combustion engine 11 is put into operation, but at least before it reaches its operating temperature after it is put into operation again, it is provided that the thermal energy stored in the storage unit is discharged again to the internal combustion engine 11 and/or to the cooling circuit 12 by opening the valve 18, in particular to be able to provide passive and environmentally-friendly prior heating or preheating of the engine 11.
The adjustment or opening of the multiple-port valve 18 can be performed in this case, for example, as a result of detection of an event which typically chronologically precedes putting the engine into operation. Thus, for example, by unlocking the vehicle doors 36, by opening the vehicle doors 38, by occupying a vehicle seat 40, and by activating an ignition 42 or by similar events, the valve 18 can be opened and also a further pump 24 can be put into operation using the regulating module 32, in order to supply the comparatively warm or hot heat storage medium 26, which is received in the storage unit 20 and is accordingly stored thermally isolated, in particular warm coolant 28, to the cooling circuit 12 and thus to the engine 11 already before the engine is actually put into operation.
For this purpose, the regulating module 32 is coupled to at least with the valve 18 and with a sensor unit 34, which can recognize actuation of the vehicle lock 36 and/or a vehicle door 38, and the occupation of a seat 38 and the activation of an ignition 42.
Furthermore, the regulating module 34 can be directly coupled to the engine 11 and/or to the cooling circuit, in particular to control closing of the valve 18 when the engine 11 is shut down.
The pump 24, which is preferably to be actuated electrically and is powered by a vehicle battery, can also be dispensed with depending on the configuration of storage unit 20 and engine 11, in particular if the storage unit 20, viewed in the vehicle vertical direction, is situated above an intake of the cooling circuit 12 to the engine 11, so that an inflow of stored heat storage medium 25 to the engine 11 can be implemented solely by opening the valve 18, for example, because of gravity, or also by the coolant pump 22.
In an alteration thereof, the storage unit 20 can also be implemented to receive a latent heat storage material 30.
The illustrated specific embodiments merely show possible embodiments of the invention, of which further numerous variants are conceivable and within the scope of the invention. The exemplary embodiments shown as examples are in no way to be interpreted as restrictive with respect to the scope, the applicability, or the possible configurations of the invention. The present description merely shows a possible implementation of an exemplary embodiment according to the invention to a person skilled in the art. Therefore, greatly manifold modifications can be performed on the function and configuration of described elements, without leaving the scope of protection defined by the following patent claims or the equivalents thereof.
GB1113292.5A 2011-08-02 2011-08-02 Engine preheating in a motor vehicle Withdrawn GB2483330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1113292.5A GB2483330A (en) 2011-08-02 2011-08-02 Engine preheating in a motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1113292.5A GB2483330A (en) 2011-08-02 2011-08-02 Engine preheating in a motor vehicle

Publications (2)

Publication Number Publication Date
GB201113292D0 GB201113292D0 (en) 2011-09-14
GB2483330A true GB2483330A (en) 2012-03-07

Family

ID=44676585

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1113292.5A Withdrawn GB2483330A (en) 2011-08-02 2011-08-02 Engine preheating in a motor vehicle

Country Status (1)

Country Link
GB (1) GB2483330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573435C2 (en) * 2014-05-12 2016-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Красноярский государственный аграрный университет" System for maintenance of ice optimum heat conditions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201177A (en) * 2004-01-16 2005-07-28 Toyota Motor Corp Drive unit and hybrid automobile mounting the same
EP1612410A1 (en) * 2004-07-02 2006-01-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having thermal storage device
JP2006299850A (en) * 2005-04-18 2006-11-02 Denso Corp Waste heat recovery system for internal combustion engine for vehicle
EP2103789A1 (en) * 2008-03-19 2009-09-23 Honda Motor Co., Ltd. Warming-up system for vehicle
WO2010052410A1 (en) * 2008-11-07 2010-05-14 Renault S.A.S. Coolant reserve tank for an internal combustion engine and associated cooling device
JP2010127121A (en) * 2008-11-25 2010-06-10 Toyota Motor Corp Heat storage device and internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201177A (en) * 2004-01-16 2005-07-28 Toyota Motor Corp Drive unit and hybrid automobile mounting the same
EP1612410A1 (en) * 2004-07-02 2006-01-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having thermal storage device
JP2006299850A (en) * 2005-04-18 2006-11-02 Denso Corp Waste heat recovery system for internal combustion engine for vehicle
EP2103789A1 (en) * 2008-03-19 2009-09-23 Honda Motor Co., Ltd. Warming-up system for vehicle
WO2010052410A1 (en) * 2008-11-07 2010-05-14 Renault S.A.S. Coolant reserve tank for an internal combustion engine and associated cooling device
JP2010127121A (en) * 2008-11-25 2010-06-10 Toyota Motor Corp Heat storage device and internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573435C2 (en) * 2014-05-12 2016-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Красноярский государственный аграрный университет" System for maintenance of ice optimum heat conditions

Also Published As

Publication number Publication date
GB201113292D0 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US20120055425A1 (en) Engine configuration for a motor vehicle
US8596228B2 (en) Thermostat and cooling device for vehicle
RU2347096C2 (en) Power unit with supercharged internal combustion engine
US7370612B2 (en) Internal combustion engine cooling system
US6915763B2 (en) Engine cooling device and engine cooling method
US6564757B2 (en) Internal combustion engine including heat accumulation system, and heat carrier supply control system
JP2012062850A (en) Waste heat recovering and cooling apparatus for engine
US20120125285A1 (en) Latent heat storage and method for temperature control of an internal combustion engine
CN203756414U (en) Cooling liquid heating system of vehicle
US6681725B2 (en) Internal combustion engine with regenerator
CN103261616B (en) Engine cooling apparatus
JP2006316775A (en) Latent heat storage device and internal combustion engine
CN110608087B (en) Thermal management system for vehicle
Kuze et al. Development of new generation hybrid system (THS II)-development of Toyota coolant heat storage system
GB2483330A (en) Engine preheating in a motor vehicle
RU155350U1 (en) INTERNAL COMBUSTION ENGINE WITH LIQUID COOLING WITH SECONDARY CIRCUIT
KR101361401B1 (en) System and method for controlling engine cooling water
CN106704074A (en) Engine cooling and insulating system and engine cooling and insulating control method
CN103452731B (en) A kind of heating system in advance for reduce engine motor-car cold start emission
JP2009167960A (en) Start control device of internal combustion engine
CN107503872A (en) A kind of parallel preheating device of automobile engine and its control method
JP2007182806A (en) Internal combustion engine
JP4256933B2 (en) Motor vehicle having an internal combustion engine having an external exhaust gas recirculation unit and a heating device
JP3843906B2 (en) Internal combustion engine
JP2004028063A (en) Preheater of internal combustion engine

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)