GB2294530A - Tilt type steering apparatus - Google Patents

Tilt type steering apparatus Download PDF

Info

Publication number
GB2294530A
GB2294530A GB9515103A GB9515103A GB2294530A GB 2294530 A GB2294530 A GB 2294530A GB 9515103 A GB9515103 A GB 9515103A GB 9515103 A GB9515103 A GB 9515103A GB 2294530 A GB2294530 A GB 2294530A
Authority
GB
United Kingdom
Prior art keywords
meshing teeth
side meshing
steering column
end portion
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9515103A
Other versions
GB2294530B (en
GB9515103D0 (en
Inventor
Mikio Yamaguchi
Tadashi Hibino
Akira Aida
Sakae Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Publication of GB9515103D0 publication Critical patent/GB9515103D0/en
Publication of GB2294530A publication Critical patent/GB2294530A/en
Application granted granted Critical
Publication of GB2294530B publication Critical patent/GB2294530B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/184Mechanisms for locking columns at selected positions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)

Description

TILT TYPE STEERING APPARATUS 2294530
aACKGROUND OF THE INVENTION Field of the Invention
This invention relates to a tilt type steering apparatus, and particularly to improvements in a portion for supporting a steering column constituting a steering apparatus for an automobile rockably relative to a vehicle body.
Related aackaround Art There is known a height adjusting apparatus for a steering wheel which is called a tilt type steering apparatus designed to vary the height of the steering wheel in conformity with the constitution or the driving posture of a driver. As such a tilt type steering apparatus, there is known one described, for example, in Japanese Utility Model Publication No. 2-34145.
The tilt type steering apparatus described in this publication is called the oscillating type and is constructed as shown in Figures 12 to 15 of the accompanying drawings. A steering column 2 formed into the shape of a cylinder to permit a steering shaft 1 to be inserted thereinto is divided into a front steering column 3 and a rear steering column 4. These two steering columns 3 and 4 are connected together by a support bracket 5 fixedly supported on a vehicle body.
2 - The rear steering column 4 is rockable about lateral shafts 6, 6 provided in the support bracket 5. A restraining mechanism engageable by a tilt lever 7 rockable about the lateral shafts 6, 6 is provided between the support bracket 5 and the rear steering column 4.
More particularly, one end of the rear steering column 4 is pivotally supported on the support bracket 5 by the lateral shafts 6, 6 provided in the support bracket 5 fixed to the vehicle body an the lower surface or the like of a dashboard 8. Also, a first engagement member 9 is fixed to the lower side of the rear steering column 4. The lower surface of this first engagement member 9 forms an arcuate convex surface centering around the lateral shafts 6, 6, and first engagement teeth 10 are formed an this lower surface.
On the other hand, one end (the left end as viewed in Figures 13 and 15) of a second engagement member 12 engageable with the first engagement member 9 with the rocking movement of the tilt lever 7 is pivotally supported on another lateral shaft 11 provided in the support bracket 5. Second engagement teeth 13 engageable with the first engagement teeth 10 formed on the lower surface of the first engagement member 9 are formed on the upper edge of the other end portion (the upper edge of the right end portion as viewed in Figure 13) of the second engagement member 12. Also, the intermediate portion of the tilt lever 7 is pivotally supported on the lateral shafts 6, 6. A roller 15 is supported on a shaft 14 having its end portion coupled to the lower end portion of the tilt lever 7, and the upper surface of this roller 15 bears against the lower surface of the second engagement member 12. Further, a pin 18 protruding from a side of the second engagement member 12 is engaged with an inclined slot 17 formed in 10 a rockable plate 16 fixed to the tilt lever 7.
With the construction as described above, when the tilt lever 7 is rocked counter-clockwisely, the roller 15 retracts from below the other end portion (the right end portion as viewed in Figure 13) of the second engagement member 12 and at the same time, the other end portion of the second engagement member 12 is downwardly displaced on the basis of the engagement between the inclined slot 17 and the pin 18.
As a result, the engagement between the second engagement teeth 13 formed on the upper surface of the other end portion of the second engagement member 12 and the first engagement teeth 10 on the lower surface of the first engagement member 9 fixed to the lower surface of the rear steering column 4 is released. in this state, the rear steering column 4 becomes rockable about the lateral shafts 6, 6 (within a range in which a pin 19 projectedly provided on a side of the rear 11 k steering column 4 can be displaced inside an arcuate slat 20 formed in the support bracket 5). On the basis of this rocking movement, the height position of a steering wheel fixed to the end portion of the steering shaft 1 inserted in the rear steering column 4 becomes adjustable.
When the height position of the steering wheel is adjusted in this manner, the tilt lever 7 is rocked clockwisely as viewed in Figure 13. With this rocking movement, the roller 15 comes into below the other end portion of the second engagement member 12 and pushes the other end portion of this second engagement member 12 upwardly. Thus, it brings the second engagement teeth 13 formed on the upper surface of this other end portion into engagement with the first engagement teeth 10 formed on the lower surface of the first engagement member 9 fixed to the lower surface of the rear steering column 4. As a result, it becomes difficult for the rear steering column 4 to rotate about the lateral shafts 6, 6, and the steering wheel is kept in its adjusted height position. A resilient force which tends to rock the tilt lever 7 clockwisely as viewed in Figure 13 by a tension spring 21 is imparted to the tilt lever 7 and therefore it never happens that the roller 15 inadvertently retracts from below the second engagement member 12.
In the case of the conventional tilt type steering :z 5 apparatus constructed and used as described above, the first engagement member 9 is fixed to the lower surface of the front end portion of the rear steering column 4 and further, the rear end portion of the second engagement member 12 and the roller 15 are brought into under the first engagement member 9. Therefore, a relatively large space for providing these members 9, 12 and 15 therein is required below the front end portion of the rear steering column 4. When incorporated into an actual automobile, these members 9, 12 and 15 are covered with a cover called a coluinn cover, but the position of the lower surface of this column cover lowers and a driver's knee become liable to interfere with this column cover, and this is not preferable.
Also, the first engagement member 9 is fixed to the lower surface of the front end portion of the rear steering column 4, but the lengthwise dimension of this first 'engagement member 9 becomes great to a certain degree. Also, when a combination switch for operating lights, wipers, etc. is to be provided, for example, on the outer peripheral surface of the rear steering column 4, it is necessary to provide It rearwardly of the first engagement member 9. Accordingly, the lengthwise dimension of the rear steering column 4 is liable to become greater than necessary.
When the lengthwise dimension of the rear steering i column 4 becomes great, a force applied to the engaged portions of the first and second engagement members 9 and 12 by a moment force applied to the rear steering column 4 through the steering wheel becomes great. Accordingly, in order to prevent the two engagement members 9 and 12 from being brought out of engagement by the force applied to the steering wheel, it becomes necessary to make these two engagement members 9 and 12 large and strong. As a result, not only the position of the lower end of the column cover lowers more and more, but also the weight thereof increases.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a tilt type steering apparatus which is decreased in the number of parts, but yet operates reliably.
The tilt type steering apparatus of the present invention is provided with a front steering column, a front steering shaft supported inside said front steering column for rotation only, a support bracket fixed to a vehicle body with the rear end portion of said front steering column fixedly supported, a first lateral shaft provided in a portion fixed to said support bracket, a rear steering column having its front end pivotally supported by said first lateral shaft, a rear steering shaft supported inside said rear steering column for rotation only, a universal joint for connecting the rear end portion of said rear steering shaft and the front end.portion of said fron steering shaft together, a second lateral shaft provided in a portion fixed to said rear steering column, an engagement member having its rear end portion pivotally supported on said second lateral shaft and having rack-like displacement side meshing teeth formed on the front end portion thereof, racklike fixed side meshing teeth provided on a portion fixed to said support bracket and opposed to said displacement side meshing teeth, and a tilt lever for bringing said displacement side meshing teeth and said fixed side meshing teeth into and out of engagement with each other with rocking movement thereof.
Also, during the non-operation of the tilt lever, said displacement side meshing teeth are urged against said fixed side meshing teeth. Said displacement side meshing teeth and said fixed side meshing teeth are plane teeth bearing against each other by their flat surfaces. Further, when the meshing pressure angle which is an angle of inclination at which the direction of the bearing surfaces of the displacement side meshing teeth and fixed side meshing teeth intersects the direction of relative displacement of the displacement side meshing teeth and fixed side meshing teeth is a and the coefficient of friction between the bearing surfaces of the displacement side meshing teeth and fixed side meshing teeth is g, a s tanjj.
Further, the shapes of said displacement side teeth and fixed side teeth are made longitudinally asymmetrical in order that of said meshing pressure angle a, a meshing pressure angle a, corresponding to bearing surfaces urged against each other when an upward force is applied to the rear end portion of said rear steering column may be smaller than a meshing pressure angle a2 corresponding to bearing surfaces urged against each other when a downward force is applied to the rear end portion of said rear steering column.
When the height position of the steering wheel is to be adjusted in conformity with the constitution or the like of a driver by the tilt type steering apparatus of the present Invention constructed as described above, the engagement between the displacement side meshing teeth and the fixed side meshing teeth is first released on the basis of the rocking movement of the tilt lever. In this state, the rear steering column is rocked about the first lateral shaft to thereby adjust the height position of the steering wheel fixed to the rear end portion of the rear steering shaft. After the adjustment, the tilt lever is rocked in the opposite direction, whereby the displacement side meshing teeth and the fixed side 9 - meshing teeth are brought into engagement with each other and the steering wheel is fixed at the height position after adjusted.
Particularly, in the case of the tilt type steering apparatus of the present invention, said displacement side meshing teeth and said fixed side meshing teeth are plane teeth and the meshing pressure angle a thereof is a:S tan-llj in the relation with the coefficient of friction g and therefore, even if a member for hindering the displacement of the engagemen- member is not specially provided, the engagement between said meshing teeth will not be released unless said tilt lever is operated. Accordingly, the number of members provided under the front end portion of the is member fixed to the rear steering column or the front end portion of this rear steering column can be reduced, and further be rendered null. Accordingly, the amount of downward protrusion of this portion can be made small and the lengthwise dimension of the rear steering column can be made small.
Further, since the meshing pressure angle a, corresponding to the bearing surfaces urged against each other when an upward force is applied to the rear end portion of the rear steering column is smaller than the meshing pressure angle % corresponding to the bearing surfaces urged against each other when a downward force is applied to the rear end portion of I n 1 the rear steering column, said rear steering column can be reliably prevented from moving up. As a result, in case of a collision accident, a driver's body can be reliably received by an air bag inflated rearwardly of the steering wheel.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a longitudinal cross-sectional view showing the essential portions of a first embodiment of the present invention.
Figure 2 is a cross-sectional view taken along the line II-II of Figure 1 with some portions omitted.
Figure 3 is a cross-sectional view taken along the line III-III of Figure 1.
Figure 4 is an enlarged view showing the meshing engaged portions of fixed side meshing teeth and displacement side meshing teeth.
Figure 5 is a longitudinal cross-sectional view showing the essential portions of a second embodiment of the present invention.
Figure 6 is a cross-sectional view taken along the line VI-VI of Figure 5 with some portions omitted.
Figure 7 is a longitudinal cross-sectional view showing the essential portions of a third embodiment of the present invention.
Figure 8 is a cross-sectional view taken along the line VIII-VIII of Figure 7 with some portions omitted.
the Figure 9 is a longitudinal cross-sectional view showing the essential portions of a fourth embodiment of the present invention.
Figure 10 is a longitudinal cross-sectional view showing the essential portions of a fifth embodiment of the present invention.
Figure 11 is a fragmentary longitudinal crosssectional view showing a sixth embodiment of the present invention.
Figure 12 is a side view showing an example of the known tilt type steering apparatus.
Figure 13 is an enlarged cross-sectional view of the portion XIII of Figure 12.
Figure 14 is a cross-sectional view taken along line XIV-XIV of Figure 13.
Figure 15 is a view taken along the arrow XV of Figure 13 with some portions sectioned.
Figures 16A and 16B are enlarged views respectively showing the meshing engaged portions of fixed side meshing teeth and displacement side meshing teeth of another embodiment.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Figures 1 to 4 show a first embodiment of the present invention. A front steering shaft 22 is supported inside a front steering column 3 only for rotation. Also, the rear end portion (the right end portion as viewed in Figure 1) of the front steering column 3 is supported by a support bracket 5 made by press-molding a metal plate, through a support plate 46. The support bracket 5 is fixed to a vehicle body, in the lower portion of a dashboard 8 (see Figure 12). The front end of a rear steering column 4 is pivotally supported on the rear end portion of the support bracket 5 by first lateral shafts 23, 23.
Circular holes 24 and 24 are formed in the right and left sides of the front end portion (the left end portion as viewed in Figure 1) of the rear steering column 4 made as by the die casting of an aluminum alloy. A half portion of each first lateral shaft 23 is inserted in each circular hole 24 through each sliding bearing 25. Accordingly, the rear steering column 4 is supported rockably about the first lateral shafts 23, 23 relative to the support bracket 5.
Inside the rear steering column 4 thus supported, a rear'steering shaft 26 is supported for rotation only by a pair of front and rear deep groove ball bearings 27 and 27. The front end portion (the left end portion as viewed in Figure 1) of the rear steering shaft 26 and the rear end portion (the right end portion as viewed in Figure 1) of the f ront steering shaf t 22 are connected together by a universal j oint 28. In the case of this first embodiment, the center of displacement of the universal joint 28 is disposed on 1 - J the extension of the pair of first lateral shafts 23 and 23. Accordingly, even when the rear steering column 4 is rocked about the first lateral shafts 23, 23, the transmission of rotational force between the front steering shaft 22 and the rear steering shaft 26 is effected smoothly.
Also, a second lateral shaft 29 is provided under the front end portion of the rear steering column 4, and the rear end portion of an engagement member 30 is pivotally supported on this second lateral shaft 29. Racklike (plane gear-like) displacement side meshing teeth 31 are formed on the upper surface of the front end portion of the engagement member 30. On the other hand, a restraining member 38 is fixed to the lower surface portion of the support bracket 5 which is opposed to the displacement side meshing teeth 31, and rack-like fixed side meshing teeth 32 are formed on the lower surface of the restraining member 38.
The displacement side meshing teeth 31 and fixed side meshing teeth 32 are releasably engageable with each other on the basis of the rocking movement of a tilt lever 33. This tilt lever 33 has its base end portion (the left end portion as viewed in Figure 1) fixedly coupled to the rear end portion of the engagement member 30. Accordingly, if the front end portion (the right end portion as viewed in Figure 1) of the tilt lever 33 is rocked, the displacement side 4 - meshing teeth 31 and the fixed side meshing teeth 32 will be disengaged from each other with this rocking movement.
Also, the upper end portion of a restraining pin 34 is caulk-fixed to the rear end portion of the lower surface of the support bracket. This restraining pin 34 has its upper half small-diametered portion 35 and its lower half large-diametered portion 36 connected together by a stepped portion 37, and the small diametered portion 35 is inserted in a circular hole 39 formed in the restraining member 38 and a circular hole formed in the lower surface of the support bracket 5. The upwardly protruding portion of the support bracket is caulked on the upper end portion of the is small-diametered portion 35, and the restraining pin 34 and a restraining member 38 are fixed to the lower surface of the support bracket 5. The restraining member 38 is hindered from rotating about the restraining pin 34 by a protruded portion 41 formed on the upper surface of the front portion (the left portion as viewed in Figure 1) of the restraining member 38 being engaged with a through-hole 42 formed in the front portion of the lower surface of the support bracket 5.
Also, the large-diametered portion 36 of the restraining pin 34 is loosely inserted in a through hole 43 long in the longitudinal direction (the right to left direction as viewed in Figure 1) formed in the intermediate portion of the engagement member 30, and protrudes downwardly from the lower surface of this engagement member 30. A leaf spring 45 is provided between the upper surface of a flange portion 44 formed on the outer peripheral surface of the lower end portion of the restraining pin 34 and the lower surface of the engagement member 30. This leaf spring 45 has a small resilient force only enough to raise the front portion (the left portion as viewed in Figure 1) of the engagement member 30 to bring the displacement side meshing teeth 31 and the fixed side meshing teeth 32 into engagement with each other. Instead of this leaf spring 45, other resilient member such as a coil spring or a rubber ring can be used to urge the displacement side meshing teeth 31 toward the fixed side meshing teeth 32 during the non-operation of the tilt lever.
Further, in the case of the tilt type steering apparatus of the present invention, the displacement side meshing teeth 31 and the fixed side meshing teeth 32 are plane teeth bearing against each other by flat surfaces. That is, these meshing teeth 31 and 32 are not curved surface teeth made from trochoidal curves the like, but are large-diametered teeth of which the opposite sides are flat. The meshing pressure angle which is the angle of inclination at which the direction of the bearing surfaces (the direction or 6 indicated by dot-and-dash line X in Figure 4) of the displacement side meshing teeth 31 and fixed side meshing teeth 32 intersects the direction of relative displacement (the direction indicated by dot-and-dash line Y in Figure 4) of the displacement side meshing teeth 31 and fixed side meshing teeth 32 is made small in the relation with the coefficient of friction p between the bearing surfaces of the displacement side meshing teeth 31 and fixed side meshing teeth 32. That is, when the coefficient of friction between the bearing surfaces of the displacement side meshing teeth 31 and fixed side meshing teeth 32 is g, a 5 tan-'p.
Although not shown, between the support bracket 5 and the rear steering column 4, there is provided a support spring for supporting the weight of the rear steering column 4 and a member such as a steering wheel supported by this rear steering column 4. As this support spring, there can be adapted a coil spring provided between the lower surface portion of the support bracket 5 and the lower surface portion of the rear steering column 4, or a tension spring provided between the upper surface portion of the support bracket 5 and the upper surface portion of the rear steering column 4. In any case, it is to be understood that the resilient force of the support spring is only for substantially supporting the weight of the member supported by the rear steering column 4. This is for preventing the steering wheel from lowering vigorously (when the support spring is absent or if present, its resilient force is too small) or rising vigorously (when the resilient force of the support spring is too great) when the engagement between the displacement side meshing teeth 31 and the fixed side meshing teeth 32 is released.
When the height position of the steering wheel is to be adjusted in conformity with the constitution or the like of a driver by the tilt type steering apparatus of the present invention constructed as described above, the rear end portion (the right end portion as viewed in Figure 1) of the tilt lever 33 is first displaced upwardly. On the basis of this operation, the tilt lever 33 and the engagement member 30 rock counter-clockwisely as viewed in Figure 1 about the second lateral shaft 29 against the resilient f orce of the leaf spring 45. With this rocking movement, the engagement between the displacement side meshing teeth 31 and the fixed side meshing teeth 32 is released.
In this state, the rear steering column 4 is rocked about the first lateral shafts 23, 23 to thereby adjust the height position of the steering wheel, not shown, fixed to the rear end portion of the rear steering shaft 26. This adjusting work can be easily done by the presence of the support spring. After the adjustment, the rear end portion of the tilt lever 33 L3 - is lowered, and this tilt lever 33 and the engagement member 30 are rocked clockwisely as viewed in Figure 1 about the second lateral shaft 29. With this rocking movement, the displacement side meshing teeth 31 and the fixed side meshing teeth become engaged with each other on the basis of the resilient force of the leaf spring 45. As a result, the steering wheel is fixed at the height position after adjusted.
Particularly, in the case of the tilt type steering apparatus of the present invention, the displacement side meshing teeth 31 and the fixed side meshing teeth 32 are plane teeth and the meshing pressure angle a thereof is a 5 tan-'g 1.n the relation with the coefficient of friction g. Therefore, even if a member for hindering the displacement of the engagement member 30 is not specially provided, the meshing engagement between the meshing teeth 31 and 32 will not be released unless the tilt lever 33 is operated.
This point will now be described in detail with reference to Figure 4. When for example, a downward force is applied to the steering wheel with the displacement side meshing teeth 31 and the fixed side meshing teeth 32 brought into meshing engagement with each other to fix the height position of the steering wheel, a force which tends to rock the rear steering column 4 clockwisely as viewed in Figure 1 about the r' first lateral shafts 23, 23 is applied. The front side (the left side as viewed in Figure 4) of the displacement side meshing teeth 31 is urged toward the rear side (the right side as viewed in Figure 4) of the fixed side meshing teeth 32 with a force N. Each of these sides is inclined by a with respect to the direction of relative displacement of the displacement side meshing teeth 31 and the fixed side meshing teeth 32. Therefore, the displacement side meshing teeth 31 are subjected to a force in a direction to separate from the fixed side meshing teeth 32 with a force N-sina. On the other hand, when the coefficient of friction between said two sides is g, a frictional force g.N acts in the direction of the tooth surfaces of these two sides, and g.N.cosa acts as a force in a direction to hinder the displacement of these sides, i.e., a force in a direction Y. Also, the leaf spring 45 acts in a direction to maintain the engagement between the displacement side meshing teeth 31 and the fixed side meshing teeth 32.
Accordingly, if g.N.cosa N.sina, that is, p sina/cosa = tana, the engagement between the meshing teeth 31 and 32 could be reliably maintained even_ if besides the leaf spring 45, there is not provided any member for urging the displacement side meshing teeth 31 toward the fixed side meshing teeth 32. Since in the case of the tilt type steering 2 C apparatus of the present invention, a:5 tan-'p, p.N.cosa k N-sina, and it never happens that the engagement between the displacement side meshing teeth 31 and the fixed side meshing teeth 32 is released by the force applied to the steering wheel.
Accordingly, the shaft 14 and roller 15 (Figures 13 to 14) incorporated in the conventional structure can be eliminated and the number of members provided under the rear steering column 4 and support bracket 5 can be reduced. As a result, the amount of downward protrusion of this portion can be reduced and the constituents of the tilt type steering apparatus can be prevented from interfering with the driver's knee.
Also, it is unnecessary to mount a member like the first engagement member 9 (Figures 13 to 15) incorporated in the conventional structure on the lower surface of the rear steering column 4 and therefore, the lengthwise dimension of the rear steering column 4 can be made small. A mounting plate 47 shown in Figure 1 is for supporting a combination switch.
Figures 5 and 6 show a second embodiment of the present invention. In this embodiment, a first lateral shaft 23 for pivotally supporting the rear steering column 4 on the support bracket 5 is provided so as to extend through the upper portion of the rear end (the right end as viewed in Figure 5) of the support bracket 5 and the upper portion of the front end (the lef t end as viewed in Figure 5) of the rear steering column 4. The center of displacement of the universal joint 28 (see Figure 1) for connecting the front steering shaft 22 (see Figure 1) and the rear steering shaft 26 (see Figure 1) together does not exist on the first lateral shaft 23. Accordingly, there is the disadvantage that it becomes necessary to provide displacement absorbing structures such as a spline engagement portion and a slide joint on one of the steering shafts 22 and 26 (see Figure 1) to absorb the displacement resulting from adjusting the height position of the steering wheel, while there are the following advantages (1) to (3):
(1) Since the first lateral shaft 23 can be constructed of a single shaft, the adjusting work of disposing two shafts concentrically becomes unnecessary.
(2) As compared with the case where two first lateral shafts 23 are provided, the prevention of the inclination of the first lateral shaft 23 and the countermeasure for the prevention of the slipping-off thereof become easy.
(3) The distance between the first lateral shaft 23 and the meshing engagement portion between the displacement side and fixed side meshing teeth 31 and 32 can be made great. As a result, even when a vertical force is applied to the steering wheel, the - 2 2 force acting on the firstlateral shaft 23 and the meshing engagement portion becomes small. As a result, the first lateral shaft 23 and the displacement side and fixed side meshing teeth 31 and 32 can be made compact.
Also, this second embodiment differs in the following points from the aforedescribed first embodiment. In the present embodiment, a belleville spring 48 as a resilient member is provided between the upper surface of a flange portion 44 on the lower end portion of a restraining pin 34 and the lower surface of the intermediate portion of an engagement member 30. Also, the front end portion (the left end portion as viewed in Figure 5) of the restraining member 38 is fixed to the lower surface of the support bracket 5 by a rivet 49. Further, the front end portion (the left end portion as viewed in Figure 5) of the tilt lever 33 is fixedly coupled to the forward side (the left side as viewed in Figure 5) of the second lateral shaf t 29 in the base portion of the engagement member 30. In the other points, the construction and operation of the second embodiment are similar to those of the aforedescribed first embodiment and therefore, equivalent portions are given similar reference numerals and need not be described.
Figures 7 and 8 shows a third embodiment of the present invention. In this embodiment, the center of 23 displacement of the universal joint 28 for connecting the front steering shaft 22 and the rear steering shaft 26 together is deviated rearwardly (rightwardly as viewed in Figure 7) from the first lateral shaft 23. As a result of the center of displacement of the universal joint 28 being thus deviated rearwardly, the amount of movement of the center of displacement of the universal joint 28 in the axial direction (the right to left direction as viewed in Figure 7) becomes small even when the rear steering column 4 is rocked about the first lateral shaft 23 to adjust the height position of the steering wheel. Accordingly, even if a displacement absorbing structure is not specially provided, this small amount of movement could be absorbed by the play of each portion. Preferably, a resilient coupling capable of absorbing this small amount of movement is provided in series with the front steering shaft 22 or the rear steering shaft 26.
Also, in this third embodiment, the second lateral shaft 29 is offset sideways. This is in order that an installment space for a compression spring provided between the rear steering column 4 and the support bracket 5 to support the weight of the rear steering column 4 supporting the steering wheel may be secured sideways of the rear steering column 4. Further, the front end portion of the rear steering column 4 is of a shape in which the upper portion thereof opens, and the 24 intermediate portion of the first lateral shaft 23 is of a small diameter. Such a first lateral shaft 23 of which only the intermediate portion is of a small diameter can secure the strength of the shaft and yet can achieve its lighter weight and the prevention of the interference with the steering shaft 22. Also, a restraining ring 57 is restrained on the upper surface of a flange portion 44 at the lower end of the restraining pin 34, and a compression spring 58 is provided between the upper surface of this restraining ring 57 and the lower surface of the engagement member 30. In the other point, the construction and operation of the third embodiment are substantially similar to those of the aforedescribed first or second embodiment and therefore, equivalent portions are given the same reference numerals and need not be described.
Figure 9 shows a fourth embodiment of the present invention. In this embodiment, a restraining member 38 is fixed to the upper surface of the connecting plate portion 50 of the support bracket 5. Also, the rear end portion (the right end portion as viewed in Figure 9) of the engagement member 30 is pivotally supported on the front end portion (the left end portion as viewed in Figure 9) of the rear steering column 4 by the second lateral shaft 29. The displacement side meshing teeth 31 formed on the lower edge of the front end portion of the engagement member 30 are opposed to the fixed side meshing teeth 32 formed on the upper surface of the restraining member 38. In the present embodiment, the displacement side meshing teeth 31 are urged toward the fixed side meshing teeth 32 on the basis of the weight of the engagement member 30 during the non-operation of the tilt lever 30. Accordingly, a resilient member for urging the displacement side meshing teeth 31 against the fixed side meshing teeth 32 is absent. In Figure 9, a collar 51 fixed to the outer peripheral surface of the rear steering shaft 26 and a key cylinder 52 fixed to the outer peripheral surface of the rear steering column 4 are members for constituting a steering look device. in the present embodiment, the engagement member 30 and the restraining member 38 are not exposed below the support bracket 5 and therefore, the interference of these members 30 and 38 with the driver's knee can be prevented more reliably. In the other points, the construction and operation of the fourth embodiment are substantially similar to those of the aforedescribed third embodiment and therefore, equivalent portions are given the same reference numerals and need not be described.
Figure 10 shows a fifth embodiment of the present invention. In this embodiment, a connecting bracket 53 is fixedly fitted to the rear end portion of the front steering column 3, and the front end portion of the -Y6 rear steering column 4 is pivotally supported on the connecting bracket 53 by a pair of right and left first lateral shafts. Also, fixed side meshing teeth 32 are formed on the upper surface of the connecting bracket 53. Also, a second lateral shaft 29 is provided on the upper surface of the front end portion of the rear steering column 4, and the rear end portion (the right end portion as viewed in Figure 10) of the engagement member 30 is pivotally supported by the second lateral shaft 29. The tilt lever 33 is provided while continuing from the rear end portion of the engagement member 30. Further, a tension spring 54 is provided between the engagement member 30 and the connecting bracket 53, and urges the displacement side meshing teeth 31 formed on the lower edge of the front end portion (the left end portion as viewed in Figure 10) of the engagement member 30 toward the fixed side meshing teeth 32. In the present embodiment, the engagement member 30 Is absent below the support bracket 5 and therefore, the interference of these members 30 and 38 with the driver's knee can be prevented more reliably. The shape of the outer surface of the displacement side meshing teeth 31 may_ be that of convex plane teeth having a great radius of curvature to absorb meshing deviation. In the other points, the construction and operation of the fifth embodiment are substantially similar to those of the aforedescribed first embodiment and therefore, equivalent portions are given the same reference numerals and need not be described.
In the above-described first to fifth embodiments, the displacement side meshing teeth 31 and the fixed side meshing teeth 32 are brought into and out of engagement with each other simply by the tilt lever 33 being slightly rocked. As a result, the amount of ope ,ration of the tilt lever 33 may become too small and may rather give a feeling of physical disorder to the operator. If the amount of displacement of the engagement member 30 is made great, the amount of operation of the tilt lever 33 could be made great, but for example, the protrusion dimension d of the lower end portion of the restraining pin 34 shown in Figure 1 will become great, and this is not preferable. So, in order to eliminate the feeling of physical disorder as described above without making this protrusion dimension d great, the amount of operation of the tilt lever 33 can be increased by such structure as shown in Figure 11 which shows a sixth embodiment. That is, the tilt lever 33 is pivotally supported by a third lateral shaft 55 provided in parallelism to the second lateral shaft 29, and a concave portion 56 formed on the front end portion (the left end portion as viewed in Figure 11) of the tilt lever 33 and the rear end portion (the right end portion as viewed in Figure 11) of the - 28 engagement member 30 are brought into engagement with each other. With such a construction, the amount of operation of the tilt lever 33 can be increased by an amount corresponding to the ratio (L2./L..) between the distance L.. f rom the engagement portion between the concave portion 56 and the rear end portion of the engagement member 30 to the second lateral shaft 29 and the distance L,, from said engagement portion to the third lateral shaft 55.
The present invention is constructed and operates as described above and can therefore provide a tilt type steering apparatus which is compact and light in weight and moreover in which it is difficult for the interference with the driver's knee to occur.
Next, a seventh embodiment of this invention will be described below, with referring to Figures 16A and 16B.
Similarly, in the case of the tilt type steering apparatus of the seventh embodiment, the displacement side meshing teeth 31 and the fixed side meshing teeth 32 are plane teeth bearing against each other by flat surfaces. That is, these meshing teeth 31 and 32 are not curved surface teeth made from trochoidal curves or the like, but are large-diametered teeth of which the opposite sides are flat. The meshing pressure angle a (ref erred below as a, and cc.) which is the angle of inclination at which the direction of the bearing 29 - surfaces (the direction indicated by dot-and-dash line X in Figures 16A and AB) of the displacement side meshing teeth 31 and fixed side meshing teeth 32 Intersects the direction perpendicular to the pitch line (the direction indicated by dot-and-dash line Y in Figures 16A and 16B) of the displacement side meshing teeth 31 and fixed side meshing teeth 32 is made small in the relation with the coefficient of friction p between the bearing surfaces of the displacement side meshing teeth 31 and fixed side meshing teeth 32.
That is, when the coefficient of friction between the bearing surfaces of the displacement side meshing teeth 31 and fixed side meshing teeth 32 is g, a:s tan-lli.
Further, in the case of the tilt type steering is apparatus of the sixth embodiment, the displacement side meshing teeth 31 and the fixed side meshing teeth 32 are made longitudinally asymmetrical. Also, the meshing pressure angle cc, between the rear side (the right side as viewed in Figures 16A and 16B) 31a of the displacement side meshing teeth 31 and the front side 32a (the left side as viewed In Figures 16A and 16B) of the fixed side meshing teeth 32 which bear against each other is made smaller than the meshing pressure angle a2 be"een the front side (the left side as viewed in Figures 16A and 16B) 31b of the displacement side meshing teeth 31 and the rear side 32b (the right side as viewed In Figures 16A and 16B) of the fixed side -:) C) - meshing teeth 32 which also bear against each other ( er, < ct2). Of these meshing pressure angles a and a2, the value of the greater meshing pressure angle a2 is also regulated to satisfy the above-mentioned expression (a 5 tan-1jj). Accordingly, among these meshing pressure angles a, and a and the abovementioned coefficient of friction g, there is the relation that a, < a2 s tan-'p.
. Particularly, in the case of the tilt type steering apparatus of the seventh embodiment, the displacement side meshing teeth 31 and the fixed side meshing teeth 32 are plane teeth and the meshing pressure angles cc, and cc, thereof is a, < a2:s tan-'g in the relation with the coefficient of friction g. Therefore, even if a member for hindering the displacement of the engagement member 30 is not specially provided, the meshing engagement between the meshing teeth 31 and 32 will not be released unless the tilt lever 33 is operated.
This point will now be described in detail with reference to Figures 16A and 16B. When for example, a downward force is applied to the steering wheel with the displacement side meshing teeth 31 and the fixed side meshing teeth 32 brought into meshing engagement with each other to fix the height position of the steering wheel, a force with tends to rock the rear steering column 4 clockwisely as viewed in Figure 1 about the f irst lateral shafts 23, 23 is applied. As shown in Figure 16A, the front side 31b of the displacement side meshing teeth 31 Is urged toward the rear side 32b of the fixed side meshing teeth 32 with a force N. Each of these sides 31b and 32b is inclined by ct2 with respect to the direction of relative displacement of the displacement side meshing teeth 31 and the fixed side meshing teeth 32. Therefore, the displacement side meshing teeth 31 are subjected to a force N-sina2 in a direction to separate from the fixed side meshing teeth 32. On the other hand, when the coefficient of friction between said two sides 31b and 32b is g, a frictional force g-N acts in the direction of the tooth surfaces of these two sides 31b and 32b, and g-N-cosa acts as a force In a direction to hinder the displacement of these sides 31b and 32b, i.e., a force in a direction Y. Also, the leaf spring 45 acts in a direction to maintain the engagement between the displacement side meshing teeth 31 and the fixed side meshing teeth 32.
Accordingly, if V.N.cosa2 k N.sin%, that is, g k sin%/cos% - tan%, the engagement between the meshing teeth 31 and 32 could be reliably maintained eveq If besides the leaf spring 45, there is not provided any member for urging the displacement side meshing teeth 31 toward the fixed side meshing teeth 32. Since in the case of the tilt type steering apparatus of the present invention, a2:5 tan-lli, p-N-cosa2; N.sina., and it never happens that the engagement between the displacement side meshing teeth 31 and the fixed side meshing teeth 32 is released by the force applied to the steering wheel.
Accordingly, the shaft 14 and roller 15 (Figures 13 to 14) incorporated in the conventional structure can be eliminated and the number of members provided under the rear steering column 4 and support bracket 5 can be reduced. As a result, the amount of downward protrusion of this portion can be reduced and the constituents of the tile type steering apparatus can be prevented from interfering with the driver's knee. Also, it is unnecessary to mount a member like the first engagement member 9 (Figures 13 to 15) incorporated in the conventional structure on the lower surface of the rear steering column 4 and therefore, the lengthwise dimension of the rear steering column 4 can be made small. A mounting plate 47 shown in Figure 1 is for supporting a combination switch.
Since the invention of the present application is constructed and operates as mentioned above, it can provides a tilt type steering apparatus which is compact and light-weighted, and which can achieve a less possibility of an interference with a knee of a driver. In addition, since the invention can provide a superior function for preventing an upward 1 - 33 displacement of a steering wheel, an air bag wTanded at the rear side of the steering wheel on a collision accident can securely receive a body of the driver.
"' 4 -

Claims (4)

1. A tilt type steering apparatus provided with a front steering column, a front steering shaft supported inside said front steering column for rotation only, a support bracket fixed to a vehicle body with the rear end portion of said front steering column fixedly supported, a first lateral shaft provided in a portion fixed to said support bracket, a rear steering column having its front end pivotally supported by said fJrst lateral shaft, a rear steering shaft supported inside said rear steering column for rotation only, a universal joint for connecting the rear end portion of said rear steering shaft and the front end portion of said front steering shaft together, a second lateral shaft provided in a portion fixed to said rear steering column, an engagement member having its rear end portion pivotally supported on said second lateral shaft and having rack-like displacement side meshing teeth formed on the front end portion thereof, rack- like fixed side meshing teeth provided on a portion fixed to said support bracket and opposed to said displacement side meshing teeth, and a tilt lever for bringing said displacement side meshing teeth and said fixed side meshing teeth into and out of engagement with each other with the rocking movement thereof, said displacement side meshing teeth being urged toward said fixed side meshing teeth during the non-operation of - 1 said tilt lever, said displacement side meshing teeth and said fixed side meshing teeth being plane teeth bearing against each other by their flat surfaces, wherein when the meshing pressure angle which is an angle of inclination at which the direction of the bearing surfaces of said displacement side meshing teeth and said fixed side meshing teeth intersects the right-angle direction of the pitch lines of said dipplacement side meshing teeth and said fixed side meshing teeth is a and the coefficient of friction between the bearing surfaces of said displacement side meshing teeth and said fixed side meshing teeth is p, a 5 tan-1p and the shapes of said displacement side meshing teeth and said fixed side meshing teeth are made longitudinally asymmetrical in order that of said meshing pressure angle a, a meshing pressure angle al corresponding to bearing surfaces urged against each other when an upward force is applied to the rear end portion of said rear steering column may be smaller than a meshing pressure angle a. corresponding to bearing surfaces urged against each other when a downward force is applied to the rear end portion of said rear steering column.
36
2. A tiltable steering column apparatus including adjustable fixing means for fixing a steering column in a vehicle such that the tilt angle of the steering column can be selectively adjusted, said fixing means having two interengageable and disengageable toothed portions, wherein the teeth of said toothed portions are asymmetric.
3. An apparatus as claimed in claim 2, wherein the fixing means is adapted such that the relationship between the pressure angle a, at one bearing surface of a tooth of one of said toothed portions, the pressure angle % at said tooth's other bearing surface and the coefficient of static friction g between said tooth and adjacent engaging teeth of the other of said portions is def ined by tan ci, < tan Cú2:5 9
4. A tilt type steering apparatus substantially as herein described with reference to Figure 1, 5, 7, 9, 10, 11 or 16A and B of the accompanying drawings.
GB9515103A 1994-10-28 1995-07-24 Tilt type steering apparatus Expired - Fee Related GB2294530B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26526094A JP3257292B2 (en) 1994-10-28 1994-10-28 Tilt steering system

Publications (3)

Publication Number Publication Date
GB9515103D0 GB9515103D0 (en) 1995-09-20
GB2294530A true GB2294530A (en) 1996-05-01
GB2294530B GB2294530B (en) 1998-08-19

Family

ID=17414766

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9515103A Expired - Fee Related GB2294530B (en) 1994-10-28 1995-07-24 Tilt type steering apparatus

Country Status (3)

Country Link
JP (1) JP3257292B2 (en)
DE (1) DE19529886C2 (en)
GB (1) GB2294530B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2290126B (en) * 1994-06-06 1998-04-22 Nsk Ltd Tilt type steering apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858414B2 (en) * 2007-11-08 2012-01-18 トヨタ自動車株式会社 Steering device
JP5521321B2 (en) * 2008-12-10 2014-06-11 トヨタ自動車株式会社 Steering column holding device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078022A (en) * 1990-01-19 1992-01-07 Nippon Seiko Kabushiki Kaisha Tilt type steering apparatus
US5144855A (en) * 1990-08-16 1992-09-08 Nsk Ltd. Tilting type steering apparatus
US5409261A (en) * 1992-08-06 1995-04-25 Nsk Ltd. Tilt steering system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144569U (en) * 1984-03-07 1985-09-25 日本精工株式会社 tilt steering device
GB2273971A (en) * 1992-12-31 1994-07-06 Ford Motor Co Adjustable steering column mechanism.
JP3158865B2 (en) * 1994-06-06 2001-04-23 日本精工株式会社 Tilt steering system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078022A (en) * 1990-01-19 1992-01-07 Nippon Seiko Kabushiki Kaisha Tilt type steering apparatus
US5144855A (en) * 1990-08-16 1992-09-08 Nsk Ltd. Tilting type steering apparatus
US5409261A (en) * 1992-08-06 1995-04-25 Nsk Ltd. Tilt steering system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2290126B (en) * 1994-06-06 1998-04-22 Nsk Ltd Tilt type steering apparatus

Also Published As

Publication number Publication date
DE19529886A1 (en) 1996-05-02
GB2294530B (en) 1998-08-19
JP3257292B2 (en) 2002-02-18
GB9515103D0 (en) 1995-09-20
DE19529886C2 (en) 1998-04-09
JPH08127348A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
JPH0529979Y2 (en)
US5005906A (en) Reclining device
JP5076908B2 (en) Steering column device
JP4354742B2 (en) Vehicle steering column device
EP1059193B1 (en) Backlash reducing structure for recliner adjuster
EP0448246B1 (en) A steering column assembly
US5078022A (en) Tilt type steering apparatus
JP2003048546A (en) Steering device for vehicle
JPH0880887A (en) Rear wheel suspension device for motorcycle
KR20050084790A (en) Drive comprising a sliding element for a vehicle-seat adjustment mechanism
US11225280B2 (en) Steering device
JP2001522760A (en) Rack and pinion type steering gear device
US5657668A (en) Tilt type steering apparatus
US5486036A (en) Seat-height adjusting device
GB2294530A (en) Tilt type steering apparatus
GB2290126A (en) Tilt type steering apparatus
JP2005014681A (en) Steering column device for vehicle
GB2395467A (en) Shock absorbing steering column device for vehicle
US20060157949A1 (en) Steering assembly
US20060082119A1 (en) Lock for tilting and telescoping steering column
AU666637B2 (en) Tilt type steering apparatus
CN115465353A (en) Steering device
JP2000247243A (en) Automobile steering column adjusting device
EP0425237A2 (en) Reclining device for automotive seat
JP2022147187A (en) steering device

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20080724