FR3119555A1 - Procede de preparation d'un catalyseur de fischer-tropsch a partir de sels fondus et d’un compose organique - Google Patents

Procede de preparation d'un catalyseur de fischer-tropsch a partir de sels fondus et d’un compose organique Download PDF

Info

Publication number
FR3119555A1
FR3119555A1 FR2101304A FR2101304A FR3119555A1 FR 3119555 A1 FR3119555 A1 FR 3119555A1 FR 2101304 A FR2101304 A FR 2101304A FR 2101304 A FR2101304 A FR 2101304A FR 3119555 A1 FR3119555 A1 FR 3119555A1
Authority
FR
France
Prior art keywords
catalyst
dione
organic compound
process according
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR2101304A
Other languages
English (en)
Inventor
Damien Delcroix
Eugénie TAVERNIER
Romain CHENEVIER
Séverine HUMBERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to FR2101304A priority Critical patent/FR3119555A1/fr
Publication of FR3119555A1 publication Critical patent/FR3119555A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

Procédé de préparation d’un catalyseur comprenant les étapes suivantes :a) mise en contact du support poreux avec un composé organique comportant au moins de l’oxygène et/ou de l’azote; b) séchage du précurseur de catalyseur à une température inférieure ou égale à 200°C ;c) mise en contact du précurseur de catalyseur séché avec un sel métallique comprenant un métal du groupe VIII dont la température de fusion dudit sel métallique est comprise entre 30°C et 150°C; d) chauffage sous agitation sous pression atmosphérique du mélange solide à une température comprise entre la température du fusion dudit sel métallique et 200°; e) séchage du solide à une température inférieure ou égale à 200°C pendant une durée supérieure à 4 heures;f) calcination du solide séché à une température supérieure à 200°C et inférieure ou égale à 1100°C sous flux de gaz inerte et/ou de gaz oxydant.

Description

PROCEDE DE PREPARATION D'UN CATALYSEUR DE FISCHER-TROPSCH A PARTIR DE SELS FONDUS ET D’UN COMPOSE ORGANIQUE
La présente invention concerne le domaine des réactions de synthèse d'hydrocarbures à partir d'un mélange de gaz comprenant du monoxyde de carbone et de l'hydrogène, généralement appelée synthèse Fischer-Tropsch. Plus particulièrement, la présente invention concerne le domaine de la préparation de catalyseurs utilisés dans les synthèses Fischer-Tropsch.
Etat de la technique
Les procédés de synthèse Fischer-Tropsch permettent d'obtenir une large gamme de coupes hydrocarbonées à partir du mélange CO + H2, communément appelé gaz de synthèse. L'équation globale de la synthèse Fischer-Tropsch peut s'écrire de la manière suivante :
La synthèse Fischer-Tropsch est au cœur des procédés de conversion du gaz naturel, du charbon ou de la biomasse en carburants ou en intermédiaires pour l'industrie chimique. Ces procédés sont appelés GTL («Gas to Liquids» selon la terminologie anglo-saxonne) dans le cas de l'utilisation de gaz naturel comme charge initiale, CTL(« Coal to Liquids» selon la terminologie anglo-saxonne) pour le charbon, et BTL («Biomass to Liquids» selon la terminologie anglo-saxonne) pour la biomasse.
Dans chacun de ces cas, la charge initiale est tout d'abord gazéifiée en un gaz de synthèse qui comprend un mélange de monoxyde de carbone et de dihydrogène. Le gaz de synthèse est ensuite transformé majoritairement en paraffines grâce à la synthèse Fischer-Tropsch, et ces paraffines peuvent ensuite être transformées en carburants par un procédé d'hydroisomérisation-hydrocraquage. Par exemple, des procédés de transformation tels que l'hydrocraquage, le déparaffinage, et l'hydroisomérisation des coupes lourdes (C16+) permettent de produire différents types de carburants dans la gamme des distillats moyens: gazole (coupe 180-370°C) et kérosène (coupe 140-300°C). Les fractions plus légères C5-C15 peuvent être distillées et utilisées comme solvants.
La réaction de synthèse Fischer-Tropsch peut être réalisée dans différents types de réacteurs (lit fixe, mobile, ou triphasique (gaz, liquide, solide) par exemple de type autoclave parfaitement agité, ou colonne à bulles), et les produits de la réaction présentent notamment la caractéristique d'être exempts de composés soufrés, azotés ou de type aromatique.
Dans une mise en œuvre dans un réacteur de type colonne à bulles (ou "slurry bubble column" selon la terminologie anglaise, ou encore "slurry" dans une expression simplifiée), qui met en œuvre un catalyseur divisé à l'état de poudre très fines, typiquement de l'ordre de quelques dizaines de micromètres, cette poudre formant une suspension avec le milieu réactionnel.
La réaction Fischer-Tropsch se déroule de manière classique entre 1 et 4 MPa (10 et 40 bars), à des températures comprises traditionnellement entre 200°C et 350°C. La réaction est globalement exothermique, ce qui nécessite une attention particulière à la mise en œuvre du catalyseur.
Les catalyseurs employés pour la synthèse Fischer-Tropsch sont essentiellement des catalyseurs à base de cobalt ou de fer, même si d'autres métaux peuvent être utilisés. Néanmoins, le cobalt et le fer offrent un bon compromis performances/prix par rapport aux autres métaux.
L'ajout d'un composé organique sur les catalyseurs Fischer-Tropsch pour améliorer leur activité a été préconisé par l'Homme du métier. De nombreux documents décrivent l'utilisation de différentes gammes de composés organiques en tant qu’additifs, tels que des composés organiques contenant de l’azote et/ou des composés organiques contenant de l’oxygène. Par exemple, le document FR3050659 divulgue un catalyseur contenant une phase active de cobalt, déposée sur un support comprenant de l'alumine, de la silice ou de la silice-alumine, ledit support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel, ledit catalyseur ayant été préparé en introduisant au moins un composé organique comportant au moins une fonction ester lors de sa préparation. Le précurseur de la phase active et le composé organique sont introduits sur le support par la technique d’imprégnation à sec.
Ainsi, les méthodes conventionnelles de préparation des catalyseurs métalliques supportés utilisés pour la synthèse Fischer-Tropsch consistent à déposer un sel métallique solubilisé dans une solution aqueuse sur un support poreux, puis à réaliser un ou plusieurs traitement(s) thermique(s) réalisé(s) sous air, suivi d’un traitement réducteur effectué ex-situ ou in-situ.
Cependant, d’autres méthodes de synthèse de catalyseur Fischer-Tropsch sont connus de l’art antérieur afin d’améliorer la réductibilité de la phase métallique ou encore pour contrôler les tailles de particules. Parmi ces méthodes, l’utilisation de sels fondus en tant que précurseurs est connue de la littérature.
Ainsi, il est connu du brevet US 5,036,032 de proposer une méthode de préparation de catalyseur supporté à base de cobalt par la mise en contact rapide (de l’ordre de quelques dizaines de secondes) d’un support dans un bain de sel fondu de nitrate de cobalt, suivi d’une étape de séchage et de réduction sans calcination intermédiaire. Cette méthode permet la localisation préférentielle de la phase cobalt en périphérie du support. Néanmoins, la méthode ne permet pas un contrôle précis de la quantité de cobalt déposée en raison du temps de contact très court, et d’autre part le type de catalyseur obtenu n’est pas adapté à une mise en œuvre du catalyseur de type slurry en raison de la perte de métal par attrition trop importante. Enfin, cette méthode nécessite de manipuler de grandes quantités de nitrate de cobalt (toxique) sous forme liquide et en température, avec des ratio d’environ 4 grammes de précurseur de cobalt pour 1 gramme de support.
La demande FR3085382 divulgue un procédé Fischer-Tropsch en présence d’un catalyseur préparé par la voie sels fondus, lequel procédé comprend la mise en contact du support poreux avec un sel métallique de cobalt pour former un mélange solide pendant une durée comprise entre 5 minutes et 5 heures, une étape de chauffage sous agitation du mélange solide au-dessus de la température de fusion dudit sel métallique et 200°C, éventuellement une étape de séchage à une température inférieure à 200°C, et une étape de calcination à une température comprise entre 200°C et 1100°C. Lorsque l’étape de séchage est réalisée, celle-ci est effectuée pendant une durée maximale de 4 heures.
La Demanderesse a découvert de manière surprenante qu’il est possible d’améliorer les performances catalytiques dans un procédé de type Fischer-Tropsch, et plus particulièrement d’augmenter de manière significative l’activité dudit catalyseur tout en conservant une bonne sélectivité en utilisant un catalyseur préparé selon un procédé de préparation spécifique faisant recours à l’utilisation de sels fondus et d’un composé organique selon des étapes bien spécifiques.
Objets de l’invention
La présente invention a pour objet un procédé de préparation d’un catalyseur contenant une phase active à base d’au moins un métal du groupe VIII et un support poreux à base d’alumine, de silice, ou de silice-alumine, ledit catalyseur étant préparé par au moins les étapes suivantes :
a) on met en contact ledit support poreux avec au moins un composé organique comportant au moins de l’oxygène et/ou de l’azote pour obtenir un précurseur de catalyseur ;
b) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape a) à une température inférieure ou égale à 200°C pour obtenir un précurseur de catalyseur séché ;
c) on met en contact ledit précurseur de catalyseur séché obtenu à l’issue de l’étape b) avec un sel métallique comprenant au moins un métal du groupe VIII dont la température de fusion dudit sel métallique est comprise entre 30°C et 150°C pour former un mélange solide pendant une durée comprise entre 5 minutes à 5 heures, le rapport massique entre ledit sel métallique et ledit support poreux étant compris entre 0,1 et 1,5 ;
d) on chauffe sous agitation sous pression atmosphérique le mélange solide obtenu à l’issue de l’étape c) à une température comprise entre la température du fusion dudit sel métallique et 200°C pendant une durée comprise entre 5 minutes et 12 heures ;
e) on sèche le solide obtenu à l’issue de l’étape d) à une température inférieure ou égale à 200°C pendant une durée supérieure à 4 heures pour obtenir un solide séché ;
f) on calcine le solide séché obtenu à l’issue de l’étape e) à une température supérieure à 200°C et inférieure ou égale à 1100°C sous flux de gaz inerte et/ou de gaz oxydant, étant entendue que la vitesse dudit flux gazeux, définie comme le débit massique dudit flux gazeux par volume de catalyseur par heure, est supérieure à 1 litre par gramme de catalyseur et par heure.
La Demanderesse a découvert de manière surprenante que le séchage du précurseur de catalyseur après introduction du composé organique et du précurseur de la phase active au-delà de 4 heures suivie d’une étape de calcination spécifique permet d’augmenter de manière significative l’activité catalytique du catalyseur tout en conservant une bonne sélectivité. Sans vouloir être lié par une quelconque théorie, la réalisation d’une étape de séchage du précurseur de catalyseur après introduction du composé organique et du précurseur de la phase active au-delà de 4 heures permet d’obtenir une distribution de tailles de particules étroite et comprise dans un intervalle compris entre 5 et 25 nm, c’est à dire que plus de 99% de la population des particules de la phase active ont une taille comprise entre 5 et 25 nm. En effet, il est généralement admis que le catalyseur est d’autant plus actif que la taille des particules métalliques est petite. De plus, il est important d’obtenir une répartition des tailles de particules centrée sur la valeur optimale ainsi qu’une répartition autour de cette valeur. Le procédé de préparation selon l’invention permet d’obtenir un tel catalyseur avec une activité catalytique accrue tout en conservant une bonne sélectivité. Par ailleurs, la réalisation d’une étape de calcination du précurseur de catalyseur présence d’un flux gazeux à une vitesse relativement élevée permet d’éliminer plus rapidement la chaleur de la réaction exothermique de combustion du composé organique.
Selon un ou plusieurs modes de réalisation, l’étape e) est réalisée pendant une durée comprise entre 5 et 20 heures.
Selon un ou plusieurs modes de réalisation, le rapport massique entre le sel métallique comprenant au moins métal du groupe VIII et le support poreux est compris entre 0,3 et 0,9.
Selon un ou plusieurs modes de réalisation, l’étape e) est réalisée sous agitation.
Selon un ou plusieurs modes de réalisation, la teneur en métal du groupe VIII est comprise entre 1 et 60% en poids en élément du groupe VIII par rapport au poids total du catalyseur.
Selon un ou plusieurs modes de réalisation, le métal du groupe VIII est le cobalt.
Selon un ou plusieurs modes de réalisation, la vitesse du flux gazeux à l’étape f) est comprise entre 1,5 et 5 litres par gramme de catalyseur et par heure.
Selon un ou plusieurs modes de réalisation, ledit composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, ester, amine, amide, éther, dilactone, carboxyanhydride, aldéhyde, cétone, nitrile, imide, oxime, urée.
Selon un ou plusieurs modes de réalisation, ledit composé organique comporte au moins une fonction carboxylique choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide butanedioïque (acide succinique), l’acide 4-oxopentanoïque (acide lévulinique) et l’acide 3-carboxy-3-hydroxypentanedioïque (acide citrique).
Selon un ou plusieurs modes de réalisation, ledit composé organique comporte au moins une fonction alcool choisi parmi le méthanol, l’éthanol, le phénol, l’éthylène glycol, le propane-1,3-diol, le glycérol, le sorbitol, le diéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol, le glucose, le fructose et le sucrose sous l’une quelconque de leurs formes isomères.
Selon un ou plusieurs modes de réalisation, ledit composé organique comporte au moins une fonction ester choisi parmi une γ-lactone ou une δ-lactone contenant entre 4 et 8 atomes de carbone, la γ-butyrolactone, la g-valérolactone, le laurate de méthyle, le malonate de diméthyle, le succinate de diméthyle et le carbonate de propylène.
Selon un ou plusieurs modes de réalisation, ledit composé organique comporte au moins une fonction amine choisi parmi l’aniline, l’éthylènediamine, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine, la diéthylènetriamine et la triéthylènetétramine.
Selon un ou plusieurs modes de réalisation, ledit composé organique comporte au moins une fonction amide choisi parmi la formamide, la N-méthylformamide, la N,N-diméthylformamide, la 2-pyrrolidone, la N-méthyl-2-pyrrolidone, la gamma-valérolactame et la N,N′-diméthylurée.
Selon un ou plusieurs modes de réalisation, ledit composé organique comporte au moins une fonction carboxyanhydride choisi dans le groupe des O-carboxyanhydrides constitué par la 5-méthyl-1,3-dioxolane-2,4-dione et l’acide 2,5-dioxo-1,3-dioxolane-4-propanoïque, ou dans le groupe des N-carboxyanhydrides constitué par la 2,5-oxazolidinedione et la 3,4-diméthyl-2,5-oxazolidinedione.
Selon un ou plusieurs modes de réalisation, ledit composé organique comporte au moins une fonction dilactone choisi dans le groupe des dilactones cycliques de 4 chaînons constitué par la 1,2-dioxétanedione, ou dans le groupe des dilactones cycliques de 5 chaînons constitué par la 1,3-dioxolane-4,5-dione, la 1,5-dioxolane-2,4-dione, et la 2,2-dibutyl-1,5-dioxolane-2,4-dione, ou dans le groupe des dilactones cycliques de 6 chaînons constitué par la 1,3-dioxane-4,6-dione, la 2,2-diméthyl-1,3-dioxane-4,6-dione, la 2,2,5-triméthyl-1,3-dioxane-4,6-dione, la 1,4-dioxane-2,5-dione, la 3,6-diméthyl-1,4-dioxane-2,5-dione, la 3,6-diisopropyl-1,4-dioxane-2,5-dione, et la 3,3-ditoluyl-6,6-diphényl-1,4-dioxane-2,5-dione, ou dans le groupe des dilactones cycliques de 7 chaînons constitué par la 1,2-dioxépane-3,7-dione, la 1,4-dioxépane-5,7-dione, la 1,3-dioxépane-4,7-dione et la 5-hydroxy-2,2-diméthyl-1,3-dioxépane-4,7-dione.
Selon un ou plusieurs modes de réalisation, ledit composé organique comporte au moins une fonction éther comportant au maximum deux fonctions éthers, et ne comportant pas de groupe hydroxyle, choisi dans le groupe des éthers linéaires constitué par le diéthyl éther, le dipropyl éther, le dibutyl éther, le methyl tert-butyl éther, le diisopropyl éther, le di-tert-butyl éther, le méthoxybenzène, le phényl vinyl éther, l’isopropyl vinyl éther et l’isobutyl vinyl éther, ou dans le groupe des éthers cycliques constitué par le tétrahydrofurane, 1,4-dioxane et la morpholine.
Selon un ou plusieurs modes de réalisation, le rapport molaire de composé organique comportant introduit lors de l’étape a) par rapport à l’élément de métal du groupe VIII introduit à l’étape c) est compris entre 0,01 et 2,0 mol/mol.
Selon un ou plusieurs modes de réalisation, ledit procédé comprend une étape a0) dans laquelle on met en contact ledit support poreux avec au moins une solution contenant au moins un précurseur de cobalt et/ou de nickel, puis on sèche et on calcine à une température entre 700°C et 1200°C, de manière à obtenir une phase d’oxyde mixte contenant du cobalt et/ou du nickel dans le support.
Selon un ou plusieurs modes de réalisation, la température de l’étape de séchage e) est au moins supérieure de 10°C par rapport à la température de l’étape de chauffage de l’étape d).
Un autre objet selon l’invention concerne un procédé Fischer-Tropsch de synthèse d'hydrocarbures comprenant la mise en contact d'une charge comprenant du gaz de synthèse avec au moins un catalyseur obtenu par le procédé de préparation selon l’invention sous une pression totale comprise entre 0,1 et 15 MPa, sous une température comprise entre 150°C et 350°C, et à une vitesse volumique horaire comprise entre 100 et 20000 volumes de gaz de synthèse par volume de catalyseur et par heure avec un rapport molaire H2/CO du gaz de synthèse entre 0,5 et 4.
Définitions
Dans la description suivante, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIIIB selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
Les propriétés texturales et structurales du support et du catalyseur décrits ci-après sont déterminées par les méthodes de caractérisation connues de l'homme du métier. Le volume poreux total et la distribution poreuse sont déterminés dans la présente invention par porosimétrie au mercure (cf. Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academic Press, 1999). Plus particulièrement, le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284-92 avec un angle de mouillage de 140°, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Micromeritics™. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T, méthode décrite dans le même ouvrage de référence que la porosimétrie au mercure, et plus particulièrement selon la norme ASTM D3663-03.
Les teneurs en métal du groupe VIII sont mesurées par fluorescence X.
La distribution de tailles de particules est déterminée par Diffusion anormale des rayons X sous petits angles (ASAXS ou «Anomalous small-angle scattering of X-rays» selon la terminologie anglo-saxonne) Ces mesures ont été menées sur la ligne SWING® du synchrotron SOLEIL®. Les intensités de diffusion ont été mesurées à trois différentes énergies, précisément 7440, 7647 et 7694 eV, valeurs juste inférieures aux valeurs d’absorption du seuil K («K-edge» selon la terminologie anglo-saxonne) du cobalt. Les mesures sont réalisées sur les catalyseurs usés après 150 heures de synthèse Fischer-Tropsch dans les conditions opératoires telles que décrites dans l’exemple 3.
Procédé de préparation du catalyseur
Un premier objet selon l’invention concerne un procédé de préparation d’un catalyseur contenant une phase active à base d’au moins un métal du groupe VIII et un support poreux à base d’alumine, de silice, ou de silice-alumine, ledit catalyseur étant préparé par au moins les étapes suivantes :
a) on met en contact ledit support poreux avec au moins un composé organique comportant au moins de l’oxygène et/ou de l’azote pour obtenir un précurseur de catalyseur ;
b) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape a) à une température inférieure ou égale à 200°C pour obtenir un précurseur de catalyseur séché ;
c) on met en contact ledit précurseur de catalyseur séché obtenu à l’issue de l’étape b) avec un sel métallique comprenant au moins un métal du groupe VIII dont la température de fusion dudit sel métallique est comprise entre 30°C et 150°C pour former un mélange solide pendant une durée comprise entre 5 minutes à 5 heures, le rapport massique entre ledit sel métallique et ledit support poreux étant compris entre 0,1 et 1,5 ;
d) on chauffe sous agitation sous pression atmosphérique le mélange solide obtenu à l’issue de l’étape c) à une température comprise entre la température du fusion dudit sel métallique et 200°C pendant une durée comprise entre 5 minutes et 12 heures ;
e) on sèche le solide obtenu à l’issue de l’étape d) à une température inférieure ou égale à 200°C pendant une durée supérieure à 4 heures pour obtenir un solide séché ;
f) on calcine le solide séché obtenu à l’issue de l’étape e) à une température supérieure à 200°C et inférieure ou égale à 1100°C sous flux de gaz inerte et/ou de gaz oxydant, étant entendue que la vitesse dudit flux gazeux, définie comme le débit massique dudit flux gazeux par volume de catalyseur par heure, est supérieure à 1 litre par gramme de catalyseur et par heure.
Les étapes du procédé de préparation du catalyseur utilisé dans la synthèse Fischer-Tropsch selon l’invention sont décrites en détail ci-après.
Etape a0) Formation de la phase d’oxyde mixte contenant du cobalt et/ou du nickel (optionnelle)
Dans un mode de réalisation selon l’invention, le procédé de préparation comprend en outre une étape de formation de la phase s’oxyde mixte contenant du cobalt et/ou du nickel dans le support comprenant de l’alumine, de la silice ou de la silice-alumine par la mise en contact d’une solution contenant au moins un précurseur de cobalt et/ou de nickel, suivie d’un séchage et d’une calcination à haute température.
Il est connu que la présence d’une phase d’oxyde mixte contenant du cobalt et/ou du nickel dans un support de type alumine, silice ou silice-alumine permet d’améliorer la résistance au phénomène d'attrition chimique et mécanique dans un procédé Fischer-Tropsch, et donc de stabiliser le support.
La formation de la phase d’oxyde mixte dans le support, souvent appelé étape de stabilisation du support, peut être effectuée par toute méthode connue de l'Homme du métier. Elle est généralement effectuée en introduisant le cobalt et/ou le nickel sous forme d'un précurseur de sel par exemple de type nitrate sur le support initial contenant l'alumine, la silice ou la silice-alumine. Par calcination à très haute température, la phase d’oxyde mixte contenant du cobalt et/ou du nickel, est formée et stabilise l'ensemble du support. Le cobalt et/ou le nickel contenu dans la phase d’oxyde mixte n’est pas réductible lors de l’activation finale du catalyseur Fischer-Tropsch (réduction). Le cobalt et/ou le nickel contenu dans la phase d’oxyde mixte ne constitue donc pas la phase active du catalyseur.
Selon l’étape a0) on effectue une étape de mise en contact d’un support comprenant de l’alumine, de la silice ou de la silice-alumine avec au moins une solution contenant au moins un précurseur de cobalt et/ou de nickel, puis on sèche et on calcine à une température entre 700 et 1200°C, de manière à obtenir une phase d’oxyde mixte contenant du cobalt et/ou du nickel dans le support.
Plus particulièrement, l’étape a0) de mise en contact peut être effectuée par imprégnation, de préférence à sec, d’un support comprenant de l’alumine, de la silice ou de la silice-alumine, préformé ou en poudre, avec au moins une solution aqueuse contenant le précurseur de cobalt et/ou de nickel, suivie d’un séchage et d’une calcination à une température comprise entre 700 et 1200°C.
Le cobalt est mis au contact du support par l'intermédiaire de tout précurseur de cobalt soluble en phase aqueuse. De manière préférée, le précurseur de cobalt est introduit en solution aqueuse, de préférence sous forme de nitrate, de carbonate, d'acétate, de chlorure, de complexes formés avec les acétylacétonates, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit support. Le précurseur de cobalt avantageusement utilisé est le nitrate de cobalt ou l'acétate de cobalt.
Le nickel est mis au contact du support par l'intermédiaire de tout précurseur de nickel soluble en phase aqueuse. De manière préférée, ledit précurseur de nickel est introduit en solution aqueuse, par exemple sous forme de nitrate, de carbonate, d'acétate, de chlorure, d’hydroxyde, d’hydroxycarbonate, d'oxalate, de complexes formés avec les acétylacétonates, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit support. Le précurseur de nickel avantageusement utilisé est le nitrate de nickel, le chlorure de nickel, l'acétate de nickel ou le hydroxycarbonate de nickel.
La teneur totale en cobalt et/ou en nickel, exprimée en élément métallique, est avantageusement comprise entre 1 et 20 % poids et de préférence entre 2 et 10 % poids par rapport au poids du support final.
Le séchage est avantageusement effectué à une température comprise entre 60°C et 200°C, de préférence pendant une durée allant de 30 minutes à trois heures.
La calcination est effectuée à une température comprise entre 700 et 1200°C, de préférence comprise entre 850 et 1200°C, et de manière préférée comprise entre 850 et 900°C, généralement pendant une durée comprise entre une heure et 24 heures et de préférence comprise entre 2 heures et 5 heures. La calcination est généralement effectuée sous atmosphère oxydante, par exemple sous air, ou sous air appauvri en oxygène ; elle peut également être effectuée au moins en partie sous azote. Elle permet de transformer les précurseurs de cobalt et/ou de nickel et l’alumine et/ou la silice en phase d’oxyde mixte contenant du cobalt et/ou du nickel.
Selon une variante, la calcination peut également être effectuée en deux étapes, ladite calcination est avantageusement réalisée à une température comprise entre 300°C et 600°C sous air pendant une durée comprise entre une demi-heure et trois heures, puis à une température comprise entre 700°C et 1200°C, de préférence comprise entre 850 et 1200°C et de manière préférée entre 850 et 900°C, généralement pendant une durée comprise entre une heure et 24 heures, et de préférence comprise entre 2 heures et 5 heures.
Ainsi, à l'issue de ladite étape a0), ledit support comprenant de l’alumine, de la silice ou de la silice-alumine comprend en outre une phase d’oxyde mixte contenant du cobalt et/ou du nickel.
Etape a)
La mise en contact du composé organique employé pour la mise en œuvre de ladite étape a) avec ledit support est réalisée par imprégnation, notamment par imprégnation à sec ou imprégnation en excès, préférentiellement par imprégnation à sec. Ledit composé organique est préférentiellement imprégné sur ledit support après solubilisation en solution, de préférence aqueuse.
On entend ici par un composé organique contenant au moins de l’oxygène et/ou de l’azote un composé ne comportant pas d’autre hétéroatome.
De préférence, ledit composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, ester, lactone, amine, amide, éther, dilactone, carboxyanhydride, carbonate, aldéhyde, cétone, nitrile, imide, oxime, urée.
Lorsque ledit composé organique comporte au moins une ou plusieurs fonctions carboxyliques, ledit composé organique peut être choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide butanedioïque (acide succinique), l’acide 4-oxopentanoïque (acide lévulinique) et l’acide 3-carboxy-3-hydroxypentanedioïque (acide citrique).
Lorsque ledit composé organique comporte au moins une ou plusieurs fonctions alcools, ledit composé organique peut être choisi parmi le méthanol, l’éthanol, le phénol, l’éthylène glycol, le propane-1,3-diol, le glycérol, le sorbitol, le diéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol, le glucose, le fructose et le sucrose sous l’une quelconque de leurs formes isomères.
Lorsque ledit composé organique comporte au moins une ou plusieurs fonctions esters, ledit composé organique peut être choisi parmi un ester, un diester, une γ-lactone, une δ-lactone ou un carbonate contenant entre 4 et 8 atomes de carbone, la γ-butyrolactone, la g-valérolactone, le laurate de méthyle, le malonate de diméthyle, le succinate de diméthyle et le carbonate de propylène.
Lorsque le composé organique comporte au moins une ou plusieurs fonction amine, ledit composé organique peut être choisi parmi l’aniline, l’éthylènediamine, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine, la diéthylènetriamine et la triéthylènetétramine.
Lorsque le composé organique comporte au moins une ou plusieurs fonctions amides, ledit composé organique peut être choisi parmi la formamide, la N-méthylformamide, la N,N-diméthylformamide, la 2-pyrrolidone, la N-méthyl-2-pyrrolidone, la gamma-valérolactame et la N,N′-diméthylurée.
Lorsque le composé organique comporte au moins une ou plusieurs fonctions éthers, ledit composé organique peut être choisi parmi les composés organiques comprenant au maximum deux fonctions éthers et ne comportant pas de groupe hydroxyle, choisi dans le groupe des éthers linéaires constitué par le diéthyl éther, le dipropyl éther, le dibutyl éther, le methyl tert-butyl éther, le diisopropyl éther, le di-tert-butyl éther, le méthoxybenzène, le phényl vinyl éther, l’isopropyl vinyl éther et l’isobutyl vinyl éther, ou dans le groupe des éthers cycliques constitué par le tétrahydrofurane, 1,4-dioxane et la morpholine
Lorsque le composé organique comporte une fonction dilactone, ledit composé organique peut être choisi dans le groupe des dilactones cycliques de 4 chaînons constitué par la 1,2-dioxétanedione, ou dans le groupe des dilactones cycliques de 5 chaînons constitué par la 1,3-dioxolane-4,5-dione, la 1,5-dioxolane-2,4-dione, et la 2,2-dibutyl-1,5-dioxolane-2,4-dione, ou dans le groupe des dilactones cycliques de 6 chaînons constitué par la 1,3-dioxane-4,6-dione, la 2,2-diméthyl-1,3-dioxane-4,6-dione, la 2,2,5-triméthyl-1,3-dioxane-4,6-dione, la 1,4-dioxane-2,5-dione, la 3,6-diméthyl-1,4-dioxane-2,5-dione, la 3,6-diisopropyl-1,4-dioxane-2,5-dione, et la 3,3-ditoluyl-6,6-diphényl-1,4-dioxane-2,5-dione, ou dans le groupe des dilactones cycliques de 7 chaînons constitué par la 1,2-dioxépane-3,7-dione, la 1,4-dioxépane-5,7-dione, la 1,3-dioxépane-4,7-dione et la 5-hydroxy-2,2-diméthyl-1,3-dioxépane-4,7-dione.
Lorsque le composé organique comporte une fonction carboxyanhydride, ledit composé organique peut être choisi dans le groupe des O-carboxyanhydrides constitué par la 5-méthyl-1,3-dioxolane-2,4-dione et l’acide 2,5-dioxo-1,3-dioxolane-4-propanoïque, ou dans le groupe des N-carboxyanhydrides constitué par la 2,5-oxazolidinedione et la 3,4-diméthyl-2,5-oxazolidinedione. On entend par carboxyanhydride un composé organique cyclique comportant une fonction carboxyanhydride, c’est-à-dire un enchaînement –CO-O-CO-X- ou –X-CO-O-CO- au sein du cycle avec -CO- correspondant à une fonction carbonyle et X pouvant être un atome d’oxygène ou d’azote. Pour X = O on parle d’O-carboxyanhydride et quand X = N on parle deN-carboxyanhydride.
Le rapport molaire de composé organique introduit lors de l’étape a) par rapport à l’élément métallique du groupe VIII introduit à l’étape c) est avantageusement compris entre 0,01 et 2,0 mol/mol, de préférence compris entre 0,05 et 1,5 mol/mol.
Etape b)
Conformément à l’étape de séchage b) de la mise en œuvre pour la préparation du catalyseur, le séchage est réalisé à une température inférieure ou égale à 200°C, avantageusement comprise entre 50°C et 180°C, de préférence entre 70°C et 150°C, de manière très préférée entre 75°C et 130°C. L’étape de séchage est préférentiellement réalisée pendant une durée comprise entre 1 et 4 heures, de préférence sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique. Elle est avantageusement effectuée en lit traversé en utilisant de l'air ou tout autre gaz chaud. De manière préférée, lorsque le séchage est effectué en lit fixe, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée, le séchage est réalisé en lit traversé en présence d'azote et/ou d’air. De préférence, l’étape de séchage a une durée courte comprise entre 5 minutes et 4 heures, de préférence entre 30 minutes et 4 heures et de manière très préférée entre 1 heure et 3 heures.
Selon une première variante, le séchage est conduit de manière à conserver de préférence au moins 30 % du composé organique comportant introduit lors de l’étape b) du procédé de préparation, de préférence cette quantité est supérieure à 50% et de manière encore plus préférée, supérieure à 70%, calculée sur la base du carbone restant sur le catalyseur.
A l’issue de l’étape de séchage b), on obtient alors un précurseur de catalyseur séché.
Etape c)
Selon l’étape c), on met en contact le précurseur de catalyseur séché obtenu à l’issue de l’étape b) avec un sel métallique comprenant au moins métal du groupe VIII dont la température de fusion dudit sel métallique est comprise entre 30°C et 150°C pour former un mélange solide, le rapport massique entre ledit sel métallique et ledit support poreux étant compris entre 0,1 et 1,5.
Selon l’étape c), on fournit un sel métallique comprenant au moins un métal du groupe VIII solide tel que sa température de fusion soit comprise entre 30°C et 150°C. Dans l’étape c), le sel métallique est sous forme solide, c’est-à-dire que la mise en contact entre ledit support poreux et ledit sel métallique est réalisée à une température inférieure à la température de fusion dudit sel métallique.
Lorsque le métal du groupe VIII est le cobalt, ledit sel métallique de cobalt est de préférence un sel métallique hydraté. De manière préférée, le sel métallique de cobalt est le nitrate de cobalt hexahydraté ou l’acétate de cobalt tetrahydraté. De manière très préférée, le sel métallique de cobalt est le nitrate de cobalt hexahydraté. Le sel métallique utilisé dans le cadre du procédé de préparation selon l’invention peut se présenter sous la forme de poudre de granulométrie variable et/ou de particules de taille millimétrique.
Le rapport massique entre le sel métallique comprenant au moins un métal du groupe VIII et le support poreux est compris entre 0,1 et 1,5 de manière préférée entre 0,3 et 1,0. Le procédé de préparation permet un contrôle optimisé de la quantité de métal déposé sur le catalyseur ainsi qu’une dangerosité et un coût maitrisé par la minimisation de la quantité de précurseur métallique employée ne dépassant pas 1,5 grammes de précurseur métallique pour 1 gramme de support.
Selon l’étape c), la mise en contact dudit support poreux et dudit sel métallique peut se faire par toute méthode connue de l’Homme du métier. De manière préférée, on réalise la mise en contact dudit support poreux et du sel métallique avec des moyens de contact choisis parmi les mélangeur convectifs, les mélangeurs à tambour ou les mélangeurs statiques.
L’étape c) est réalisée pendant une durée comprise entre 5 minutes à 5 heures selon le type de mélangeur utilisé, de préférence entre 10 minutes et 4 heures, et encore plus préférentiellement entre 15 minutes et 3 heures.
Selon une variante de l’étape c), tout autre composé solide organique ou inorganique sous forme de poudre de granulométrie variable peut-être ajouté au mélange. S’il s’agit d’un composé inorganique, il peut contenir au moins un élément choisi parmi les groupes VIIB, VIII, IB, IIB, IA (élément alcalin), IIA (élément alcalino-terreux), IIIA, seul ou en mélange. Lorsqu’un autre composé organique ou inorganique est ajouté au mélange, le rapport massique entre le précurseur métallique de cobalt et ledit composé est compris entre 10 et 50000, de manière préférée entre 50 et 20000.
Etape d)
Selon l’étape d), le mélange obtenu à l’issue de l’étape c) est chauffé sous agitation à pression atmosphérique à une température comprise entre la température de fusion du sel métallique comprenant au moins un métal du groupe VIII et 200°C. Dans le cas très préféré où le sel métallique est le nitrate de cobalt hexahydraté, la température de l’étape d) est comprise entre 55°C et 150°C, de manière préférée entre 65°C et 130°C. Le temps de séjour est compris entre 5 minutes et 12 heures, de manière préférée entre 5 minutes et 4 heures.
Selon l’étape d), l’homogénéisation mécanique du mélange peut se faire par toute méthode connue de l’homme du métier. De manière préférée, on pourra employer des mélangeurs convectifs, des mélangeurs à tambour ou des mélangeurs statiques.
Etape e)
Selon un aspect essentiel de l’invention, le solide obtenu à l’issue de l’étape d) est ensuite séché à une température inférieure ou égale à 200°C, avantageusement comprise entre 50°C et 180°C, de préférence entre 70°C et 150°C, de manière très préférée entre 75°C et 130°C, et pendant une durée supérieure à 4 heures, de préférence comprise entre 5 heures et 20 heures et de préférence entre 6 heures et 12 heures.
L’étape de séchage est réalisée de préférence sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène. L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique. Elle est avantageusement effectuée en utilisant de l'air ou tout autre gaz chaud. De manière préférée, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée, le séchage est réalisé en présence d'azote et/ou d’air.
De manière préférée, l’étape e) de séchage est réalisée sous agitation, par toute méthode connue de l’homme du métier. De manière préférée, on pourra employer des mélangeurs convectifs, des mélangeurs à tambour, des mélangeurs statiques ou encore une vis sans fin. Plus préférentiellement, l’étape e) est réalisée sous agitation au moyen d’un mélangeur à tambour.
De manière préférée, la température de l’étape de séchage e) est plus élevée que la température de chauffage de l’étape d). Plus préférentiellement, la température de l’étape de séchage e) est au moins supérieure de 10°C par rapport à la température de l’étape de chauffage de l’étape d).
Etape f)
Selon un aspect essentiel du procédé de préparation selon l’invention, à l’issue de l’étape e) de séchage, on effectue une étape de calcination f) à une température supérieure à 200°C et inférieure ou égale à 1100°C, de préférence à une température comprise entre 250°C et 600°C, sous flux de gaz inerte et/ou de gaz oxydant, de préférence sous flux de gaz oxydant (de préférence l’air), étant entendue que la vitesse dudit flux gazeux, définie comme le débit massique dudit flux gazeux par volume de catalyseur par heure, est supérieure à 1 litre par gramme de catalyseur et par heure, et est de préférence compris entre 1,5 et 5 litres par gramme de catalyseur et par heure.
Sans vouloir être lié par une quelconque théorie, la réalisation d’une étape de calcination du solide séché obtenu à l’issue de l’étape e) en présence d’un flux gazeux à une vitesse relativement élevée permet d’éliminer plus rapidement la chaleur de la réaction exothermique de combustion du composé organique.
La durée de ce traitement thermique est généralement comprise entre 0,5 heures et 16 heures, de préférence entre 1 heure et 5 heures. Après ce traitement, le métal du groupe VIII de la phase active se trouve ainsi sous forme oxyde et le catalyseur ne contient plus ou très peu de composé organique introduit lors de sa synthèse. Cependant l’introduction du composé organique lors de sa préparation a laissé une empreinte sur le support du catalyseur.
L’étape f) est avantageusement effectuée en lit traversé ou en lit fluidisé, de préférence en lit traversé, en utilisant de l'air en tant que flux gazeux.
Préalablement à son utilisation dans le réacteur catalytique de synthèse Fischer-Tropsch, le catalyseur obtenu à l’issue de l’étape f) subit généralement un traitement réducteur, par exemple sous hydrogène pur ou dilué, à haute température, destiné à activer le catalyseur et à former des particules de métal à l’état zéro valent (sous forme métallique). Ce traitement peut être effectuéin-situ(dans le même réacteur que celui où est opéré la synthèse Fischer-Tropsch), ouex-situavant d’être chargé dans le réacteur. La température de ce traitement réducteur est préférentiellement comprise entre 200°C et 500°C et sa durée est généralement comprise entre 2 et 20 heures.
Catalyseur
Le catalyseur obtenu par le procédé de préparation décrit ci-avant comprend, de préférence est constitué de, une phase active comprenant, de préférence constitué de, au moins un métal du groupe VIII et un support poreux à base d’alumine, de silice, ou de silice-alumine, et éventuellement une phase d’oxyde mixte contenant du cobalt et/ou du nickel.
La teneur en métal du groupe VIII est avantageusement comprise entre 1 et 60% poids, de préférence entre 5 et 30% poids, et de manière très préférée entre 10 et 30% poids en élément du métal du groupe VIII par rapport au poids total du catalyseur.
De manière préférée, le métal du groupe VIII est le cobalt.
La surface spécifique du catalyseur est généralement comprise entre 50 m²/g et 500 m²/g, de préférence entre 80 m²/g et 250 m²/g, de façon plus préférée entre 90 m²/g et 150 m²/g. Le volume poreux dudit catalyseur est généralement compris entre 0,2 ml/g et 1 ml/g, et de préférence compris entre 0,25 ml/g et 0,8 ml/g.
De préférence, la phase active du métal du groupe VIII est répartie de manière homogène dans le support, i.e. que la phase active n’est pas répartie en croûte à la surface dudit support.
Support
Le support du catalyseur préparé selon le procédé selon l’invention est à base d’alumine, de silice, ou de silice-alumine, et éventuellement d’une phase d’oxyde mixte contenant du cobalt et/ou du nickel.
Lorsque que le support est une silice-alumine, la teneur en silice (SiO2) peut varier de 0,5% poids à 30% poids par rapport au poids du support, de préférence comprise entre 0,6 et 15% poids.
Selon une variante, ledit support poreux contient en outre une phase d’oxyde mixte contenant du cobalt et/ou du nickel. Selon cette variante, la teneur de la phase d’oxyde mixte dans le support est comprise entre 0,1 et 50% poids par rapport au poids du support.
De préférence, la phase d’oxyde mixte comprend un aluminate de formule CoAl2O4ou NiAl2O4dans le cas d’un support à base d’alumine ou de silice-alumine, ou un silicate de formule Co2SiO4ou Ni2SiO4dans le cas d’un support à base de silice ou de silice-alumine. On entend par phase d’oxyde mixte contenant du cobalt et/ou du nickel, une phase dans laquelle des cations de cobalt et/ou du nickel sont combinés avec les ions oxydes O2-du support d’alumine et/ou de silice formant ainsi une phase mixte contenant des aluminates et/ou des silicates contenant du cobalt et/ou du nickel.
La phase d’oxyde mixte peut être sous forme amorphe ou sous forme cristallisée. Lorsque le support est à base d’alumine, la phase d’oxyde mixte peut comprendre un aluminate de formule CoAl2O4ou NiAl2O4, sous forme amorphe ou cristallisée, par exemple sous forme spinelle. Lorsque le support est à base de silice, la phase d’oxyde mixte peut comprendre un silicate de formule Co2SiO4ou Ni2SiO4(cobalt- ou nickelorthosilicate), sous forme amorphe ou cristallisée. Lorsque le support est à base de silice-alumine, la phase d’oxyde mixte peut comprendre un aluminate de formule CoAl2O4ou NiAl2O4sous forme amorphe ou cristallisée, par exemple sous forme spinelle, et/ou un silicate de formule Co2SiO4ou Ni2SiO4, sous forme amorphe ou cristallisée.
Le cobalt et/ou le nickel contenu dans la phase d'oxyde mixte n'est pas réductible lors de l'activation finale du catalyseur Fischer- Tropsch (réduction). Le cobalt et/ou le nickel contenu dans la phase d'oxyde mixte ne constitue donc pas la phase active du catalyseur.
La présence de phase d’oxyde mixte dans le catalyseur selon l’invention se mesure par réduction en température programmée RTP (ou TPR pour "temperature programmed reduction" selon la terminologie anglo-saxonne) tel que par exemple décrit dans Oil & Gas Science and Technology, Rev. IFP, Vol. 64 (2009), No. 1, pp. 11-12. Selon cette technique, le catalyseur est chauffé sous flux d’un réducteur, par exemple sous flux de dihydrogène. La mesure du dihydrogène consommé en fonction de la température donne des informations quantitatives sur la réductibilité des espèces présentes. La présence d’une phase d’oxyde mixte dans le catalyseur se manifeste ainsi par une consommation de dihydrogène à une température supérieure à environ 800°C.
Dans un mode de réalisation selon l’invention, le support est constitué d’une silice-alumine et d’une phase d’oxyde mixte contenant du cobalt et/ou du nickel, de préférence contenant du cobalt.
La surface spécifique du support est généralement comprise entre 50 m²/g et 500 m²/g, de préférence entre 100 m²/g et 300 m²/g, de façon plus préférée entre 150 m²/g et 250m²/g.
Le volume poreux dudit support est généralement compris entre 0,3 ml/g et 1,2 ml/g, et de préférence compris entre 0,4 ml/g et 1 ml/g.
La distribution poreuse des pores du support poreux peut être de type monomodale, bimodale ou plurimodale. De préférence, elle est de type monomodale. La taille de pores est de l’ordre de 2 à 50 nm, avec une taille moyenne des pores entre 5 et 25 nm, de préférence entre 8 et 20 nm.
Le support peut présenter une morphologie sous forme de billes, d'extrudés (par exemple de forme trilobes ou quadrilobes) ou de pastilles, notamment lorsque ledit catalyseur est mis en œuvre dans un réacteur fonctionnant en lit fixe, ou présenter une morphologie sous forme de poudre de granulométrie variable, notamment lorsque ledit catalyseur est mis en œuvre dans un réacteur de type colonne à bulles. De manière préférée, le support se présente sous la forme de poudre de granulométrie comprise entre 10 et 500 µm.
Le support peut-être fourni par tout moyen connu de l’Homme du métier.
Procédé Fischer-Tropsch
Un autre objet selon l’invention concerne un procédé de Fischer-Tropsch en présence d’un catalyseur préparé selon le procédé de préparation selon l’invention. Ce procédé de Fischer-Tropsch conduit à la production d'hydrocarbures essentiellement linéaires et saturés C5 +(ayant au moins 5 atomes de carbone par molécule). Les hydrocarbures produits par le procédé de l'invention sont ainsi des hydrocarbures essentiellement paraffiniques, dont la fraction présentant les points d'ébullition les plus élevés peut être convertie avec un rendement élevé en distillats moyens (coupes gasoil et kérosène) par un procédé d'hydroconversion tel que l'hydrocraquage et/ou l'hydroisomérisation catalytique(s).
La charge employée pour la mise en œuvre du procédé de l'invention comprend du gaz de synthèse. Le gaz de synthèse est un mélange comprenant notamment du monoxyde de carbone et d’hydrogène présentant des rapports molaires H2/CO pouvant varier dans un rapport de 0,5 à 4 en fonction du procédé par lequel il a été obtenu. Le rapport molaire H2/CO du gaz de synthèse est généralement voisin de 3 lorsque le gaz de synthèse est obtenu à partir du procédé de vaporeformage d’hydrocarbures ou d’alcool. Le rapport molaire H2/CO du gaz de synthèse est de l'ordre de 1,5 à 2 lorsque le gaz de synthèse est obtenu à partir d'un procédé d'oxydation partielle. Le rapport molaire H2/CO du gaz de synthèse est généralement voisin de 2,5 lorsqu'il est obtenu à partir d'un procédé de reformage thermique. Le rapport molaire H2/CO du gaz de synthèse est généralement voisin de 1 lorsqu'il est obtenu à partir d'un procédé de gazéification et de reformage du CO2.
Le catalyseur utilisé dans le procédé de synthèse d'hydrocarbures selon l'invention est de manière préférée mis en œuvre dans des réacteurs en lit bouillonnant ou encore en lit fluidisé triphasique. La mise en œuvre du catalyseur en suspension dans un réacteur fluidisé triphasique, préférentiellement de type colonne à bulle, est préférée. Dans cette mise en œuvre préférée du catalyseur, ledit catalyseur forme une suspension avec le milieu réactionnel. Cette technologie est également connue sous la terminologie de procédé "slurry" par l'homme du métier.
Le procédé de synthèse d'hydrocarbures selon l'invention est opéré sous une pression totale comprise entre 0,1 MPa et 15 MPa, de préférence entre 0,5 MPa et 10 MPa, sous une température comprise entre 150°C et 350°C, de préférence entre 180°C et 270°C. La vitesse volumique horaire est avantageusement comprise entre 100 et 20000 volumes de gaz de synthèse par volume de catalyseur et par heure (100 à 20000 h-1) et de préférence entre 400 et 10000 volumes de gaz de synthèse par volume de catalyseur et par heure (400 à 10000 h-1).
Pour illustrer l’invention et pour permettre à l’Homme du métier de l’exécuter, nous présentons ci-après différents modes de réalisation du procédé de préparation de catalyseurs supportés à base de cobalt et leur utilisation en synthèse Fischer-Tropsch ; cependant cela ne saurait limiter la portée de l’invention.
Exemples
Exemple 1 (comparatif) : Catalyseur A de formule Co / CoAl 2 O 4 -Al 2 O 3 .SiO 2 contenant de la γ-valérolactone, calciné avec une vitesse d’air de 0,7 litres d’air par gramme de catalyseur et par heure et non séché après dépôt du cobalt par sel fondu
Le spinelle présente dans le support du catalyseur A est un spinelle simple formé d'aluminate de cobalt, lequel est inclus dans une silice-alumine contenant 5% poids de SiO2, de granulométrie moyenne égale à 80 µm, et présentant une surface spécifique de 180 m2/g et un volume poreux de 0,55 ml/g. La préparation du spinelle inclus dans la silice-alumine est effectuée par imprégnation à sec d'une solution aqueuse de nitrate de cobalt (Orrion Chemicals Metalchem, ~13% pds Co) de manière à introduire 5% poids de cobalt dans ladite silice-alumine. Après séchage à 120°C pendant 3 heures, le solide est calciné à 850°C pendant 4 heures sous air. Le support du catalyseur A est formé de 5% poids de cobalt sous forme d'aluminate de cobalt dans la silice-alumine.
La γ-valérolactone est déposée sur le support décrit ci-dessus par imprégnation à sec d’une solution de γ-valérolactone, à une concentration telle que le ratio molaire γ-valérolactone / Co soit de 1,0 mol/mol. Après l’imprégnation à sec, le solide subit une maturation en atmosphère saturée en eau pendant 9 heures à température ambiante, puis est séché en étuve à 120°C pendant 3 heures. 5 grammes de ce solide et 4 grammes de nitrate de cobalt hexahydraté (Aldrich, >98%) sont ensuite introduits dans un mélangeur à tambour incliné à 45° et muni de contre-pâles pour assurer un mouvement en cascade lors du mélange des poudres. Le mélangeur est mis sous agitation à 60 tours par minute pendant 1 heure à température et pression ambiante. Après cette étape d’homogénéisation, le mélangeur est laissé sous agitation à pression ambiante, et la température est augmentée à 5°C/min jusqu’à 85°C et maintenue à 85°C pendant 1 heure.
Le solide non séché est ensuite calciné sous air à 400°C pendant 4 heures en lit traversé avec une vitesse d’air de 0,7 litre d’air/gramme de catalyseur et par heure (l/g.h) afin d’obtenir le catalyseur A.
Exemple 2 (selon l’invention) : Catalyseur B de formule Co / CoAl 2 O 4 -Al 2 O 3 .SiO 2 contenant de la γ-valérolactone, calciné avec une vitesse d’air de 4 litres d’air par gramme de catalyseur et par heure et séché pendant 9 heures après dépôt du cobalt par sel fondu
Le spinelle présente dans le support du catalyseur B est un spinelle simple formé d'aluminate de cobalt, lequel est inclus dans une silice-alumine contenant 5% poids de SiO2, de granulométrie moyenne égale à 80 µm, et présentant une surface spécifique de 180 m2/g et un volume poreux de 0,55 ml/g. La préparation du spinelle inclus dans la silice-alumine est effectuée par imprégnation à sec d'une solution aqueuse de nitrate de cobalt (Orrion Chemicals Metalchem, ~13% pds Co) de manière à introduire 5% poids de cobalt dans ladite silice-alumine. Après séchage à 120°C pendant 3 heures, le solide est calciné à 850°C pendant 4 heures sous air. Le support du catalyseur B est formé de 5% poids de cobalt sous forme d'aluminate de cobalt dans la silice-alumine.
La γ-valérolactone est déposée sur le support décrit ci-dessus par imprégnation à sec d’une solution de γ-valérolactone, à une concentration telle que le ratio molaire γ-valérolactone / Co soit de 1,0 mol/mol. Après l’imprégnation à sec, le solide subit une maturation en atmosphère saturée en eau pendant 9 heures à température ambiante, puis est séché en étuve à 120°C pendant 3 heures. 5 grammes de ce solide et 4 grammes de nitrate de cobalt hexahydraté (Aldrich, >98%) sont ensuite introduits dans un mélangeur à tambour incliné à 45° et muni de contre-pâles pour assurer un mouvement en cascade lors du mélange des poudres. Le mélangeur est mis sous agitation à 60 tours par minute pendant 1 heure à température et pression ambiante. Après cette étape d’homogénéisation, le mélangeur est laissé sous agitation à pression ambiante, et la température est augmentée à 5°C/min jusqu’à 85°C et maintenue à 85°C pendant 1 heure. La température est ensuite augmentée à 5°C/min jusqu’à 100°C et maintenue à 100°C pendant 9 heures pour l’étape de séchage. Le solide séché est ensuite calciné sous air à 400°C pendant 4 heures en lit traversé avec une vitesse d’air de 4 litres d’air/gramme de catalyseur et par heure (l/g.h) afin d’obtenir le catalyseur B.
Exemple 3 : Mise en œuvre des catalyseurs A à B en synthèse Fischer-Tropsch
Les catalyseurs A et B, avant d'être successivement testés en conversion du gaz de synthèse, sont réduits ex situ sous un flux d'hydrogène pur à 400°C pendant 16 heures en réacteur tubulaire. Une fois le catalyseur réduit, il est déchargé sous atmosphère d'argon et enrobé dans de la cire Sasolwax® pour être stocké à l'abri de l'air avant test. La réaction de synthèse Fischer-Tropsch est opérée dans un réacteur triphasique (aussi appelé technologie "slurry" selon la terminologie anglaise) fonctionnant en continu et opérant avec une concentration de 10% (vol) de catalyseur en phase dispersée. Les conditions de test sont les suivantes : température = 220°C ; pression totale = 2 MPa ; rapport molaire H2/CO=2. La conversion du CO est maintenue à 60% pendant toute la durée du test. Les conditions de test sont ajustées de façon à être à iso conversion de CO quelle que soit l'activité du catalyseur. Les résultats, en terme d’activité, ont été calculés après 150 heures de test pour les catalyseurs A et B par rapport au catalyseur A servant de référence et figurent dans le tableau 1 ci-après. Les sélectivités en formation de méthane sont également données.
Catalyseurs Durée de séchage à 100°C (en heures) Vitesse d’air de calcination (en l/gcatalyseur/heure) Activité relative après 150 heures de test Sélectivité de formation du méthane (en %)
A (non conforme) 0 0,7 100 (base) 7,7
B (conforme) 9 4,0 135 8,0
Tableau 1 : Performances catalytiques des catalyseurs A et B
Les résultats du tableau 1 ci-avant montrent les performances catalytiques des catalyseurs A et B tant en terme d'activité et de sélectivité. Il apparaît que le catalyseur préparé par le procédé selon l’invention avec une durée de séchage supérieure à 4 heures après dépôt du cobalt par sel fondu et une vitesse d’air de calcination supérieure à 1 litre d’air/gramme catalyseur et par heure présente après 150 heures de test une activité relative améliorée par rapport au catalyseur A de l’exemple 1 dont la durée de séchage après dépôt du cobalt par sel fondu est inférieure à 4 heures et dont la vitesse d’air de calcination est inférieure à 1 litre d’air/gramme catalyseur et par heure, tout en conservant une bonne sélectivité.

Claims (20)

  1. Procédé de préparation d’un catalyseur contenant une phase active à base d’au moins un métal du groupe VIII et un support poreux à base d’alumine, de silice, ou de silice-alumine, ledit catalyseur étant préparé par au moins les étapes suivantes :
    a) on met en contact ledit support poreux avec au moins un composé organique comportant au moins de l’oxygène et/ou de l’azote pour obtenir un précurseur de catalyseur ;
    b) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape a) à une température inférieure ou égale à 200°C pour obtenir un précurseur de catalyseur séché ;
    c) on met en contact ledit précurseur de catalyseur séché obtenu à l’issue de l’étape b) avec un sel métallique comprenant au moins un métal du groupe VIII dont la température de fusion dudit sel métallique est comprise entre 30°C et 150°C pour former un mélange solide pendant une durée comprise entre 5 minutes à 5 heures, le rapport massique entre ledit sel métallique et ledit support poreux étant compris entre 0,1 et 1,5 ;
    d) on chauffe sous agitation sous pression atmosphérique le mélange solide obtenu à l’issue de l’étape c) à une température comprise entre la température du fusion dudit sel métallique et 200°C pendant une durée comprise entre 5 minutes et 12 heures ;
    e) on sèche le solide obtenu à l’issue de l’étape d) à une température inférieure ou égale à 200°C pendant une durée supérieure à 4 heures pour obtenir un solide séché ;
    f) on calcine le solide séché obtenu à l’issue de l’étape e) à une température supérieure à 200°C et inférieure ou égale à 1100°C sous flux de gaz inerte et/ou de gaz oxydant, étant entendue que la vitesse dudit flux gazeux, définie comme le débit massique dudit flux gazeux par volume de catalyseur par heure, est supérieure à 1 litre par gramme de catalyseur et par heure.
  2. Procédé selon la revendication 1, dans lequel l’étape e) est réalisée pendant une durée comprise entre 5 et 20 heures.
  3. Procédé selon l’une des revendications 1 ou 2, dans lequel le rapport massique entre le sel métallique comprenant au moins métal du groupe VIII et le support poreux est compris entre 0,3 et 0,9.
  4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel l’étape e) est réalisée sous agitation.
  5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel la teneur en métal du groupe VIII est comprise entre 1 et 60% en poids en élément du groupe VIII par rapport au poids total du catalyseur.
  6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel le métal du groupe VIII est le cobalt.
  7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel à l’étape f) la vitesse du flux gazeux est comprise entre 1,5 et 5 litres par gramme de catalyseur et par heure.
  8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel ledit composé organique est choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, ester, amine, amide, éther, dilactone, carboxyanhydride, aldéhyde, cétone, nitrile, imide, oxime, urée.
  9. Procédé selon la revendication 8, dans lequel ledit composé organique comporte au moins une fonction carboxylique choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide butanedioïque (acide succinique), l’acide 4-oxopentanoïque (acide lévulinique) et l’acide 3-carboxy-3-hydroxypentanedioïque (acide citrique).
  10. Procédé selon la revendication 8, dans lequel ledit composé organique comporte au moins une fonction alcool choisi parmi le méthanol, l’éthanol, le phénol, l’éthylène glycol, le propane-1,3-diol, le glycérol, le sorbitol, le diéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol, le glucose, le fructose et le sucrose sous l’une quelconque de leurs formes isomères.
  11. Procédé selon la revendication 8, dans lequel ledit composé organique comporte au moins une fonction ester choisi parmi une γ-lactone ou une δ-lactone contenant entre 4 et 8 atomes de carbone, la γ-butyrolactone, la g-valérolactone, le laurate de méthyle, le malonate de diméthyle, le succinate de diméthyle et le carbonate de propylène.
  12. Procédé selon la revendication 8, dans lequel ledit composé organique comporte au moins une fonction amine choisi parmi l’aniline, l’éthylènediamine, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine, la diéthylènetriamine et la triéthylènetétramine.
  13. Procédé selon la revendication 8, dans lequel ledit composé organique comporte au moins une fonction amide choisi parmi la formamide, la N-méthylformamide, la N,N-diméthylformamide, la 2-pyrrolidone, la N-méthyl-2-pyrrolidone, la gamma-valérolactame et la N,N′-diméthylurée.
  14. Procédé selon la revendication 8, dans lequel ledit composé organique comporte au moins une fonction carboxyanhydride choisi dans le groupe des O-carboxyanhydrides constitué par la 5-méthyl-1,3-dioxolane-2,4-dione et l’acide 2,5-dioxo-1,3-dioxolane-4-propanoïque, ou dans le groupe des N-carboxyanhydrides constitué par la 2,5-oxazolidinedione et la 3,4-diméthyl-2,5-oxazolidinedione.
  15. Procédé selon la revendication 8, dans lequel ledit composé organique comporte au moins une fonction dilactone choisi dans le groupe des dilactones cycliques de 4 chaînons constitué par la 1,2-dioxétanedione, ou dans le groupe des dilactones cycliques de 5 chaînons constitué par la 1,3-dioxolane-4,5-dione, la 1,5-dioxolane-2,4-dione, et la 2,2-dibutyl-1,5-dioxolane-2,4-dione, ou dans le groupe des dilactones cycliques de 6 chaînons constitué par la 1,3-dioxane-4,6-dione, la 2,2-diméthyl-1,3-dioxane-4,6-dione, la 2,2,5-triméthyl-1,3-dioxane-4,6-dione, la 1,4-dioxane-2,5-dione, la 3,6-diméthyl-1,4-dioxane-2,5-dione, la 3,6-diisopropyl-1,4-dioxane-2,5-dione, et la 3,3-ditoluyl-6,6-diphényl-1,4-dioxane-2,5-dione, ou dans le groupe des dilactones cycliques de 7 chaînons constitué par la 1,2-dioxépane-3,7-dione, la 1,4-dioxépane-5,7-dione, la 1,3-dioxépane-4,7-dione et la 5-hydroxy-2,2-diméthyl-1,3-dioxépane-4,7-dione.
  16. Procédé selon la revendication 8, dans lequel ledit composé organique comporte au moins une fonction éther comportant au maximum deux fonctions éthers, et ne comportant pas de groupe hydroxyle, choisi dans le groupe des éthers linéaires constitué par le diéthyl éther, le dipropyl éther, le dibutyl éther, le methyl tert-butyl éther, le diisopropyl éther, le di-tert-butyl éther, le méthoxybenzène, le phényl vinyl éther, l’isopropyl vinyl éther et l’isobutyl vinyl éther, ou dans le groupe des éthers cycliques constitué par le tétrahydrofurane, 1,4-dioxane et la morpholine.
  17. Procédé selon l’une quelconque des revendications 1 à 16, dans lequel le rapport molaire du composé organique introduit lors de l’étape a) par rapport à l’élément de métal du groupe VIII introduit à l’étape c) est compris entre 0,01 et 2,0 mol/mol.
  18. Procédé selon l’une quelconque des revendications 1 à 17, comprenant une étape a0) dans laquelle on met en contact ledit support poreux avec au moins une solution contenant au moins un précurseur de cobalt et/ou de nickel, puis on sèche et on calcine à une température entre 700°C et 1200°C, de manière à obtenir une phase d’oxyde mixte contenant du cobalt et/ou du nickel dans le support.
  19. Procédé selon l’une quelconque des revendications 1 à 18, dans lequel la température de l’étape de séchage e) est au moins supérieure de 10°C par rapport à la température de l’étape de chauffage de l’étape d).
  20. Procédé Fischer-Tropsch de synthèse d'hydrocarbures comprenant la mise en contact d'une charge comprenant du gaz de synthèse avec au moins un catalyseur obtenu par le procédé selon l’une quelconque des revendications 1 à 19 sous une pression totale comprise entre 0,1 et 15 MPa, sous une température comprise entre 150°C et 350°C, et à une vitesse volumique horaire comprise entre 100 et 20000 volumes de gaz de synthèse par volume de catalyseur et par heure avec un rapport molaire H2/CO du gaz de synthèse entre 0,5 et 4.
FR2101304A 2021-02-11 2021-02-11 Procede de preparation d'un catalyseur de fischer-tropsch a partir de sels fondus et d’un compose organique Pending FR3119555A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR2101304A FR3119555A1 (fr) 2021-02-11 2021-02-11 Procede de preparation d'un catalyseur de fischer-tropsch a partir de sels fondus et d’un compose organique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2101304 2021-02-11
FR2101304A FR3119555A1 (fr) 2021-02-11 2021-02-11 Procede de preparation d'un catalyseur de fischer-tropsch a partir de sels fondus et d’un compose organique

Publications (1)

Publication Number Publication Date
FR3119555A1 true FR3119555A1 (fr) 2022-08-12

Family

ID=76159485

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2101304A Pending FR3119555A1 (fr) 2021-02-11 2021-02-11 Procede de preparation d'un catalyseur de fischer-tropsch a partir de sels fondus et d’un compose organique

Country Status (1)

Country Link
FR (1) FR3119555A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036032A (en) 1988-03-25 1991-07-30 Exxon Research And Engineering Company Selective catalysts and their preparation for catalytic hydrocarbon synthesis
WO2017186407A1 (fr) * 2016-04-29 2017-11-02 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un acide dicarboxylique comportant au moins trois atomes de carbone
FR3050659A1 (fr) 2016-04-29 2017-11-03 Ifp Energies Now Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose ester
FR3050662A1 (fr) * 2016-04-29 2017-11-03 Ifp Energies Now Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose acide amine
FR3085284A1 (fr) * 2018-09-04 2020-03-06 IFP Energies Nouvelles Procede de preparation d'un catalyseur ou d'une masse de captation a partir de sels fondus
FR3085382A1 (fr) 2018-09-04 2020-03-06 IFP Energies Nouvelles Procede fischer-tropsch en presence d'un catalyseur prepare a partir d'un sel fondu
FR3087672A1 (fr) * 2018-10-25 2020-05-01 IFP Energies Nouvelles Catalyseur de cobalt a base d’un support comprenant une phase d’oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d’un compose organique de la famille des carboxyanhydrides

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036032A (en) 1988-03-25 1991-07-30 Exxon Research And Engineering Company Selective catalysts and their preparation for catalytic hydrocarbon synthesis
WO2017186407A1 (fr) * 2016-04-29 2017-11-02 IFP Energies Nouvelles Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un acide dicarboxylique comportant au moins trois atomes de carbone
FR3050659A1 (fr) 2016-04-29 2017-11-03 Ifp Energies Now Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose ester
FR3050662A1 (fr) * 2016-04-29 2017-11-03 Ifp Energies Now Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose acide amine
FR3085284A1 (fr) * 2018-09-04 2020-03-06 IFP Energies Nouvelles Procede de preparation d'un catalyseur ou d'une masse de captation a partir de sels fondus
FR3085382A1 (fr) 2018-09-04 2020-03-06 IFP Energies Nouvelles Procede fischer-tropsch en presence d'un catalyseur prepare a partir d'un sel fondu
FR3087672A1 (fr) * 2018-10-25 2020-05-01 IFP Energies Nouvelles Catalyseur de cobalt a base d’un support comprenant une phase d’oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d’un compose organique de la famille des carboxyanhydrides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OIL & GAS SCIENCE AND TECHNOLOGY, REV. IFP, vol. 64, no. 1, 2009, pages 11 - 12
ROUQUEROL F.ROUQUEROL J.SINGH K.: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS

Similar Documents

Publication Publication Date Title
EP2921227B1 (fr) Catalyseur fischer-tropsch à base d'un metal du groupe viiib et d'un support d'oxydes comprenant de l'alumine, de la silice, une spinelle et du phosphore
EP3283216B1 (fr) Catalyseur comprenant une phase active dopee au bore
EP1827684B1 (fr) Catalyseur a base de cobalt pour la synthese fischer-tropsch
EP3448560B1 (fr) Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose ester
EP3448559B1 (fr) Préparation d'un catalyseur de cobalt à base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel préparé par l'utilisation d'un acide dicarboxylique comportant au moins trois atomes de carbone
EP2921547B1 (fr) Procédé fischer-tropsch utilisant un catalyseur à base d'un metal du groupe viiib et d'un support d'oxydes comprenant de l'alumine, de la silice et du phosphore.
FR3057472A1 (fr) Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'un compose hydrogenocarbone.
EP3381552B1 (fr) Procédé de préparation de catalyseurs à base de cobalt
WO2016083020A1 (fr) Procede de preparation d'un catalyseur fischer-tropsch avec traitement a la vapeur
EP3643767A1 (fr) Procede de synthese fischer-tropsch comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse
FR3085382A1 (fr) Procede fischer-tropsch en presence d'un catalyseur prepare a partir d'un sel fondu
FR3119555A1 (fr) Procede de preparation d'un catalyseur de fischer-tropsch a partir de sels fondus et d’un compose organique
FR3087672A1 (fr) Catalyseur de cobalt a base d’un support comprenant une phase d’oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d’un compose organique de la famille des carboxyanhydrides
FR3071748A1 (fr) Catalyseur comprenant un alliage ni3mo et son utilisation en synthese fischer-tropsch
WO2017186405A1 (fr) Catalyseur de cobalt a base d'un support contenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare par l'utilisation d'acide oxalique ou d'oxalate
FR3119557A1 (fr) Procede de preparation d'un catalyseur de fischer-tropsch a partir de sels fondus et d'une etape de sechage specifique
EP4043537A1 (fr) Procede de preparation d'un catalyseur de fischer-tropsch en presence d'un additif et d'une etape de calcination specifique
EP3643404A1 (fr) Catalyseur de cobalt a base d'un support comprenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d'un compose ether et procédé de fischer-tropsch utilisant celui-ci
EP3643401B1 (fr) Catalyseur de cobalt a base d'un support comprenant une phase d'oxyde mixte contenant du cobalt et/ou du nickel prepare a partir d'un compose dilactone
FR3041270A1 (fr) Catalyseur fischer-tropsch a base d'un metal du groupe viiib, de bore et d'un support contenant du phosphore introduit sous forme d'un sel
FR3071749A1 (fr) Catalyseur comprenant un alliage ni4w et son utilisation en synthese fischer-tropsch

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20220812

PLFP Fee payment

Year of fee payment: 3