FR3102548A1 - Process and apparatus for air separation by cryogenic distillation - Google Patents

Process and apparatus for air separation by cryogenic distillation Download PDF

Info

Publication number
FR3102548A1
FR3102548A1 FR1911900A FR1911900A FR3102548A1 FR 3102548 A1 FR3102548 A1 FR 3102548A1 FR 1911900 A FR1911900 A FR 1911900A FR 1911900 A FR1911900 A FR 1911900A FR 3102548 A1 FR3102548 A1 FR 3102548A1
Authority
FR
France
Prior art keywords
column
enriched
liquid
oxygen
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1911900A
Other languages
French (fr)
Other versions
FR3102548B1 (en
Inventor
Bertrand Demolliens
Patrick Le Bot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to FR1911900A priority Critical patent/FR3102548B1/en
Priority to US17/076,487 priority patent/US20210123671A1/en
Priority to EP20203664.6A priority patent/EP3812675A1/en
Priority to CN202011154571.2A priority patent/CN112710125A/en
Publication of FR3102548A1 publication Critical patent/FR3102548A1/en
Application granted granted Critical
Publication of FR3102548B1 publication Critical patent/FR3102548B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • F25J3/0463Simultaneously between rectifying and stripping sections, i.e. double dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04933Partitioning walls or sheets
    • F25J3/04939Vertical, e.g. dividing wall columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04945Details of internal structure; insulation and housing of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)

Abstract

Titre : Procédé et appareil de séparation d’air par distillation cryogénique Dans un procédé de séparation d’air par distillation cryogénique, de l’air (1) refroidi et épuré en eau est envoyé à une première colonne (K1) opérant à une première pression où il est séparé en un gaz enrichi en azote et un liquide (3) enrichi en oxygène, un gaz enrichi en argon (7) par rapport à l’air est soutiré de la deuxième colonne, au moins une partie du liquide enrichi en oxygène est vaporisée par échange de chaleur avec le gaz enrichi en argon et le liquide enrichi en oxygène vaporisé (5) est envoyé à un niveau intermédiaire de la deuxième colonne. Figure de l’abrégé : Fig.1A Title: Process and Apparatus for Air Separation by Cryogenic Distillation In an air separation process by cryogenic distillation, air (1) cooled and purified of water is sent to a first column (K1) operating at a first pressure where it is separated into a nitrogen-enriched gas and a liquid (3) enriched in oxygen, a gas enriched in argon (7) with respect to air is withdrawn from the second column, at least part of the liquid enriched in oxygen is vaporized by heat exchange with the gas enriched in argon and the vaporized oxygen-enriched liquid (5) is sent to an intermediate level of the second column. Abstract Figure: Fig.1A

Description

Procédé et appareil de séparation d’air par distillation cryogéniqueProcess and apparatus for air separation by cryogenic distillation

Selon la présente invention, il est prévu un procédé et un appareil de séparation d’air par distillation cryogénique. Le procédé est réalisé utilisant une double colonne de distillation d’air, en soi bien connue, associée ou non à une colonne de séparation d’argon.According to the present invention, there is provided a cryogenic distillation air separation method and apparatus. The process is carried out using a double air distillation column, well known in itself, associated or not with an argon separation column.

Classiquement dans un appareil de séparation d’air, de l’air épuré et refroidi est envoyé à une première colonne opérant à une température cryogénique pour être séparé en un gaz enrichi en azote et un liquide enrichi en oxygène.Conventionally in an air separation device, purified and cooled air is sent to a first column operating at a cryogenic temperature to be separated into a nitrogen-enriched gas and an oxygen-enriched liquid.

Le liquide est soutiré de la première colonne et envoyé à une deuxième colonne opérant à une pression plus basse que la première colonne, après détente dans une vanne.The liquid is withdrawn from the first column and sent to a second column operating at a lower pressure than the first column, after expansion in a valve.

Les appareils de séparation d’air comprennent souvent une colonne de séparation d’argon en plus de la double colonne. Cette colonne de séparation d’argon peut évidemment servir à produire de l’argon mais dans certains cas, elle est installée surtout dans le but d’augmenter le rendement d’oxygène et/ou d’augmenter la production d’azote à une pression élevée et/ou de permettre de détendre beaucoup d’air destiné à la deuxième colonne pour augmenter la production de frigories et donc la production de liquide ou pour améliorer les performances énergétiques.Air separation devices often include an argon separation column in addition to the double column. This argon separation column can obviously be used to produce argon, but in some cases it is installed mainly for the purpose of increasing the oxygen yield and/or increasing the nitrogen production at a pressure high and/or to allow a lot of air intended for the second column to be expanded to increase the production of cold temperatures and therefore the production of liquid or to improve the energy performance.

Un but de la présente invention est d’améliorer la performance énergétique des unités de séparation d’air, avec ou sans la présence de la colonne de séparation d’argon.An object of the present invention is to improve the energy performance of air separation units, with or without the presence of the argon separation column.

Dans le cas, où la colonne de séparation d’argon est présente, même si de l’argon n’est pas produit et/ou la colonne ne contient que très peu d’étages, l’invention vise à réduire le coût supplémentaire lié à la présence de cette colonne. Ainsi, le gain de performance énergétique amené par l’invention peut être totalement ou partiellement engrangé à moindre frais.In the case where the argon separation column is present, even if argon is not produced and/or the column contains only very few stages, the invention aims to reduce the additional cost linked to the presence of this column. Thus, the gain in energy performance brought about by the invention can be totally or partially reaped at a lower cost.

Selon un objet de l’invention, il est prévu un procédé de séparation d’air par distillation cryogénique dans lequelAccording to an object of the invention, there is provided a process for separating air by cryogenic distillation in which

  1. De l’air refroidi et épuré en eau est envoyé à une première colonne opérant à une première pression où il est séparé en un gaz enrichi en azote et un liquide enrichi en oxygène,Air cooled and purified of water is sent to a first column operating at a first pressure where it is separated into a nitrogen-enriched gas and an oxygen-enriched liquid,
  2. Un liquide enrichi en azote par rapport à l’air est soutiré de la première colonne et envoyé en haut d’une deuxième colonne thermiquement reliée à la première colonne et opérant à une deuxième pression inférieure à la première pression,A liquid enriched in nitrogen relative to the air is withdrawn from the first column and sent to the top of a second column thermally connected to the first column and operating at a second pressure lower than the first pressure,
  3. Un liquide enrichi en oxygène par rapport à l’air est soutiré de la première colonne et éventuellement une première partie du liquide enrichie en oxygène est envoyée à un niveau intermédiaire de la deuxième colonne éventuellement après avoir subi une étape de vaporisation partielle qui l’a enrichie en oxygène,A liquid enriched in oxygen with respect to the air is withdrawn from the first column and optionally a first part of the liquid enriched in oxygen is sent to an intermediate level of the second column, optionally after having undergone a partial vaporization step which has enriched with oxygen,
  4. Un gaz enrichi en argon par rapport à l’air est soutiré de la deuxième colonneA gas enriched in argon with respect to air is withdrawn from the second column

caractérisé en ce qu’au moins une partie du liquide enrichi en oxygène est au moins partiellement vaporisée par échange de chaleur avec le gaz enrichi en argon et le liquide enrichi en oxygène vaporisé est envoyé à un niveau intermédiaire de la deuxième colonne, éventuellement suite à une étape d’enrichissement en oxygène du liquide vaporisé.characterized in that at least part of the oxygen-enriched liquid is at least partially vaporized by heat exchange with the argon-enriched gas and the vaporized oxygen-enriched liquid is sent to an intermediate level of the second column, optionally following a step of oxygen enrichment of the vaporized liquid.

Selon d’autres aspects facultatifs qui peuvent être combinés entre eux :According to other optional aspects that can be combined with each other:

  • le liquide enrichi en oxygène vaporisé est à une pression d’au moins 1 bar supérieure à la pression de la deuxième colonne, et est détendu dans une turbine puis envoyé à un niveau intermédiaire de la deuxième colonne.the vaporized oxygen-enriched liquid is at a pressure at least 1 bar higher than the pressure of the second column, and is expanded in a turbine then sent to an intermediate level of the second column.
  • au moins une partie condensée du gaz enrichi en argon est renvoyée à la deuxième colonne.at least a condensed portion of the argon-enriched gas is returned to the second column.
  • au moins une partie condensée du gaz enrichi en argon est renvoyée à une troisième colonne qui est également alimentée par un débit gazeux enrichi en argon provenant de la deuxième colonne, un débit enrichi en argon est soutiré en tête de la troisième colonne et un liquide appauvri en argon est renvoyé de la troisième colonne à la deuxième colonne.at least a condensed part of the argon-enriched gas is sent back to a third column which is also supplied with an argon-enriched gas flow coming from the second column, an argon-enriched flow is drawn off at the top of the third column and a depleted liquid in argon is returned from the third column to the second column.
  • une partie du liquide enrichi en oxygène est envoyée à un condenseur de tête de la troisième colonne, sans avoir été réchauffée contre le débit gazeux enrichi en argon, le liquide enrichi en oxygène envoyé au condenseur de tête s’y vaporise et la vapeur produite est envoyée à la deuxième colonne, de préférence en étant mélangé au débit détendu dans la turbine.part of the oxygen-enriched liquid is sent to a top condenser of the third column, without having been reheated against the argon-enriched gas flow, the oxygen-enriched liquid sent to the top condenser vaporizes there and the vapor produced is sent to the second column, preferably by being mixed with the flow expanded in the turbine.
  • le liquide enrichi en oxygène est partiellement vaporisé par échange de chaleur avec le débit gazeux enrichi en argon et au moins une partie du liquide qui n’est pas vaporisée par cet échange de chaleur est envoyée au condenseur de tête de la troisième colonne pour s’y vaporiser partiellement.the oxygen-enriched liquid is partially vaporized by heat exchange with the argon-enriched gas flow and at least part of the liquid which is not vaporized by this heat exchange is sent to the top condenser of the third column to s' partially spray it.
  • la troisième colonne est disposée à l’intérieur de la deuxième colonne et l’au moins une partie du liquide enrichi en oxygène est vaporisée par échange de chaleur avec le gaz enrichi en argon à l’intérieur de la deuxième colonne.the third column is arranged inside the second column and the at least part of the oxygen-enriched liquid is vaporized by heat exchange with the argon-enriched gas inside the second column.
  • le gaz enrichi en argon envoyé à l’échangeur a une température de condensation supérieure à la température de vaporisation du liquide enrichi en oxygène dans l’échangeur.the argon-enriched gas sent to the exchanger has a condensation temperature higher than the vaporization temperature of the oxygen-enriched liquid in the exchanger.
  • tout le liquide enrichi en oxygène est envoyé de la cuve de la première colonne à l’échangeur de chaleur, seule une partie du liquide est vaporisée et cette partie est envoyé à la deuxième colonneall the oxygen-enriched liquid is sent from the tank of the first column to the heat exchanger, only part of the liquid is vaporized and this part is sent to the second column
  • dans ce cas, la partie non-vaporisée est séparée dans un séparateur de phases, détendue et envoyée à la deuxième colonnein this case, the non-vaporized part is separated in a phase separator, expanded and sent to the second column
  • une partie du liquide enrichi en oxygène est envoyée de la cuve de la première colonne à l’échangeur de chaleur où elle est au moins partiellement vaporisée et une partie du liquide enrichie en oxygène est envoyée de la cuve de la première colonne à la deuxième colonne sans passer par l’échangeur de chaleur.part of the oxygen-enriched liquid is sent from the bottom of the first column to the heat exchanger where it is at least partially vaporized and part of the oxygen-enriched liquid is sent from the bottom of the first column to the second column without passing through the heat exchanger.

Tout le liquide enrichi en oxygène envoyé à l’échanger de chaleur s’y vaporise.All the oxygen-enriched liquid sent to the heat exchanger vaporizes there.

Selon un autre objet de l’invention, il est prévu un appareil de séparation d’air par distillation cryogénique comprenant une première colonne opérant à une première pression, une deuxième colonne thermiquement reliée à la première colonne et opérant à une deuxième pression inférieure à la première pression, un échangeur de chaleur, des moyens pour envoyer de l’air refroidi et épuré en eau à la première colonne opérant à une première pression où il est séparé en un gaz enrichi en azote et un liquide enrichi en oxygène, des moyens pour soutirer un liquide enrichi en azote par rapport à l’air de la première colonne, des moyens pour envoyer le liquide enrichie en azote en haut de la deuxième colonne, des moyens pour soutirer un liquide enrichi en oxygène par rapport à l’air de la première colonne, éventuellement des moyens pour envoyer une première partie du liquide enrichie en oxygène à un niveau intermédiaire de la deuxième colonne , éventuellement après l’avoir enrichie en oxygène, des moyens pour soutirer un gaz enrichi en argon par rapport à l’air de la deuxième colonne caractérisé en ce qu’il comprend, des moyens pour envoyer au moins une partie du liquide enrichi en oxygène à l’échangeur de chaleur pour se vaporiser au moins partiellement par échange de chaleur avec le gaz enrichi en argon et des moyens pour envoyer le liquide enrichi en oxygène vaporisé à un niveau intermédiaire de la deuxième colonne, éventuellement suite à une étape d’enrichissement en oxygène du liquide vaporisé.According to another object of the invention, there is provided an air separation apparatus by cryogenic distillation comprising a first column operating at a first pressure, a second column thermally connected to the first column and operating at a second pressure lower than the first pressure, a heat exchanger, means for sending cooled and water-purified air to the first column operating at a first pressure where it is separated into a nitrogen-enriched gas and an oxygen-enriched liquid, means for drawing off a liquid enriched in nitrogen relative to the air from the first column, means for sending the liquid enriched in nitrogen to the top of the second column, means for drawing off a liquid enriched in oxygen relative to the air from the first column, possibly means for sending a first part of the oxygen-enriched liquid to an intermediate level of the second column, possibly after having enriched it with oxygen, means for withdrawing a gas enriched in argon with respect to the air of the second column characterized in that it comprises means for sending at least part of the oxygen-enriched liquid to the heat exchanger to vaporize at least partially by heat exchange with the argon-enriched gas and means for sending the vaporized oxygen-enriched liquid to an intermediate level of the second column, optionally following a step of enriching the vaporized liquid with oxygen.

L’appareil peut comprendre une troisième colonne, des moyens pour envoyer au moins une partie condensée du gaz enrichi en argon dans l’échangeur de chaleur à la troisième colonne et des moyens pour envoyer un débit gazeux enrichi en argon provenant de la deuxième colonne à la troisième colonne, des moyens pour soutirer un débit enrichi en argon en tête de la troisième colonne et des moyens pour renvoyer un liquide appauvri en argon de la troisième colonne à la deuxième colonne.The apparatus may comprise a third column, means for sending at least a condensed part of the argon-enriched gas in the heat exchanger to the third column and means for sending an argon-enriched gas flow coming from the second column to the third column, means for withdrawing a flow enriched in argon at the top of the third column and means for returning a liquid depleted in argon from the third column to the second column.

Dans le cas où une colonne de séparation d’argon est présente, le liquide enrichi en oxygène est vaporisé soit dans deux étapes en parallèle (par le débit enrichi en argon et dans le condenseur de tête de la colonne argon en même temps) ou en série (d’abord par le débit enrichi en argon et ensuite, pour le liquide qui reste, dans le condenseur de tête de la colonne argon).In the case where an argon separation column is present, the oxygen-enriched liquid is vaporized either in two stages in parallel (by the argon-enriched flow and in the overhead condenser of the argon column at the same time) or in series (first by the flow enriched in argon and then, for the liquid which remains, in the top condenser of the argon column).

L’invention sera décrite de manière plus détaillée en se référant aux figures :The invention will be described in more detail with reference to the figures:

composée des figures 1a et 1b représente des procédés selon l’invention. composed of FIGS. 1a and 1b represents methods according to the invention.

représente des procédés selon l’invention. represents methods according to the invention.

représente des procédés selon l’invention. represents methods according to the invention.

représente une variante des Figures 2 et 3. represents a variant of Figures 2 and 3.

représente également une variante des Figures 2 et 3. also represents a variant of Figures 2 and 3.

Dans la Figure 1a, on voit une double colonne de séparation d’air comprenant une première colonne K1 opérant à une première pression et une deuxième colonne K2 opérant à une deuxième pression, inférieure à la première pression. Les deux colonnes sont reliées ensemble thermiquement, par exemple par un condenseur-rebouilleur C qui vaporise l’oxygène de cuve de la deuxième colonne K2 par échange de chaleur avec l’azote gazeux de la première colonne K1.In Figure 1a, we see a double air separation column comprising a first column K1 operating at a first pressure and a second column K2 operating at a second pressure, lower than the first pressure. The two columns are thermally connected together, for example by a condenser-reboiler C which vaporizes the bottom oxygen of the second column K2 by heat exchange with the gaseous nitrogen of the first column K1.

Un liquide riche en azote 11 est envoyé de la tête de la première colonne K1 à la tête de la deuxième colonne K2. La première colonne est alimentée en air gazeux par un débit d’air 1 refroidi et épuré en eau et en CO2. De l’air peut également alimenter la deuxième colonne K2.A liquid rich in nitrogen 11 is sent from the head of the first column K1 to the head of the second column K2. The first column is supplied with gaseous air by a flow of air 1 cooled and purified of water and CO2. Air can also supply the second column K2.

Un liquide enrichi en oxygène est soutiré en cuve de la première colonne K1 et divisé en deux. Une partie 3 est envoyée à l’échangeur de chaleur E où elle est vaporisée totalement pour former un gaz 5. Le gaz 5 est détendu dans une turbine T et envoyé à un point intermédiaire de la première colonne K1. La production frigorifique généré à très basse température par cette détente amène donc un gain sur la consommation d’énergie de l’unité, comparativement à ce qui serait consommé en l’absence de cette détente.A liquid enriched in oxygen is withdrawn from the bottom of the first column K1 and divided into two. A part 3 is sent to the heat exchanger E where it is totally vaporized to form a gas 5. The gas 5 is expanded in a turbine T and sent to an intermediate point of the first column K1. The cooling production generated at very low temperature by this expansion therefore leads to a gain in the energy consumption of the unit, compared to what would be consumed in the absence of this expansion.

Le reste 10 du liquide enrichi en oxygène soutiré en cuve est détendu dans une vanne et envoyé comme débit 12 au-dessus des points d’arrivée des débits 5 et 9.The rest 10 of the oxygen-enriched liquid withdrawn from the tank is expanded in a valve and sent as flow 12 above the arrival points of flows 5 and 9.

L’échangeur E, contenu dans une enceinte B, sert aussi à liquéfier un débit de gaz intermédiaire 7 de la deuxième colonne K2. Ce gaz 7 sera soutiré à position telle que sa température de condensation (point de bulle) sera supérieure à la température de vaporisation du liquide enrichi en oxygène 3 dans l’échangeur E. Typiquement, sa composition sera celle du gaz d’alimentation d’une colonne de production d’argon. Après s’être condensé dans E, ce débit étant ensuite envoyé, éventuellement au moyen d’une pompe P à un point au moins au-dessus de son point de soutirage et en dessous de l’arrivée de gaz détendu de la turbine T.The exchanger E, contained in an enclosure B, is also used to liquefy an intermediate gas flow 7 from the second column K2. This gas 7 will be withdrawn at a position such that its condensation temperature (bubble point) will be higher than the vaporization temperature of the oxygen-enriched liquid 3 in the exchanger E. Typically, its composition will be that of the supply gas of an argon production column. After condensing in E, this flow is then sent, possibly by means of a pump P to a point at least above its draw-off point and below the expanded gas inlet of the turbine T.

Un liquide riche en oxygène 15 est soutiré de la cuve de la deuxième colonne K2 et un gaz de tête enrichi en azote 13 est soutiré de la tête de la même colonne.An oxygen-rich liquid 15 is withdrawn from the bottom of the second column K2 and a nitrogen-enriched overhead gas 13 is withdrawn from the top of the same column.

En variante, comme illustré dans la Figure 1b, tout le liquide de cuve peut être envoyé à l’échangeur E où il se vaporise partiellement. Le débit partiellement condensé est séparé dans un séparateur de phases 8 pour produire un gaz 5 et un liquide 100 enrichi en oxygène par rapport au liquide 3. Le gaz formé 5 est détendu dans une turbine T et le liquide restant 10 est détendu et envoyé à la colonne comme fluide 12. Dans ce cas, le liquide entre la colonne K2 à un niveau en dessus du gaz de la turbine T puisqu’il a été enrichi en oxygène. La Figure 1B n’illustre qu’une partie modifiée de la Figure 1a.Alternatively, as shown in Figure 1b, all of the tank liquid can be sent to exchanger E where it partially vaporizes. The partially condensed flow is separated in a phase separator 8 to produce a gas 5 and a liquid 100 enriched in oxygen with respect to the liquid 3. The gas 5 formed is expanded in a turbine T and the remaining liquid 10 is expanded and sent to the column as fluid 12. In this case, the liquid enters the column K2 at a level above the gas of the turbine T since it has been enriched in oxygen. Figure 1B shows only a modified portion of Figure 1a.

Ces schémas ne comprennent pas de colonne de séparation d’argon à la différence des Figures 2 et 3.These diagrams do not include an argon separation column unlike Figures 2 and 3.

Dans la Figure 2, variante de la Figure 1, le liquide enrichi en oxygène 3 est divisé en trois parties 3,17,19.In Figure 2, variant of Figure 1, the oxygen-enriched liquid 3 is divided into three parts 3,17,19.

Une partie 17 est envoyée directement à la deuxième colonne K2 sous forme liquide.Part 17 is sent directly to the second column K2 in liquid form.

La partie 3, comme pour la Figure 1, échange de la chaleur avec un débit enrichi en argon 7 qui est une partie du gaz enrichi en argon soutiré de la deuxième colonne, le reste du gaz 7A étant envoyé directement pour alimenter la colonne de séparation d’argon K3.Part 3, as for Figure 1, exchanges heat with an argon-enriched flow 7 which is part of the argon-enriched gas withdrawn from the second column, the rest of the gas 7A being sent directly to feed the separation column of argon K3.

La partie 3 est vaporisée pour former le débit gazeux 5 à 2,1 bars, puis détendue dans la turbine T et envoyée à la colonne K2. Le débit 7 se condense dans l’échangeur E contenu dans une enceinte B, et le liquide formé 9 alimente la colonne K3, de préférence quelques étages au-dessus de l’arrivée de gaz 7A.Part 3 is vaporized to form gas flow 5 at 2.1 bars, then expanded in turbine T and sent to column K2. The flow 7 condenses in the exchanger E contained in an enclosure B, and the liquid formed 9 feeds the column K3, preferably a few floors above the gas inlet 7A.

L’enceinte B est de préférence disposée au-dessus du point d’arrivée du liquide 9 dans la colonne K3.Enclosure B is preferably placed above the arrival point of liquid 9 in column K3.

La partie 19 du liquide enrichi en oxygène alimente le condenseur de tête N de la colonne K3 et s’y vaporise pour former une gaz 23. Le gaz 23 est mélangé avec le gaz détendu dans la turbine T pour former un gaz 25 qui alimente la deuxième colonne K2.Part 19 of the oxygen-enriched liquid feeds the top condenser N of column K3 and vaporizes there to form a gas 23. The gas 23 is mixed with the gas expanded in the turbine T to form a gas 25 which feeds the second column K2.

Ainsi le liquide enrichi en oxygène alimente l’échangeur E et le condenseur de tête en parallèle.Thus the oxygen-enriched liquid feeds the exchanger E and the head condenser in parallel.

Le rendement en argon est de l’ordre de 80 %, si l’argon épuré en oxygène (débit 21) est récupéré comme produit. Si le débit 21 n’est pas récupéré comme produit pur, la colonne K3 peut être très petite, ne contenant que quelques dizaines d’étages théoriques (< 50), voire moins de 10 étages.The argon yield is around 80%, if the oxygen-purified argon (flow rate 21) is recovered as product. If flow 21 is not recovered as pure product, column K3 can be very small, containing only a few tens of theoretical stages (< 50), or even less than 10 stages.

Dans la Figure 3, le liquide enrichi en oxygène n’est divisé qu’en deux parties 3,3A. La partie 3A alimente la colonne K2 et la partie 3 est partiellement vaporisé dans l’échangeur de chaleur E. Le liquide restant 3B alimente le condenseur de tête N de la colonne K3 et le gaz formé 23 dans le condenseur alimente la colonne K2.In Figure 3, the oxygen-enriched liquid is only split into two 3.3A parts. Part 3A feeds column K2 and part 3 is partially vaporized in heat exchanger E. The remaining liquid 3B feeds the top condenser N of column K3 and the gas formed 23 in the condenser feeds column K2.

Le gaz 7A formé dans l’échangeur E alimente la turbine T à une pression d’entrée de 2,7 bars.The gas 7A formed in the exchanger E supplies the turbine T at an inlet pressure of 2.7 bars.

Le rendement en argon est de l’ordre de 75 à 76 %, si l’argon est récupéré (débit 21).The argon yield is around 75 to 76%, if the argon is recovered (flow rate 21).

Dans les cas des Figures 2 et 3, la colonne argon a une alimentation liquide en plus de l’habituelle alimentation gazeuse. Ainsi le diamètre de la colonne K3 peut être réduit d’environ 20%, pour la section au-dessus de l’arrivée du liquide 9, réduisant son coût.In the cases of Figures 2 and 3, the argon column has a liquid feed in addition to the usual gas feed. Thus the diameter of the column K3 can be reduced by approximately 20%, for the section above the arrival of the liquid 9, reducing its cost.

Etant donné que la colonne d’argon est la colonne la plus haute de l’appareil, il est important de pouvoir en réduire le volume et ainsi réduire les dimensions de la boîte froide qui la contient (non illustrée).Since the argon column is the tallest column in the device, it is important to be able to reduce its volume and thus reduce the dimensions of the cold box that contains it (not shown).

En variante, la colonne K3 des Figures 2 et 3 peut se trouver à l’intérieur de la colonne K2, disposée de manière concentrique avec la virole de la colonne K2. La colonne K3 peut contenir des garnissages structurés ou des garnissages en vrac.Alternatively, column K3 in Figures 2 and 3 may be inside column K2, arranged concentrically with the collar of column K2. The K3 column can contain structured packings or bulk packings.

Le gaz montant dans la colonne K2 passera soit dans la colonne K3 soit dans la partie annulaire entourant la colonne K2.The gas rising in column K2 will pass either in column K3 or in the annular part surrounding column K2.

Le condenseur de tête N de la colonne K3 servira dans ce cas à chauffer un bain de liquide situé à mi-hauteur de la colonne K2. Le gaz de la tête de la colonne K3 passera par une conduite dans le condenseur de tête N à travers une barrière formant une cuve à mi-hauteur de la colonne K2 et le liquide condensé dans le condenseur N passera de la même manière dans une autre conduite à travers la barrière pour revenir à la colonne K2. Une vanne peut régler la quantité de liquide renvoyé du condenseur N vers la colonne K2.The top condenser N of column K3 will in this case be used to heat a liquid bath located halfway up column K2. The gas from the head of column K3 will pass through a pipe into the head condenser N through a barrier forming a tank halfway up the column K2 and the liquid condensed in the condenser N will pass in the same way into another driving through the barrier to return to column K2. A valve can adjust the amount of liquid returned from condenser N to column K2.

La colonne K3 est entourée par une section annulaire de la colonne K2 où se trouvent des garnissages. Le gaz séparé en haut de la section annulaire est envoyé à la section de la colonne K2 en passant à travers la barrière dans une conduite ou sera envoyé à l’extérieur de la colonne en dessous de la barrière pour rentrer dans la colonne au-dessus de la barrière. Le liquide de cuve accumulé au-dessus de la barrière sera envoyé en haut de la section annulaire soit par une conduite passant à travers la barrière soit par une conduite reliée à l’extérieur de la colonne.Column K3 is surrounded by an annular section of column K2 where there are packings. The gas separated at the top of the annular section is sent to the column section K2 passing through the barrier in a conduit or will be sent outside the column below the barrier to re-enter the column above of the barrier. The bottom liquid accumulated above the barrier will be sent to the top of the annular section either by a pipe passing through the barrier or by a pipe connected to the outside of the column.

Dans ce cas, l’échangeur E dans son enceinte B est situé toujours à l’extérieur de la colonne K2 et à l’extérieur de la colonne K3. Dans ce cas, le débit 7 est soutiré directement de la colonne K2, sans être divisé puisque le débit équivalent à 7A monte directement dans la colonne K2 vers la colonne K3.In this case, the exchanger E in its enclosure B is still located outside the column K2 and outside the column K3. In this case, flow 7 is withdrawn directly from column K2, without being divided since the flow equivalent to 7A rises directly in column K2 towards column K3.

De même le liquide 3B est injecté dans la colonne K2 pour être dirigé vers le condenseur N.Similarly, liquid 3B is injected into column K2 to be directed to condenser N.

Pour une colonne concentrique K3 à l’intérieur d’une autre colonne K2, puisque les mélanges de fluides ne sont pas de composition identique de part et d’autre de la colonne intérieur K3, il y aura des échanges thermiques à travers la paroi de la colonne K2 entre l’intérieur de la colonne K2 et la partie annulaire. L’échange thermique favorise la distillation en haut de la colonne K2 alors qu’en bas de la colonne, l’échange thermique ne la favorise pas.For a concentric column K3 inside another column K2, since the mixtures of fluids are not of identical composition on either side of the interior column K3, there will be heat exchanges through the wall of the column K2 between the inside of the column K2 and the annular part. The heat exchange favors the distillation at the top of the K2 column whereas at the bottom of the column, the heat exchange does not favor it.

Il est donc recommandé d’améliorer l’échange dans la partie supérieure de la colonne K3 en augmentant la surface d’échange thermique en rajoutant des ailettes sur la virole de la partie supérieure de la colonne K3.It is therefore recommended to improve the exchange in the upper part of the K3 column by increasing the heat exchange surface by adding fins to the shell of the upper part of the K3 column.

En alternatif on peut utiliser un métal de meilleure conductivité pour la partie supérieure de la virole que pour la partie supérieure (par exemple de l’aluminium en haut de la virole de la colonne K3 et de l’acier inoxydable en bas de la colonne). Une autre possibilité est d’utiliser une virole de K3 entièrement en aluminium et d’appliquer un revêtement dans la section inférieure pour réduire les échanges thermiques.Alternatively, a metal with better conductivity can be used for the upper part of the shell than for the upper part (for example aluminum at the top of the collar of the K3 column and stainless steel at the bottom of the column) . Another possibility is to use an all-aluminum K3 shell and apply a coating in the lower section to reduce heat exchange.

Il a été proposé par le passé de disposer une colonne de séparation d’argon ayant un condenseur de tête dans une deuxième colonne (colonne basse pression). Une possibilité est de positionner la colonne de tête de sorte que le gaz de tête de la colonne d’argon se condense en partie dans la condenseur de tête de la colonne d’argon et en partie dans un condenseur de tête de la colonne basse pression par échange de chaleur avec du liquide riche en oxygène provenant de la cuve de la première colonne (colonne moyenne pression) Le liquide formé dans le condenseur de tête de la deuxième colonne est envoyé en tête de la deuxième colonne et le liquide vaporisé est envoyé à un niveau au-dessus du condenseur de tête de la colonne argon. Le condenseur de tête peut être un vaporiseur à film.It has been proposed in the past to place an argon separation column having an overhead condenser in a second column (low pressure column). One possibility is to position the overhead column so that the overhead gas of the argon column condenses partly in the overhead condenser of the argon column and partly in an overhead condenser of the low pressure column by heat exchange with oxygen-rich liquid coming from the bottom of the first column (medium pressure column) The liquid formed in the top condenser of the second column is sent to the top of the second column and the vaporized liquid is sent to one level above the top condenser of the argon column. The overhead condenser may be a film vaporizer.

Dans les Figures 2 et 3, la turbine T peut être remplacée par une colonne de mélange K4 opérant par exemple à entre 2,2 et 2,7 bars, comme illustré à la Figure 4. Cette colonne de mélange sera alimentée en cuve par le liquide riche vaporisé 5 vaporisé par l’échangeur E. En haut de la colonne K4 arrive un débit d’oxygène liquide impur contenant environ 90% mol d’oxygène. Le liquide riche vaporisé contient 34% d’oxygène pour le cas de la Figure 2 et 20% d’oxygène pour le cas de la Figure 3. Un liquide 31 est soutiré en cuve de la colonne K4 contenant 65% d’oxygène (cas de la Figure 2) ou 50% d’oxygène (cas de la Figure 3). Un débit gazeux 43 est soutiré au milieu de la colonne K4.In Figures 2 and 3, the turbine T can be replaced by a mixing column K4 operating for example at between 2.2 and 2.7 bars, as illustrated in Figure 4. This mixing column will be fed into the tank by the vaporized rich liquid 5 vaporized by the exchanger E. At the top of the column K4 arrives a flow of impure liquid oxygen containing approximately 90% mol of oxygen. The vaporized rich liquid contains 34% oxygen for the case of Figure 2 and 20% oxygen for the case of Figure 3. A liquid 31 is withdrawn from the bottom of column K4 containing 65% oxygen (case of Figure 2) or 50% oxygen (case of Figure 3). A gas stream 43 is withdrawn from the middle of column K4.

La colonne K4 produit un débit 35 en tête de colonne contenant 75% d’oxygène (Figure 2) ou 65% d’oxygène (Figure 3) à entre 2,1 et 2,7 bars. Ce débit est condensé dans un condenseur C qui peut être le condenseur de cuve de la deuxième colonne K2 ou un vaporiseur externe à toute colonne. Il se condense par échange de chaleur avec de l’oxygène liquide pur 39 ainsi produisant de l’oxygène gazeux pur 41.The K4 column produces a flow 35 at the top of the column containing 75% oxygen (Figure 2) or 65% oxygen (Figure 3) at between 2.1 and 2.7 bars. This flow is condensed in a condenser C which can be the bottom condenser of the second column K2 or a vaporizer external to any column. It condenses by heat exchange with pure liquid oxygen 39 thus producing pure gaseous oxygen 41.

Ainsi le gaz 35 peut remplacer l’azote gazeux provenant de la première colonne dans le condenseur C de la Figure 2 ou 3. Ceci permet d’augmenter le rendement en argon d’environ 5% ou d’augmenter la production d’azote gazeux en tête de la première colonne.Thus the gas 35 can replace the gaseous nitrogen coming from the first column in the condenser C of Figure 2 or 3. This makes it possible to increase the yield of argon by approximately 5% or to increase the production of gaseous nitrogen at the top of the first column.

Le gain d’énergie sera par contre réduit par rapport à celui des Figures 2 et 3 mais la machine tournante T est éliminée.On the other hand, the energy gain will be reduced compared to that of Figures 2 and 3 but the rotating machine T is eliminated.

La Figure 5 illustre encore une variante des Figures 2 et 3 où le liquide enrichi en oxygène 3 de la cuve de la première colonne est enrichi en oxygène dans une colonne Etienne K5 dont le rebouilleur de cuve E correspond à l’échangeur 3 des figures précédentes.Figure 5 further illustrates a variant of Figures 2 and 3 where the oxygen-enriched liquid 3 of the bottom of the first column is enriched in oxygen in an Etienne K5 column whose bottom reboiler E corresponds to the exchanger 3 of the preceding figures .

Ainsi le rebouilleur E est réchauffé par un débit gazeux 7 enrichi en argon provenant de la deuxième colonne argon. Le débit liquide produit 9 sert de deuxième alimentation à la colonne argon K3 en plus de l’alimentation gazeuse.Thus the reboiler E is heated by a gas flow 7 enriched in argon coming from the second argon column. The liquid flow produced 9 serves as a second feed to the argon column K3 in addition to the gas feed.

Le liquide 3 détendu dans une vanne descend les étages de la colonne K5 et s’enrichit en oxygène pour produire un débit 53 riche en oxygène (75% oxygène), un débit de cuve et un gaz de tête ne contenant que 16% oxygène. Le débit 53 alimente la colonne K2 et permet un gain de rendement d’argon de 3%.Liquid 3 expanded in a valve descends the stages of column K5 and becomes enriched with oxygen to produce an oxygen-rich flow 53 (75% oxygen), a bottom flow and a top gas containing only 16% oxygen. Flow 53 feeds column K2 and allows an argon yield gain of 3%.

Claims (10)

Procédé de séparation d’air par distillation cryogénique dans lequel
  1. De l’air (1) refroidi et épuré en eau est envoyé à une première colonne (K1) opérant à une première pression où il est séparé en un gaz enrichi en azote et un liquide (3) enrichi en oxygène,
  2. Un liquide enrichi en azote (11) par rapport à l’air est soutiré de la première colonne et envoyé en haut d’une deuxième colonne (K2) thermiquement reliée à la première colonne et opérant à une deuxième pression inférieure à la première pression,
  3. Un liquide enrichi en oxygène (3) par rapport à l’air est soutiré de la première colonne et éventuellement une première partie (10,17) du liquide enrichi en oxygène est envoyée à un niveau intermédiaire de la deuxième colonne éventuellement après avoir subi une étape de vaporisation partielle qui l’a enrichie en oxygène
  4. Un gaz enrichi en argon (7) par rapport à l’air est soutiré de la deuxième colonne
caractérisé en ce qu’au moins une partie du liquide enrichi en oxygène est au moins partiellement vaporisée par échange de chaleur avec le gaz enrichi en argon et le liquide enrichi en oxygène vaporisé (5) est envoyé à un niveau intermédiaire de la deuxième colonne, éventuellement suite à une étape d’enrichissement en oxygène (K4) du liquide vaporisé.
Process for the separation of air by cryogenic distillation in which
  1. Air (1) cooled and purified of water is sent to a first column (K1) operating at a first pressure where it is separated into a gas enriched in nitrogen and a liquid (3) enriched in oxygen,
  2. A liquid enriched in nitrogen (11) relative to the air is withdrawn from the first column and sent to the top of a second column (K2) thermally connected to the first column and operating at a second pressure lower than the first pressure,
  3. A liquid enriched in oxygen (3) with respect to the air is withdrawn from the first column and optionally a first part (10,17) of the liquid enriched in oxygen is sent to an intermediate level of the second column, optionally after having undergone a partial vaporization step which enriched it with oxygen
  4. A gas enriched in argon (7) with respect to air is withdrawn from the second column
characterized in that at least part of the oxygen-enriched liquid is at least partially vaporized by heat exchange with the argon-enriched gas and the vaporized oxygen-enriched liquid (5) is sent to an intermediate level of the second column, optionally following a step of oxygen enrichment (K4) of the vaporized liquid.
Procédé selon la revendication 1 dans lequel le liquide enrichi en oxygène vaporisé (5) est à une pression d’au moins 1 bar supérieure à la pression de la deuxième colonne (K2), et est détendu dans une turbine (T) puis envoyé à un niveau intermédiaire de la deuxième colonne.Process according to Claim 1, in which the vaporized oxygen-enriched liquid (5) is at a pressure of at least 1 bar higher than the pressure of the second column (K2), and is expanded in a turbine (T) then sent to an intermediate level of the second column. Procédé selon la revendication 1 ou 2 dans lequel au moins une partie condensée (9) du gaz enrichi en argon est renvoyée à la deuxième colonne (K2).Process according to Claim 1 or 2, in which at least a condensed part (9) of the argon-enriched gas is returned to the second column (K2). Procédé selon la revendication 1 ou 2 dans lequel au moins une partie condensée (9) du gaz enrichi en argon est renvoyée à une troisième colonne (K3) qui est également alimentée par un débit gazeux enrichi en argon (7A) provenant de la deuxième colonne (K2), un débit enrichi en argon (21) est soutiré en tête de la troisième colonne et un liquide appauvri en argon est renvoyé de la troisième colonne à la deuxième colonne.Process according to Claim 1 or 2, in which at least a condensed part (9) of the argon-enriched gas is returned to a third column (K3) which is also fed by an argon-enriched gas flow (7A) coming from the second column (K2), an argon-enriched flow (21) is drawn off at the top of the third column and an argon-depleted liquid is returned from the third column to the second column. Procédé selon la revendication 4 dans lequel une partie (19) du liquide enrichi en oxygène est envoyée à un condenseur de tête (N) de la troisième colonne (K3), sans avoir été réchauffé contre le débit gazeux enrichi en argon (7), le liquide enrichi en oxygène envoyé au condenseur de tête s’y vaporisé et la vapeur produite (23) est envoyée à la deuxième colonne, de préférence en étant mélangé au débit détendu dans la turbine (T).Process according to Claim 4, in which a part (19) of the oxygen-enriched liquid is sent to a top condenser (N) of the third column (K3), without having been heated against the gaseous flow enriched in argon (7), the oxygen-enriched liquid sent to the overhead condenser vaporizes there and the steam produced (23) is sent to the second column, preferably being mixed with the flow expanded in the turbine (T). Procédé selon la revendication 4 dans lequel le liquide enrichi en oxygène (3) est partiellement vaporisé par échange de chaleur avec le débit gazeux enrichi en argon et au moins une partie du liquide (3B) qui n’est pas vaporisée par cet échange de chaleur est envoyée au condenseur de tête (N) de la troisième colonne (K3) pour s’y vaporiser partiellement.Process according to Claim 4, in which the oxygen-enriched liquid (3) is partially vaporized by heat exchange with the argon-enriched gas stream and at least part of the liquid (3B) which is not vaporized by this heat exchange is sent to the top condenser (N) of the third column (K3) to partially vaporize there. Procédé selon la revendication 4 dans lequel la troisième colonne (K3) est disposée à l’intérieur de la deuxième colonne (K2) et l’au moins une partie du liquide enrichi en oxygène est vaporisée par échange de chaleur avec le gaz enrichi en argon à l’intérieur de la deuxième colonne.Process according to Claim 4, in which the third column (K3) is arranged inside the second column (K2) and the at least part of the oxygen-enriched liquid is vaporized by heat exchange with the argon-enriched gas. inside the second column. Procédé selon l’une des revendications précédentes dans lequel le gaz enrichi en argon (7), envoyé à l’échangeur (E) où s’effectue l’échange de chaleur, a une température de condensation supérieure à la température de vaporisation du liquide enrichi en oxygène (3) dans l’échangeur.Method according to one of the preceding claims, in which the argon-enriched gas (7), sent to the exchanger (E) where the heat exchange takes place, has a condensation temperature higher than the vaporization temperature of the liquid enriched with oxygen (3) in the exchanger. Appareil de séparation d’air par distillation cryogénique comprenant une première colonne (K1) opérant à une première pression, une deuxième colonne (K2) thermiquement reliée à la première colonne et opérant à une deuxième pression inférieure à la première pression, un échangeur de chaleur (E), des moyens pour envoyer de l’air (1) refroidi et épuré en eau à la première colonne opérant à une première pression où il est séparé en un gaz enrichi en azote et un liquide enrichi en oxygène, des moyens pour soutirer un liquide enrichi en azote (11) par rapport à l’air de la première colonne, des moyens pour envoyer le liquide enrichie en azote en haut de la deuxième colonne, des moyens pour soutirer un liquide enrichi en oxygène par rapport à l’air de la première colonne, éventuellement des moyens pour envoyer une première partie (10,17) du liquide enrichie en oxygène à un niveau intermédiaire de la deuxième colonne, éventuellement après l’avoir enrichie en oxygène, des moyens pour soutirer un gaz enrichi en argon (7) par rapport à l’air de la deuxième colonne caractérisé en ce qu’il comprend des moyens pour envoyer au moins une partie (3) du liquide enrichi en oxygène à l’échangeur de chaleur pour se vaporiser au moins partiellement par échange de chaleur avec le gaz enrichi en argon et des moyens pour envoyer le liquide enrichi en oxygène vaporisé (5) dans l’échangeur de chaleur à un niveau intermédiaire de la deuxième colonne, éventuellement suite à une étape d’enrichissement en oxygène du liquide vaporisé.Cryogenic distillation air separation apparatus comprising a first column (K1) operating at a first pressure, a second column (K2) thermally connected to the first column and operating at a second pressure lower than the first pressure, a heat exchanger (E), means for sending air (1) cooled and purified of water to the first column operating at a first pressure where it is separated into a nitrogen-enriched gas and an oxygen-enriched liquid, means for withdrawing a liquid enriched in nitrogen (11) with respect to the air of the first column, means for sending the liquid enriched with nitrogen to the top of the second column, means for withdrawing a liquid enriched with oxygen with respect to the air of the first column, possibly means for sending a first part (10,17) of the liquid enriched in oxygen to an intermediate level of the second column, possibly after having enriched it with oxygen, means for withdrawing a gas enriched in argon (7) with respect to the air of the second column characterized in that it comprises means for sending at least a part (3) of the oxygen-enriched liquid to the heat exchanger to vaporize at least partially by exchange of heat with the gas enriched in argon and means for sending the liquid enriched in vaporized oxygen (5) into the heat exchanger at an intermediate level of the second column, possibly following a stage of oxygen enrichment of the vaporized liquid . Appareil selon la revendication 9 comprenant une troisième colonne (K3), des moyens pour envoyer au moins une partie condensée (9) du gaz enrichi en argon dans l’échangeur de chaleur à la troisième colonne et des moyens pour envoyer un débit gazeux enrichi en argon (7A) provenant de la deuxième colonne à la troisième colonne, des moyens pour soutirer un débit enrichi en argon (21) en tête de la troisième colonne et des moyens pour renvoyer un liquide appauvri en argon de la troisième colonne à la deuxième colonne.Apparatus according to claim 9 comprising a third column (K3), means for sending at least a condensed part (9) of the gas enriched in argon in the heat exchanger to the third column and means for sending a gas stream enriched in argon (7A) coming from the second column to the third column, means for withdrawing an argon-enriched flow (21) at the top of the third column and means for returning a liquid depleted in argon from the third column to the second column .
FR1911900A 2019-10-24 2019-10-24 Process and apparatus for air separation by cryogenic distillation Active FR3102548B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR1911900A FR3102548B1 (en) 2019-10-24 2019-10-24 Process and apparatus for air separation by cryogenic distillation
US17/076,487 US20210123671A1 (en) 2019-10-24 2020-10-21 Method and apparatus for separating air by cryogenic distillation
EP20203664.6A EP3812675A1 (en) 2019-10-24 2020-10-23 Method and device for air separation by cryogenic distillation
CN202011154571.2A CN112710125A (en) 2019-10-24 2020-10-26 Method and apparatus for separating air by cryogenic distillation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911900A FR3102548B1 (en) 2019-10-24 2019-10-24 Process and apparatus for air separation by cryogenic distillation
FR1911900 2019-10-24

Publications (2)

Publication Number Publication Date
FR3102548A1 true FR3102548A1 (en) 2021-04-30
FR3102548B1 FR3102548B1 (en) 2023-03-10

Family

ID=69190990

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1911900A Active FR3102548B1 (en) 2019-10-24 2019-10-24 Process and apparatus for air separation by cryogenic distillation

Country Status (4)

Country Link
US (1) US20210123671A1 (en)
EP (1) EP3812675A1 (en)
CN (1) CN112710125A (en)
FR (1) FR3102548B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654302B (en) * 2021-08-12 2023-02-24 乔治洛德方法研究和开发液化空气有限公司 Low-temperature air separation device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841525A2 (en) * 1996-11-11 1998-05-13 The BOC Group plc Air separation
EP0860670A2 (en) * 1997-02-11 1998-08-26 Air Products And Chemicals, Inc. Air separation with intermediate pressure vaporization and expansion
EP1108965A1 (en) * 1999-12-13 2001-06-20 Air Products And Chemicals, Inc. Process for distillation of multicomponent fluid suitable for production of an argon-enriched stream from a cryogenic air separation process
US20130019634A1 (en) * 2011-07-18 2013-01-24 Henry Edward Howard Air separation method and apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126672A (en) * 1978-03-27 1979-10-02 Hitachi Ltd Air separator
US4832719A (en) * 1987-06-02 1989-05-23 Erickson Donald C Enhanced argon recovery from intermediate linboil
US4994098A (en) * 1990-02-02 1991-02-19 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
US5207066A (en) * 1991-10-22 1993-05-04 Bova Vitaly I Method of air separation
GB9609099D0 (en) * 1996-05-01 1996-07-03 Boc Group Plc Oxygen steelmaking
DE10113791A1 (en) * 2001-03-21 2002-10-17 Linde Ag Recovery of argon comprises using air decomposition system consisting of high pressure column, low pressure column and middle pressure column
US7487648B2 (en) * 2006-03-10 2009-02-10 Praxair Technology, Inc. Cryogenic air separation method with temperature controlled condensed feed air
RU2716949C2 (en) * 2015-03-13 2020-03-17 Линде Акциенгезелльшафт Device for production of oxygen by low-temperature decomposition of air
EP3343158A1 (en) * 2016-12-28 2018-07-04 Linde Aktiengesellschaft Method for producing one or more air products, and air separation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841525A2 (en) * 1996-11-11 1998-05-13 The BOC Group plc Air separation
EP0860670A2 (en) * 1997-02-11 1998-08-26 Air Products And Chemicals, Inc. Air separation with intermediate pressure vaporization and expansion
EP1108965A1 (en) * 1999-12-13 2001-06-20 Air Products And Chemicals, Inc. Process for distillation of multicomponent fluid suitable for production of an argon-enriched stream from a cryogenic air separation process
US20130019634A1 (en) * 2011-07-18 2013-01-24 Henry Edward Howard Air separation method and apparatus

Also Published As

Publication number Publication date
FR3102548B1 (en) 2023-03-10
CN112710125A (en) 2021-04-27
US20210123671A1 (en) 2021-04-29
EP3812675A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
EP2694898B1 (en) Method and device for separating air by cryogenic distillation
EP2149021B1 (en) Storage enclosure, method and apparatus for producing carbon monoxide and/or hydrogen by means of cryogenic separation, including one such enclosure
FR3102548A1 (en) Process and apparatus for air separation by cryogenic distillation
WO2013135993A2 (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
EP1966554B1 (en) Air separating device by means of cryogenic distillation
FR2814229A1 (en) METHOD AND PLANT FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
WO2009136081A2 (en) Apparatus and method for separating air by cryogenic distillation
WO2015055939A2 (en) Method and device for separating air by cryogenic distillation
FR2973485A1 (en) Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen
EP3599438A1 (en) Method and device for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of ch4
WO2022162041A1 (en) Method and apparatus for separating a flow rich in carbon dioxide by distillation to produce liquid carbon dioxide
FR2795496A1 (en) APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
FR2990019A1 (en) Method for separating air by cryogenic distillation in column system, involves slacking super-cooled liquid from column by turbines, and sending diphasic flow product toward column that is operated at lower pressure
FR2787559A1 (en) Air separation using cryogenic distillation has double column receiving compressed, cooled, and expanded air to produce oxygen rich and nitrogen rich fractions
WO2005047790A2 (en) Method and installation for enriching a gas stream with one of the components thereof
FR2947898A1 (en) Air separation method, involves sending oxygen rich liquid from low pressure column to evaporator-condenser of tank, and extracting another oxygen rich liquid from lower part of condenser and nitrogen fluid from higher part of condenser
FR2972794A1 (en) APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP0884543A1 (en) Process and apparatus for the separation of air by cryogenic distillation
FR2787561A1 (en) Cryogenic distillation of air uses double column with air supply to medium pressure column and oxygen rich fluid from bottom of both low pressure and auxiliary columns
FR3141995A3 (en) Process and apparatus for air separation by cryogenic distillation
WO2005045339A1 (en) Method and device for separating air by cryogenic distillation
WO2024105022A1 (en) Method and apparatus for separating air by means of cryogenic distillation
EP3913310A1 (en) Method and device for air separation by cryogenic distilling
FR2926355A1 (en) COLUMN FOR SEPARATING A MIXTURE OF CARBON MONOXIDE AND NITROGEN BY CRYOGENIC DISTILLATION AND APPARATUS INCORPORATING SUCH A COLUMN.
FR2974890A1 (en) Method for separating air by cryogenic distillation in installation, involves condensing part of nitrogen enriched gas flow before being sent to average pressure column and/or low pressure column, and heating gas flow rich in oxygen

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20210430

PLFP Fee payment

Year of fee payment: 3

RM Correction of a material error

Effective date: 20220906

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5